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Abstract 

In this research, we look at answering the following primary question: Would an 

advanced analytical model be a more effective metric to estimate total ownership cost 

(TOC) with life-cycle cost under uncertainty and risk than the current method of life-cycle 

cost estimates for Surface EO/IR Sensors? To accomplish this, the research developed 

and analyzed a computational model for Total Ownership with Life-Cycle Cost Model 

Under Uncertainty for Surface Electro-Optical Infrared Sensors. During the development 

of the model, we identified the required data and examined the current Department of 

Defense (DoD) method for determining system life-cycle costs for defense systems and 

determined that the proposed model is a useful alternative to the current method of 

determining the life-cycle costs for EO/IR Sensors on surface ships. Finally, we 

concluded that the developed model can be applied to cost estimating in other sectors of 

DoD cost projections. 
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Introduction to the Total Ownership 
with Life-Cycle Cost Model 

Research Purpose 

The purpose of this research is to develop a model to estimate total ownership 

with life-cycle costs under uncertainty associated with Surface Electro-Optic Infrared 

(EO/IR) sensors. We examine the basics of Total Ownership Cost modeling over the life 

cycle of the EO/IR sensors, including the inception phase of Acquisition Costs, followed 

by annual Operations and Maintenance (O&M) expenses, along with a final set of 

Disposition Costs at the end of life of the sensor. This model will allow managers to have 

better decision analytics of the costs of said sensors for use in subsequent cost 

comparisons across sensor platforms, return on investment analysis, portfolio allocation 

of resources, and analysis of alternatives. 

Research Focus 

In this research, we answer the following primary question: Would an advanced 

analytical model be a more effective metric to estimate total ownership with life-cycle 

cost under uncertainty than the current method of life-cycle cost estimates for surface 

EO/IR sensors? To accomplish this, we develop and analyze a Total Ownership with 

Life-Cycle Cost Model Under Uncertainty for Surface Electro-Optical Infrared Sensors. In 

the development of the model, we determine what data is required to implement our 

proposed model for surface ship EO/IR sensors. We also examine the current 

Department of Defense (DoD) method for determining system life-cycle costs for 

defense systems and consider whether the proposed model is a useful alternative to the 

current method of determining the life-cycle costs for EO/IR sensors on surface ships. 

Finally, we consider whether the developed model can be applied to cost estimating in 

other sectors of DoD cost projections. 
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Research Summary 

While executing a standard life-cycle-based total ownership cost analysis, we 

assume that before the system is operational, there are substantial acquisition costs. 

These costs are usually referred to as Year 0, followed by the operational years where 

operation and maintenance costs will apply. The final price analyzed is the salvage cost, 

or the cost to properly dispose of, sell, or render the system inoperable. The sum of 

these three expenses is called the life-cycle cost. 

Unfortunately, the accurate calculation of these costs is not as straightforward as 

their descriptions. To accurately incorporate these three factors, it is essential to consider 

economic theory. The elements of time valuation of money are critical in the analysis of 

alternatives. The economic growth, annual discount rate, inflation, and opportunity cost 

of investing in a specific system are essential to our study. Other factors include 

budgetary cutbacks and changes in technology. The model will allow the user to input 

these changes to manually adjust for each of these. Utilizing this model will serve as a 

proof of concept to understand how this approach could be used to reduce cost overflow 

and prevent budget overruns. It will provide greater insight into the true nature of the cost 

of cash outflow and the life cycle of the product and its associated costs. These results 

would give leaders a more effective metric to analyze total ownership cost under 

uncertainty, therefore allowing leadership to make more informed decisions in the DoD 

acquisition process. 

 



Acquisition Research Program 
Graduate School of Defense Management - 3 - 
Naval Postgraduate School 

Literature Review 

Introduction 

This background and literature review provide a comprehensive overview of the 

topics pertinent to our project. We first examine the concepts and best practices in the 

field of cost and cost estimation, and their application inside of the DoD. We then look 

into the DoD’s acquisition process as a whole to analyze how the DoD can utilize cost 

estimation to influence decision-making. After covering basic cost estimation and the 

acquisition system, we then discuss total ownership cost and life-cycle cost estimations, 

and how these factors play a role in calculating the overall cost of a system. The review 

also covers the topics of risk and uncertainty to explain the relationship and the 

differences between the two, as well as to highlight the importance of properly 

accounting for both factors. We conclude with an overview of our model’s subject, the 

electro-optical infrared sensor (EO/IR). We give a brief rundown of the capabilities as 

well as the applications that these sensors have on Navy surface vessels, along with 

their rapidly changing technology, and state why it is imperative that the Navy continues 

to buy these sensors while ensuring the cost stays at a rational price point.  

Cost Estimation 

The DoD receives a limited amount of funds every fiscal year and must decide 

how those funds are used in support of U.S. national strategies and goals. Specifically, 

those decisions fall into one of three categories: long-term planning, budgeting, or 

choosing among alternatives (Mislick & Nussbaum, 2015). The government is tasked 

with spending taxpayers’ dollars effectively and efficiently. This means that the DoD 

decision-makers must ensure they make strategic investments, including the acquisition 

of new programs and systems. Before a program is implemented or system purchased, 

decision-makers must understand the full cost that will be incurred and its effect on the 

DoD’s limited budget.  
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The projected costs of major acquisitions are produced through a process known 

as cost estimation. Cost estimation is defined as “the process of collecting and analyzing 

historical data and applying quantitative models, techniques, tools, and databases in 

order to predict an estimate of the future cost of an item, product, or task” (Mislick & 

Nussbaum, 2015, p. 11). In basic terms, cost estimation is performed by running relevant 

data from the past through a model or database to predict what an item will cost in the 

future. It is important to note that reliable historical data is fundamental to this process.  

In order to produce cost estimates, we must first gather available historical data. 

Collecting data is often the most time-consuming and costly step of the entire cost 

estimation process (Mislick & Nussbaum, 2015). Only after the historical data has been 

obtained can the cost analyst start the “organization, normalization, and management of 

that historical data” (Mislick & Nussbaum, 2015, p. 11). Normalization refers to taking the 

historical data and “applying adjustments to that data to gain consistent, comparable 

data to be used in your estimates” (Mislick & Nussbaum, 2015, p. 78). Normalizing the 

data set allows the analyst to compare data across different periods of time by adjusting 

for different factors. The data set must be normalized three different ways: for content, 

for quantity, and for inflation (Mislick & Nussbaum, 2015). Normalizing for content 

ensures comparison across the same category or type of data (Mislick & Nussbaum, 

2015). Normalizing for quantity ensures comparison of data at the same point on the 

learning curve of production and of equal quantities (Mislick & Nussbaum, 2015). Finally, 

the data is adjusted to account for inflation when comparing data from different years 

(Mislick & Nussbaum, 2015).  

The second component of cost estimation is the quantitative model that is used to 

turn normalized historical data into a future cost estimate. Mislick and Nussbaum (2015) 

explain that the “profession of cost estimating is scientifically grounded by using 

transparent, rationally defensible and reviewable quantitative methods” (p. 12). The 

development of a high-quality quantitative model is key in cost estimation. If a poor 

quantitative model is used, then the quality and reliability of the cost estimate will also be 

poor. This highlights the importance of the quality cost models for EO/IR sensors.  
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The third part of Mislick and Nussbaum’s (2015) definition of cost estimation is to 

predict. The ultimate goal of cost estimation is to predict a future cost. The prediction is 

based on the information available at the time. We can only “estimate the conditions that 

will pertain later when the project is executed” and must rely on the information available 

in the present (Mislick & Nussbaum, 2015, p. 12). While no one can forecast the future 

with 100% accuracy, through historical data and quantitative models, we are able to 

provide a more accurate prediction that, while not perfect, is still a useful tool for 

decision-makers in the acquisition process. 

Mislick and Nussbaum (2015) explain that the overall objective of cost estimation 

is to provide a complete, reasonable, credible, and analytically defensible estimation of 

future costs—a quality estimate—that can be used by decision-makers. They provide a 

breakdown of characteristics essential to a quality cost estimate, and we explore some of 

these characteristics in the following paragraphs.  

One of the most important characteristics of a quality cost estimate is that it must 

be understandable to the user or decision-maker in order to be an efficient decision-

making tool (Mislick & Nussbaum, 2015). To this end, a complex approach to cost 

estimation should be avoided and a simpler approach should be used (Mislick & 

Nussbaum, 2015). An understandable estimate also clearly lays out the assumptions 

and ground rules that were used in the process (Mislick & Nussbaum, 2015). With the 

diversity among people’s background and experiences, there can be differing underlying 

assumptions in the cost estimation process. Therefore, the assumptions used must be 

clearly stated and a sensitivity analysis should be performed to accommodate additional 

variations of assumptions (Mislick & Nussbaum, 2015).  

Another characteristic of a quality cost estimate is that it is “anchored in historical 

program performance” (Mislick & Nussbaum, 2015, p. 13). We previously stated that 

cost estimations use historical data to predict future cost. Therefore, an important aspect 

of the historical data is its relation to the future costs we are trying to predict. The cost 

estimation must be based on data from a similar system or program (Mislick & 

Nussbaum, 2015). For example, if we are trying to estimate the cost of a new class of 
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surface ship, we should not be using historical data from a submarine program, as such 

data would not produce a quality estimate. Instead, we should use the historical data 

from a past class of surface ship that has features similar to the new class. Although we 

are using historical data as a base, we must also account for “current and potential future 

process and design improvements” (Mislick & Nussbaum, 2015 p. 13). We are trying to 

predict the cost of a new future system, which may have updated designs and processes 

with no historical data. These updates and improvements still need to be accounted for 

in our estimation and are often accomplished by subject matter experts (SMEs) and their 

professional judgment (Mislick & Nussbaum, 2015). Finally, cost estimates are about 

predicting the future, and with the future comes uncertainty. In order to produce quality 

estimates, cost analysts must address the uncertainties and risk associated with the 

program (Mislick & Nussbaum, 2015). We go into more detail about how risk and 

uncertainties are addressed in cost estimation later.  

Cost Overview  

Before comprehending cost estimation methods, it is important to become familiar 

with the terms associated with cost estimation. To begin with, an understanding of “cost” 

provides a solid foundation in the cost estimation process. If we do not understand what 

we are trying to predict, then we will not produce a quality or credible estimation. The 

term cost is often used interchangeably with the term price; however, they do not have 

the same meaning. There is an important distinction between the two terms. Mislick and 

Nussbaum (2015) define cost as the total amount of money needed to produce a certain 

item, or a quantitative measurement that accounts for all resources needed to produce 

an item. However, they refer to price as the amount of money that a person must pay for 

an item. When we go into a store, we normally ask the salesperson “What does this item 

cost?” Answering the literal question of what an item costs would encompass every 

resource that went into the development and production of that item. Instead, the 

accurate question is, “What’s the item’s price?” or “How much money must I exchange to 

receive that item?”  
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Because the term cost can refer to a number of different types or categories, the 

type of cost is important to understand during the cost estimation process. One of the 

first distinctions is between recurring and nonrecurring costs. A recurring cost is 

“repetitive and occurs each time a company produces a unit” (Mislick & Nussbaum, 

2015, p. 26). When a bottling company produces a bottled beverage, each bottle cap 

has an associated cost. The cost of each bottle cap is recurring. In contrast, a 

nonrecurring cost is “not repetitive and cannot be tied to the quantity of the items being 

produced” (Mislick & Nussbaum, 2015, p. 26). The cost associated with purchase of the 

bottling machine would be consider nonrecurring. Closely related to recurring and 

nonrecurring costs are fixed and variable costs. Variable costs are associated and vary 

with the level of production (Mislick & Nussbaum, 2015). The more units produced, the 

more the total variable cost. However, fixed costs are unaffected by the level of 

production and are “generally associated with nonrecurring costs” (Mislick & Nussbaum, 

2015, p. 27). No matter how many units are produced, the fixed cost will remain 

unchanged. 

Another distinction between types of cost is direct and indirect costs. A direct cost 

can be “reasonably measured and allocated to a specific output, product, or work 

activity” (Mislick & Nussbaum, 2015, p. 26). The material used to produce an item is a 

direct cost. An indirect cost “cannot be attributed or allocated to a specific output, 

product, or work activity” (Mislick & Nussbaum, 2015, p. 27). The maintenance required 

for the upkeep of a machine used in production is indirect. Operating costs that are not 

direct labor or material, such as electricity and property taxes, are classified as overhead 

costs (Mislick & Nussbaum, 2015). 

Other cost classifications are sunk costs and opportunity costs. A sunk cost is a 

cost that has already been incurred, as it occurred in the past. These costs are 

considered irrelevant to decision-makers, as the money spent cannot be retrieved 

(Mislick & Nussbaum, 2015). If someone walks into a car dealership and purchases a 

car, the cost of that car is not used in considering future upkeep or upgrades. The buyer 

cannot get the money they spent back and reallocate it; therefore, it is sunk. Opportunity 

cost arises when there is more than one option to be considered. Opportunity cost is the 
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measure of the value lost when one alternative is chosen over another (Mislick & 

Nussbaum, 2015). In the car dealership scenario, the buyer has the option of buying 

several different cars. Each of those cars has different features and value. In order to buy 

one car, the buyer must decide not to buy the others. This means the buyer is giving up 

some features or value. Opportunity costs are important for decision-makers when 

determining the best available option among multiple alternatives.  

The Theory of Predictive Modeling in Cost 

Generally, forecasting can be divided into quantitative and qualitative approaches 

(see Figure 1). Qualitative forecasting is used when little to no reliable historical, 

contemporaneous, or comparable data exist. Several qualitative methods exist, such as 

the Delphi or expert opinion approach (a consensus-building forecast by field experts, 

marketing experts, or internal staff members), management assumptions (target growth 

rates set by senior management), as well as market research or external data or polling 

and surveys (data obtained through third-party sources, industry and sector indexes, or 

active market research). These estimates can be either single-point estimates (an 

average consensus) or a set of prediction values (a distribution of predictions). The latter 

can be entered into Risk Simulator as a custom distribution and the resulting predictions 

can be simulated; that is, running a nonparametric simulation using the prediction data 

points as the custom distribution.  

For quantitative forecasting, the available data or data that need to be forecasted 

can be divided into time-series (values that have a time element to them, such as 

revenues at different years, inflation rates, interest rates, market share, failure rates, and 

so forth), cross-sectional (values that are time-independent, such as the grade point 

average of sophomore students across the nation in a particular year, given each 

student’s levels of SAT scores, IQ, and number of alcoholic beverages consumed per 

week), or mixed panel (mixture between time-series and panel data; e.g., predicting 

sales over the next 10 years given budgeted marketing expenses and market share 

projections, which means that the sales data are time-series but exogenous variables 

such as marketing expenses and market share exist to help to model the forecast 
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predictions). Here is a quick review of each of the most commonly used forecasting 

methodology.  

• ARIMA. Autoregressive integrated moving average (ARIMA, also known 
as Box–Jenkins ARIMA) is an advanced econometric modeling technique. 
ARIMA looks at historical time-series data and performs back-fitting 
optimization routines to account for historical autocorrelation (the 
relationship of a variable’s values over time, that is, how a variable’s data 
is related to itself over time). It accounts for the stability of the data to 
correct for the nonstationary characteristics of the data, and it learns over 
time by correcting its forecasting errors. Think of ARIMA as an advanced 
multiple regression model on steroids, where time-series variables are 
modeled and predicted using its historical data as well as other time-series 
explanatory variables. Advanced knowledge in econometrics is typically 
required to build good predictive models using this approach. Suitable for 
time-series and mixed-panel data (not applicable for cross-sectional data). 

• Auto-ARIMA. The Auto-ARIMA module automates some of the traditional 
ARIMA modeling by automatically testing multiple permutations of model 
specifications and returns the best-fitting model. Running the Auto-ARIMA 
module is similar to running regular ARIMA forecasts, the differences 
being that the required P, D, Q inputs in ARIMA are no longer required 
and that different combinations of these inputs are automatically run and 
compared. Suitable for time-series and mixed-panel data (not applicable 
for cross-sectional data). 

• Basic Econometrics. Econometrics refers to a branch of business 
analytics, modeling, and forecasting techniques for modeling the behavior 
or forecasting certain business, economic, finance, physics, 
manufacturing, operations, and any other variables. Running basic 
econometrics models is similar to regular regression analysis except that 
the dependent and independent variables are allowed to be modified 
before a regression is run. Suitable for all types of data. 

• Basic Auto Econometrics. This methodology is similar to basic 
econometrics, but thousands of linear, nonlinear, interacting, lagged, and 
mixed variables are automatically run on the data to determine the best-
fitting econometric model that describes the behavior of the dependent 
variable. It is useful for modeling the effects of the variables and for 
forecasting future outcomes, while not requiring the analyst to be an 
expert econometrician. Suitable for all types of data. 

• Combinatorial Fuzzy Logic. Fuzzy sets deal with approximate rather than 
accurate binary logic. Fuzzy values are between 0 and 1. This weighting 
schema is used in a combinatorial method to generate the optimized time-
series forecasts. Suitable for time-series only. 
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• Custom Distributions. Using Risk Simulator, expert opinions can be 
collected, and a customized distribution can be generated. This 
forecasting technique comes in handy when the dataset is small, when the 
Delphi method is used, or the goodness-of-fit is bad when applied to a 
distributional fitting routine. Suitable for all types of data. 

• GARCH. The generalized autoregressive conditional heteroskedasticity 
(GARCH) model is used to model historical and forecast future volatility 
levels of a marketable security (e.g., stock prices, commodity prices, oil 
prices, etc.). The dataset has to be a time series of raw price levels. 
GARCH will first convert the prices into relative returns and then run an 
internal optimization to fit the historical data to a mean-reverting volatility 
term structure, while assuming that the volatility is heteroskedastic in 
nature (changes over time according to some econometric 
characteristics). Several variations of this methodology are available in 
Risk Simulator, including EGARCH, EGARCH-T, GARCH-M, GJR-
GARCH, GJR-GARCH-T, IGARCH, and T-GARCH. Suitable for time-
series data only. 
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Econometrics and regression methods require at least 
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GARCH estimates volatility based on price inputs. 

MLE requires the dependent variable to be truncated 
or limited (e.g., binary), and independent variables can 
take on any form. In contrast, econometrics and 
regression methods cannot have binary values for their 
dependent variables (however, they can take binary 
dummy variables as independent variables). 
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• J-Curve. The J-curve, or exponential growth curve, is one where the 
growth of the next period depends on the current period’s level and the 
increase is exponential. This phenomenon means that over time, the 
values will increase significantly, from one period to another. This 
model is typically used in forecasting biological growth and chemical 
reactions over time. Suitable for time-series data only. 

• Markov Chains. A Markov chain exists when the probability of a future 
state depends on a previous state and when linked together forms a 
chain that reverts to a long-run steady state level. This approach is 
typically used to forecast the market share of two competitors. The 
required inputs are the starting probability of a customer in the first 
store (the first state) returning to the same store in the next period, 
versus the probability of switching to a competitor’s store in the next 
state. Suitable for time-series data only. 

• Maximum Likelihood on Logit, Probit, and Tobit. Maximum likelihood 
estimation (MLE) is used to forecast the probability of something 
occurring given some independent variables. For instance, MLE is 
used to predict if a credit line or debt will default given the obligor’s 
characteristics (30 years old, single, salary of $100,000 per year, and 
total credit card debt of $10,000), or the probability a patient will have 
lung cancer if the person is a male between the ages of 50 and 60, 
smokes five packs of cigarettes per month or year, and so forth. In 
these circumstances, the dependent variable is limited (i.e., limited to 
being binary 1 and 0 for default/die and no default/live, or limited to 
integer values such as 1, 2, 3, etc.) and the desired outcome of the 
model is to predict the probability of an event occurring. Traditional 
regression analysis will not work in these situations (the predicted 
probability is usually less than zero or greater than one, and many of 
the required regression assumptions are violated, such as 
independence and normality of the errors, and the errors will be fairly 
large). Suitable for cross-sectional data only. 

• Multivariate Regression. Multivariate regression is used to model the 
relationship structure and characteristics of a certain dependent 
variable as it depends on other independent exogenous variables. 
Using the modeled relationship, we can forecast the future values of 
the dependent variable. The accuracy and goodness-of-fit for this 
model can also be determined. Linear and nonlinear models can be 
fitted in the multiple regression analysis. Suitable for all types of data. 

• Neural Network. This method creates artificial neural networks, nodes, 
and neurons inside software algorithms for the purposes of forecasting 
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time-series variables using pattern recognition. Suitable for time-series 
data only. 

• Nonlinear Extrapolation. In this methodology, the underlying structure 
of the data to be forecasted is assumed to be nonlinear over time. For 
instance, a dataset such as 1, 4, 9, 16, 25 is considered to be 
nonlinear (these data points are from a squared function). Suitable for 
time-series data only. 

• S-Curves. The S-curve, or logistic growth curve, starts off like a J-
curve, with exponential growth rates. Over time, the environment 
becomes saturated (e.g., market saturation, competition, 
overcrowding), the growth slows, and the forecast value eventually 
ends up at a saturation or maximum level. The S-curve model is 
typically used in forecasting market share or sales growth of a new 
product from market introduction until maturity and decline, population 
dynamics, and other naturally occurring phenomenon. Suitable for 
time-series data only. 

• Spline Curves. Sometimes there are missing values in a time-series 
dataset. For instance, interest rates for years 1 to 3 may exist, followed 
by years 5 to 8, and then year 10. Spline curves can be used to 
interpolate the missing years’ interest rate values based on the data 
that exist. Spline curves can also be used to forecast or extrapolate 
values of future time periods beyond the time period of available data. 
The data can be linear or nonlinear. Suitable for time-series data only. 

• Stochastic Process Forecasting. Sometimes variables are stochastic 
and cannot be readily predicted using traditional means. Nonetheless, 
most financial, economic, and naturally occurring phenomena (e.g., 
motion of molecules through the air) follow a known mathematical law 
or relationship. Although the resulting values are uncertain, the 
underlying mathematical structure is known and can be simulated 
using Monte Carlo risk simulation. The processes supported in Risk 
Simulator include Brownian motion random walk, mean-reversion, 
jump-diffusion, and mixed processes, useful for forecasting 
nonstationary time-series variables. Suitable for time-series data only. 

• Time-Series Analysis and Decomposition. In well-behaved time-series 
data (typical examples include sales revenues and cost structures of 
large corporations), the values tend to have up to three elements: a 
base value, trend, and seasonality. Time-series analysis uses these 
historical data and decomposes them into these three elements, and 
recomposes them into future forecasts. In other words, this forecasting 
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method, like some of the others described, first performs a back-fitting 
(backcast) of historical data before it provides estimates of future 
values (forecasts). Suitable for time-series data only. 

• Trendlines. This method fits various curves such as linear, nonlinear, 
moving average, exponential, logarithmic, polynomial, and power 
functions on existing historical data. Suitable for time-series data only. 

Parametric Cost Model Approach 

It is assumed that the user is sufficiently knowledgeable about the 

fundamentals of regression analysis. The general bivariate linear regression 

equation takes the form of 0 1Y Xβ β ε= + + , where β0 is the intercept, β1 is the 

slope, and ε is the error term. It is bivariate as there are only two variables, a Y or 

dependent variable, and an X or independent variable, where X is also known as 

the regressor (sometimes a bivariate regression is also known as a univariate 

regression as there is only a single independent variable X ). The dependent 

variable is named as such as it depends on the independent variable. For 

example, sales revenue depends on the amount of marketing costs expended on 

a product’s advertising and promotion, making the dependent variable sales and 

the independent variable marketing costs. An example of a bivariate regression 

is seen as simply inserting the best-fitting line through a set of data points in a 

two-dimensional plane, as seen on the left panel in Figure 2. In other cases, a 

multivariate regression can be performed, where there are multiple or k number 

of independent X variables or regressors, where the general regression equation 

will now take the form of 0 1 1 2 2 3 3... k kY X X X Xβ β β β β ε= + + + + + . In this case, the 

best-fitting line will be within a k + 1 dimensional plane.  
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Figure 2. Bivariate Regression 

However, fitting a line through a set of data points in a scatterplot, as in the left 

panel of Figure 2, may result in numerous possible lines. The best-fitting line is 

defined as the single unique line that minimizes the total vertical errors, that is, the 

sum of the absolute distances between the actual data points (Yi) and the estimated 

line ( Ŷ ), as shown on the right panel of Figure 2. To find the best-fitting unique line 

that minimizes the errors, a more sophisticated approach is applied using regression 

analysis. Regression analysis finds the unique best-fitting line by requiring that the 

total errors be minimized, or by calculating 
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where only one unique line minimizes this sum of squared errors. The errors (vertical 

distances between the actual data and the predicted line) are squared to avoid the 

negative errors from canceling out the positive errors. Solving this minimization 

problem with respect to the slope and intercept requires calculating first derivatives 

and setting them equal to zero: 
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which yields the bivariate regression’s least squares equations: 
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For multivariate regression, the analogy is expanded to account for multiple 

independent variables, where 1 2 2, 3 3,i i i iY X Xβ β β ε= + + +  and the estimated slopes can 

be calculated by 
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In running multivariate regressions, great care must be taken to set up and 

interpret the results. For instance, a good understanding of econometric modeling is 

required (e.g., identifying regression pitfalls such as structural breaks, 

multicollinearity, heteroskedasticity, autocorrelation, specification tests, nonlinearities, 

and so forth) before a proper model can be constructed. 

Potential Issues in Parametric Models 

The following six assumptions are the requirements for a parametric 

multiple regression analysis to work: 

• The relationship between the dependent and independent variables is 
linear.  

• The expected value of the errors or residuals is zero.  

• The errors are independently and normally distributed.  
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• The variance of the errors is constant or homoskedastic and not 
varying over time.  

• The errors are independent and uncorrelated with the explanatory 
variables. 

• The independent variables are uncorrelated to each other, meaning 
that no multicollinearity exists.  

One very simple method to verify some of these assumptions is to use a 

scatterplot. This approach is simple to use in a bivariate regression scenario. If the 

assumption of the linear model is valid, the plot of the observed dependent variable 

values against the independent variable values should suggest a linear band across 

the graph with no obvious departures from linearity. Outliers may appear as 

anomalous points in the graph, often in the upper right-hand or lower left-hand corner 

of the graph. However, a point may be an outlier in either an independent or 

dependent variable without necessarily being far from the general trend of the data.  

If the linear model is not correct, the shape of the general trend of the X-Y plot 

may suggest the appropriate function to fit (e.g., a polynomial, exponential, or logistic 

function). Alternatively, the plot may suggest a reasonable transformation to apply. 

For example, if the X-Y plot arcs from lower left to upper right so that data points 

either very low or very high in the independent variable lie below the straight line 

suggested by the data, while the middle data points of the independent variable lie on 

or above that straight line, taking square roots or logarithms of the independent 

variable values may promote linearity. 

If the assumption of equal variances or homoskedasticity for the dependent 

variable is correct, the plot of the observed dependent variable values against the 

independent variable should suggest a band across the graph with roughly equal 

vertical width for all values of the independent variable. That is, the shape of the 

graph should suggest a tilted cigar and not a wedge or a megaphone. 
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A fan pattern, like the profile of a megaphone, with a noticeable flare either to 

the right or to the left in the scatterplot, suggests that the variance in the values 

increases in the direction where the fan pattern widens (usually as the sample mean 

increases), and this in turn suggests that a transformation of the dependent variable 

values may be needed. 

Life-Cycle Cost  

In developing a cost estimate, we first must understand a program’s or 

project’s life cycle. A life cycle follows the project or program from its inception to its 

disposal, or “cradle to grave.” It includes “the various stages of activity or phases 

through which the project progresses on its way from beginning to completion” 

(Rendon & Snider, 2008, p. 3). The life cycle starts at a program’s development, 

flows through its production, operation, and maintenance, and finally concludes after 

proper disposal. The costs associated with this process are classified as the 

program’s life-cycle cost (LCC).  

The Defense Acquisition University defines life-cycle cost as the direct cost of 

the acquisition program, as well as the indirect cost that can be logically attributed to 

the program over the entire life cycle (DAU, n.d.-b). It includes the cost to the 

government to “acquire, operate, support (to include manpower), and where 

applicable, dispose” of a system or program (DAU, n.d.-b). There are multiple 

stakeholders in the DoD, such as Congress, the program manager and office, and 

contractors, that view a program’s life-cycle cost from different perspectives. These 

multiple perspectives have led to three different methods of breaking down and 

displaying LCC.  

The first method is breaking down program life-cycle costs by five different 

appropriation categories (DAU, n.d.-b): Research, Development, Test, and 

Evaluation (RDT&E); Procurement; Operations and Maintenance (O&M); Military 
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Construction (MILCON); and Military Personnel (MILPERS). This method is used to 

develop and submit budget requests to Congress (DAU, n.d.-b).  

However, program managers and program offices would not find the first 

method as useful as Congress does. Instead, they utilize program life-cycle costs 

that are broken down by Work Breakdown Structure (WBS; DAU, n.d.-b). The DAU 

describes a Work Breakdown Structure as a framework that displays “the total 

system as a product-oriented family tree composed of hardware, software, services, 

data, and facilities” (DAU, n.d.-b). The WBS relates all of the work elements to each 

other and eventually to the final product (DAU, n.d.-b). A WBS encompasses all of 

the work necessary to produce a product (Huynh & Snider, 2008). This breakdown 

shows the relationship between costs and different elements of a system, which is a 

useful tool for program managers and contractors.  

The Office of the Secretary of Defense (OSD) for Cost Assessment and 

Program Evaluation (CAPE) outlines the third display method in their Operating and 

Support Cost-Estimating Guide (DoD, 2014). OSD-CAPE defines a program’s life-

cycle cost as the summation of four different cost categories or phases: Research 

and Development (R&D), Investment, Operating and Support, and Disposal. Figure 3 

provides a graphical representation of the four cost categories over a program’s life 

cycle.  

R&D is the initial cost category or phase in a program’s life cycle. These costs 

are the first incurred in the research, design, and development of a new system or 

program. They can also include the “system design and integration; development, 

fabrication, assembly, and test of hardware and software for protypes and/or 

engineering development models” (DoD, 2014, pp. 2–3).  

Following R&D is the investment cost category. These costs are incurred from 

“procurement and related activities from the beginning of low rate initial production 

(LRIP) through completion of deployment” (DoD, 2014, pp. 2–3). Low rate initial 
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production refers to the production of the minimal number of a product or system that 

is required for initial operational test and evaluation (IOT&E; DAU, n.d.-c). Investment 

costs can include program management, initial spares, technical publications, and 

equipment training (DoD, 2014).  

 

Figure 3. Notional Profile of Annual Program Expenditures by Major Cost Category over the 
System Life Cycle. Source: OSD CAPE (DoD, 2014). 

The Operating and Support (O&S) phase is the third phase in the OSD-CAPE 

definition of LCC. The O&S phase normally accounts for a majority of a project’s life-

cycle costs (DoD, 2014). O&S consists of all of a system’s operation and sustainment 

cost from initial deployment to the end of its operational life. This includes all the 

costs associated with “operating, maintaining, and supporting a fielded system” 

(DoD, 2014, pp. 2–3). Specifically, costs can include “personnel, equipment, 

supplies, software, and services associated with operating, modifying, maintain, 

supplying, and otherwise supporting a system” (DoD, 2014, pp. 2–3). 
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The fourth and final OSD-CAPE cost category is disposal. Disposal costs are 

those associated with the proper disposal or demilitarization at the end of a system’s 

operational life (DoD, 2014). These costs can include “disassembly, materials 

processing, decontamination, collection/storage/disposal of hazardous materials 

and/or waste, safety precautions, and transportation of the system to and from the 

disposal site” (DoD, 2014, pp. 2–5). However, disposal costs can also be incurred 

during the sustainment phase due to unplanned system losses. (DoD, 2014). We 

revisit this method of life-cycle costing in our discussion of total ownership costing. 

Department of Defense Acquisition Process 

To comprehend how life-cycle costs and cost estimations are used in the 

DoD, we first must have a basic understanding of the DoD acquisition process. One 

version of the DoD Directive 5000.01 defines the purpose of the acquisition process 

as the ability to “acquire quality products that satisfy user needs with measurable 

improvements to mission capability and operational support, in a timely manner, and 

at a fair and reasonable price” (DoD, 2007, p. 3) In acquiring a new system or 

program, the DoD uses the Defense Acquisition System (DAS), which is defined in 

Directive 5000.01 as a “management process by which the Department of Defense 

provides effective, affordable, and timely systems to the users” (DoD, 2007, p. 2). 

However, the DAS is not the only part of the acquisition process. It is used in 

conjunction with two other DoD decision support systems (Ambrose, 2017a): The 

Joint Capabilities Integration and Development System (JCIDS) and the Planning, 

Programing, Budgeting, and Execution process (PPBE). These support systems 

identify and document the operational requirements or needs and guide the 

program’s financing process. We are providing a brief overview of both support 

systems because they are fundamental to the overall DoD acquisition process.  

Dealing with identifying, assessing, and prioritizing military operational 

requirements, JCIDS represents the foundation of the defense acquisition program 
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process. It uses a top-down approach stemming from the National Military Strategy 

and flows into joint concepts and joint capabilities. The Defense Acquisition 

University describes the process as a “collaborative effort that uses joint concepts 

and integrated architectures to identify prioritized capability gaps and integrated 

doctrine, organization, training, material, leadership and education, personnel, and 

facilities (DOTmLPF) solutions (materiel and non-materiel) to resolve those gaps” 

(DAU, n.d.-a). The JCIDS process starts with the identification of an operational 

capability gap and the requirements needed to fill the associated gap. This can be 

achieved through a capabilities-based assessment (CBA) and two different potential 

solutions: materiel or non-materiel (DAU, n.d.-a). If a materiel solution is decided on, 

then the DoD acquisition process proceeds. As an example, if a commander 

discovers their Sailors are unable to combat a new threat with the ship’s current 

systems, a capability gap has been identified. The DoD will address this gap and the 

need for a solution through the JCIDS process. If the solution is a new or updated 

system, then a new program will be developed through the defense acquisition 

process. Once the need for a new system or program has been identified, we can 

transition to the financing side of the acquisition process.  

The Planning, Programming, Budgeting, and Execution process (PPBE) is the 

second acquisition support system. The DAU defines the PPBE process as the 

DoD’s “internal methodology used to allocate resources to provide capabilities 

deemed necessary to accomplish the Department’s missions” (DAU, n.d.-d). The 

process focuses on how resources are allocated in the DoD to support both current 

and future acquisition programs, more specifically, on how the DoD finances those 

programs. The PPBE process is broken down into four phases.  

In the first phase, planning, the required capabilities to support and complete 

the missions outlined in the national policy are developed. This phase produces the 

Joint Programming Guidance (JPG), which provides guidance and establishes 

priorities for the Program Objective Memorandum (POM; Candreva, 2008). However, 
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the JPG does not account for any fiscal constraints. The next phase in the PPBE 

process is programming. This phase entails applying fiscal constraints to the objects 

produced in the planning phase and results in the production of the POM, which 

outlines the plan for the allocation of funding to programs (Candreva, 2008). The third 

part of the PPBE process in the budgeting phase. The goal of this phase is 

converting the information contained in the POM into the budget format required by 

Congress and Office of Management and Budget (OMB; Candreva, 2008). The 

budget outlines what the money is for, why it is needed (justification), and the 

monetary amount. The budget represents a request for spending authority. The 

appropriations from Congress grant that authority and give the power to obligate 

funds from the U.S. Treasury to an objective (Candreva, 2008). After the 

Authorization and Appropriations Bill has been signed, we can enter the execution 

phase, the fourth phase of the PPBE process (Candreva, 2008). Execution refers to 

the act of exercising the authority granted by the appropriation or the spending of the 

money (Candreva, 2008). The PPBE is an important part acquisition process. 

Without the “funding” piece, the DoD would not be able to acquire the new programs 

and systems that have been identified as a “need” through the JCIDS process.  

Now that the two support systems, JCIDS and PPBE, have identified 

capability need and established program funding, we can turn to the DAS. The DAS 

is governed by the DoD’s Instruction 5000 series, which provides policy and 

principles, as well as a foundation of management for the DAS. The DAS serves a 

five-phase framework for defense acquisition programs. It takes the capability need 

identified through the JCIDS process and develops it into a working system. The 

process follows the system from the program’s conception, through its operational 

phase, and ends with its disposal. Figure 4 from the older version of DODI 5000.02 

(DoD, 2015) shows the DAS process for a hardware-intensive product. 
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Figure 4. Hardware-Intensive DAS. Source: DoD (2017). 

Material Solution Analysis (MSA) is the first phase of the DAS. DODI 5000.02 

describes the MSA’s purpose as “conduct[ing] the analysis and other activities 

needed to choose the concept for the product that will be acquired, to begin 

translating validated capability gaps in system-specific requirements” (DoD, 2017, 

p.18). This phase takes the identified capability gaps and needs from the JCIDS 

process and translates them into the requirements for the desired acquisition. Then 

numerous technologies are analyzed and evaluated to determine which one best 

fulfills those needs and requirements (Ambrose, 2017b).  

The second phase of the DAS is Technology Maturation and Risk Reduction 

(TMMR). The purpose of this phase, as defined by DAU, is “to reduce technology, 

engineering, integration, and life-cycle cost risk to the point that the decision to 

contract for Engineering and Manufacturing Development (EMD) can be made with 

confidence for the successful program execution of development, production, and 

sustainment” (DAU, n.d.-e). The goal of this phase is to reduce the risks associated 

with the product that will be developed (DoD, 2017).  
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Following the TMMR phase, the process enters the EMD phase of the DAS. 

The goal of this phase is to develop, build, and test a product in order to verify that all 

the operational and other requirements have been fulfilled (DoD, 2017). The 

hardware and software designed are being completed and prototypes are built during 

this phase. These prototypes will undergo a Developmental Test and Evaluation 

(DT&E) to verify that the capability requirements have been met (DoD, 2017). These 

results will support the decision to enter into the next phase.  

Production and Development (P&D) is the fourth phase of the DAS. The 

purpose of this phase is “to produce and deliver requirements-compliant products to 

receiving military organizations” (DoD, 2017, p. 30). In this phase, the product 

undergoes testing, including Operational Test & Evaluation (OT&E), to verify that the 

product meets the operational requirements before full production and deployment 

(DoD, 2017). After successful testing, the product can be produced and then fielded 

for use by operational forces. The phase also encompasses low rate initial 

production, limited deployment, full-rate production decision, and eventually full-rate 

production and deployment (DoD, 2017). 

The last phase of the DAS is Operation and Support (O&S). Its purpose is to 

“execute the product support strategy, satisfy materiel readiness and operational 

support performance requirements, and sustain the system over its life cycle (to 

include disposal)” (DoD, 2017). The phase consists of two main stages, sustainment, 

and disposal. Sustainment continues the full-rate production, deployment, and 

operational support of the product throughout its life (DoD, 2017). This phase also 

includes proper disposal at the end of the product’s operational life, at which time it 

will be “demilitarized and disposed of in accordance with all legal and regulatory 

requirements” (DoD, 2017, p. 32). After a product’s disposal, the DAS is complete.  
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Cost Estimation in the Department of Defense 

Cost estimation is an important and required tool used by decision-makers in 

defense acquisitions. The requirement for a cost estimation is outlined in the 

Department of Defense Instruction 5000.02, Operation of the Defense Acquisition 

System. Specifically, the instruction mandates that the  

DoD Component will develop a DoD Component Cost Estimate that 
covers the entire life cycle of the program for all Major Defense 
Acquisition Programs (MDAPs) prior to Milestone A, B, and C 
reviews and the Full-Rate Production Decision; and for all Major 
Automated Information System (MAIS) programs at any time an 
Economic Analysis is due. (DoD, 2017, p. 135) 

This means that before the acquisition process can move beyond the MSA, 

TMRR, and EMD phases and ultimately continue on to full production, a cost 

estimate encompassing the entire program life cycle must be produced. In addition to 

the DoD’s Component Cost Estimate, a separate, independent cost estimate is also 

required. DODI 5000.02 requires the Milestone Decision Authority to consider an 

“independent estimate of the full life-cycle cost of a program, prepared or approved 

by the Director of Cost Analysis and Program Evaluation (DCAPE)” (DoD, 2017, p. 

135). The DoD Component and DCAPE cost estimates are typically classified as 

Life-Cycle Cost Estimations (LCCEs). Mislick and Nussbaum (2015) describe an 

LCCE as a “a cost estimate for the totality of the resources that will be necessary 

throughout the product’s life cycle” (p. 18).  

There are four main cost estimating techniques used in the DoD to develop an 

LCCE, and they can be used in different phases of a program’s life cycle (Ambrose, 

2017a). The first method is parametric cost estimating and involves the use of 

statistical inferences to generate an estimate based on system performance and 

design (Ambrose, 2017a). Using historical data from similar systems, cost estimation 

relationships (CERs) and patterns are identified. Those patterns are assumed to hold 

true in the future and are used to predict cost (Mislick & Nussbaum, 2015). The 
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second method is analogy cost estimating, whereby a new system is compared to a 

similar existing system. The analogy method is a relatively quick and inexpensive 

method; however, it may not be as precise as other methods (Ambrose, 2017a). The 

parametric and analogy methods are normally used early on in the acquisition 

process during the MSA, TMMR, and EMD phases (Ambrose, 2017a). The third and 

most time-consuming method is engineering cost estimation. In this method, the 

system is broken down into its WBS elements in which individual detail estimates are 

conducted. These estimates are then summed together to create the overall estimate 

(Mislick & Nussbaum, 2015). The engineering method is used during the TMRR 

phase and through the remaining acquisition process (Ambrose, 2017a). The last 

main method used by the DoD is actual costing. This method uses the actual costs 

from a system that were incurred in the past to predict the cost of producing that 

system in the future (Ambrose, 2017a). This method can be used after a program 

has entered the P&D phase.  

Total Ownership Cost 

While LCCEs are a useful tool for decision-makers, they present a narrower 

scope when a broader perspective may be more beneficial (Kobren, 2014). Thus, we 

introduce the concept of total ownership cost (TOC). The DAU defines total 

ownership cost as including the “elements of life-cycle cost as well as other 

infrastructure or business process costs not normally attributed to the program” 

(Kobren, 2014). Infrastructures refers to “all military department and defense agency 

activities that sustain the military forces assigned to the combatant and component 

commanders” (Kobren, 2014). The major infrastructure categories are support to 

equipment, support to military personnel, and support to military bases (Kobren, 

2014). Not normally included in a traditional LCCE, other support activities to 

consider in a cost estimate are recruiting, environmental and safety compliance, 

management headquarters functions, and logistics infrastructure activities (Kobren, 

2014).  
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DoD Directive 5000.01 states that  

DoD Components shall plan programs based on realistic 
projections of the dollars and manpower likely to be available in 
future years. To the greatest extent possible, the MDAs shall 
identify the total costs of ownership, and at a minimum, the major 
drivers of total ownership costs. (DoD, 2007) 

This requires the DoD to expand beyond the basic life-cycle cost estimation and 

include the support activities and infrastructure costs. To support the DoD directive, 

the Department of the Navy (DoN) issued its Total Ownership Cost (TOC) 

Guidebook in which it describes “new departmental and naval processes” that 

support the DoD policy of the identification of total costs of ownership (DoN, 2014, p. 

6). Specifically, the guidebook assists the DoN and its organizations in developing, 

understanding, and applying the TOC requirements of the DoD.  

The DoN outlines the importance of TOC: “As the DoD (and Navy) funding 

remains constant or declines, and as Navy’s purchasing power declines as a result, 

increasing the decision weight priority for alternatives that can mitigate and reduce 

TOC becomes our clearest path to a capable an optimally affordable Fleet” (DoN, 

2014, p. 8). For this reason, we focus on our model on TOC instead of a standard 

life-cycle cost. 

Risk and Uncertainty  

A key point that we need to understand in cost estimating is that the future is 

uncertain. Therefore, an essential pillar in developing a defensible and credible cost 

estimate is ensuring that risk and uncertainty are incorporated. A cost estimate can 

be severely affected by factors such as technological maturity, schedule slips, 

software requirements, or any other unforeseen event (Mislick & Nussbaum, 2015). 

Unknown factors make any “point estimate” or any exact answer extraordinarily 

unlikely (Mislick & Nussbaum, 2015). A more accurate estimate uses a central 
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tendency centered on the original point estimate and a range both higher and lower 

to define the bounds of the estimate.  

Though similar and related, risk and uncertainty are not synonymous. In the 

simplest terms, risk is the “probability” of the occurrence of a negative or unfavorable 

event, while uncertainty is the lack of certainty, or the realization that definitively 

knowing the outcome of any future event is completely impossible (Mislick & 

Nussbaum, 2015). Unlike risk, with uncertainty we are not able to predict the 

possibility of any future outcome. In Dr. Johnathan Mun’s book, Readings in Certified 

Quantitative Risk Management (CQRM), he states,  

The concepts of risk and uncertainty are related but different. 
Uncertainty involves variables that are unknown and changing, but 
uncertainty will become known and resolved through the passage 
of time, events, and action. Risk is something one bears and is the 
outcome of uncertainty. Sometimes risk may remain constant while 
uncertainty increases over time. (Mun, 2015, p. 28)  

A good way to think about risk and uncertainty is to imagine going on a sky 

diving trip with a friend. As the plane takes off, you and your friend realize that there 

is only one parachute and that parachute is looking like it is somewhat past its 

service life. Your friend, being slightly more adventurous than you, decides to grab 

the parachute and take the jump. Both you and your friend share the same level of 

uncertainty about whether the parachute will open, and if your friend will live to tell the 

story. However, only your friend will assume the risk of jumping out of the plane and 

falling to his death.  

Though better than ignoring risk altogether, incorrect treatment of risk can 

significantly affect the estimate. Cost-estimating risk, schedule or technical risk, 

requirements risk, and threat risk are the four types of risk that will play a factor in the 

cost estimation for a life-cycle cost. Cost-estimating risk is the risk attributed to cost 

estimating error and uncertainty due to the numerical methodology used (Mislick & 

Nussbaum, 2015). Next, schedule or technical risk is the risk associated with the 
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inability to accomplish schedule or technical objectives of the design or current 

specification, which stretches the timeline of the program completion (Mislick & 

Nussbaum, 2015). Requirements risk is the risk of the original requirements being 

shifted due to shortfalls in the original requirements documentation or due to the 

current design failing to complete the requirement. The final category, threat risk, is 

the risk of a new unforeseen threat due to a complete change in the original problem 

(Mislick & Nussbaum, 2015).  

Even after a cost estimator does due diligence in looking at historical data, 

and normalizing data to build an analogy, parametric, engineering, or actual estimate, 

the multiple sources of uncertainty can still play a large factor in the estimate. 

Consider Figure 5 on the simplest way to take data and produce a cost estimate. 

Because cost estimators do not have a magic ball that they can use to tell the exact 

future, they must use assumptions. 

Electro-Optical Infrared Sensors  

Electro-optics (EO) are the field systems that convert electrons into photons 

(Driggers et al., 2012). These systems are designed to respond to wavelengths 

within the 0.4–.07 micrometer wavelength (Driggers et al., 2012). These systems 

deliver images that are analogous to human vision; some EO systems are even 

capable of processing the near or short infrared spectral region (Driggers et al., 

2012). Figure 5 shows the basic components of an EO/IR sensor system. 
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Figure 5. EO and IR Sensors. Source: Driggers et al. (2012). 

The term target is used to describe the desired image that we are looking for 

with an EO sensor. The signal from a target usually has a large reflective component 

typically in the EO wavelength band. The target is provided this reflective component 

by moonlight, starlight, sunlight, or any artificial light source (Driggers et al., 2012). 

The light sources reflecting off of the background and the target are known as 

external radiation. Radiation reflected by targets and background does not go directly 

to the EO sensor. The reflected radiation must first transition through the 

atmosphere, where it experiences scattering, before being processed by the EO 

sensor (Driggers et al., 2012). Scattering is a phenomenon where particles in the 

atmosphere such as smoke, smog, or mist interfere with the reflection. Once the 

reflected radiation meets the EO sensor, it is passed through the sensing element, 

which could be detectors, tubes, or image intensifiers (low light situations) (Driggers 

et al., 2012). Next, the output of the sensor element is digested by the electronics 

and sent to a human interface for the operator (human) to gather some information 

from the process. This information could take a myriad of shapes such as detection, 

recognition, or identification of targets such as a warship. In short, EO sensors are 
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essentially products of the light reflected from the scene (Driggers et al., 2012). 

Figure 6 represents a typical EO sensor scenario.  
 

 

Figure 6. Typical EO Sensor Scenario. Source: Driggers et al. (2012). 

Infrared is able to digest the spectral region from 0.7 to 14 micrometer 

wavelengths. Infrared is divided into four subregions:  

The near-infrared (NIR) region is from 0.7 to 1.1 mm, the short-
wave infrared (SWIR) region is from 1.1 to 3 mm, the midwave 
infrared (MWIR) region is from 3 to 5 mm, and the long-wave 
infrared (LWIR) region is from 8 to 14 mm. Infrared is primarily used 
in night operations. (Driggers et al., 2012) 

The science of infrared is based on the science supporting Planck’s law, which states 

that all bodies above the temperature of absolute zero emit electromagnetic 

radiation. The electromagnetic radiation is exploited to uncover the electromagnetic 

signatures given off that do not correlate to the wavelengths visible by the human eye 

or EO sensors.  

As the temperature of the object gets hotter, the peak wavelength 
moves to shorter wavelengths so that at very hot temperatures the 
radiation is perceived by the eye as light. The emissive surface 
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characteristics of the hot object determine the spectral emission 
weighting of the radiation. The radiation emitted travels through the 
atmosphere, where it will then meet the aperture of the sensor. 
(Driggers et al., 2012, p. 7) 

Most IR sensors provide situational awareness for very low light situations such as 

night vision, surveillance of low-lit areas, and navigating through smoke-filled 

compartments (Driggers et al., 2012). Figure 7 shows the basics of an infrared 

sensor scenario.  

 

 

Figure 7. Typical IR Sensor Scenario. Source: Driggers et al. (2012).  

The design of and EO and/or IR imaging is very dependent on the purpose of 

the sensor, and the performance of the system is predicated on the functions of the 

wavelength (Driggers et al., 2012). Factors such as the characteristics of the scene 

and the atmosphere will determine the quality of the image obtained by the sensor. 

For EO sensors, the largest factor is reflectivity, or how much of the external radiation 

from the scene is going to make it back to the sensor (Driggers et al., 2012). For IR 

sensors, the question is far more focused on the emissivity of the target or how much 
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electromagnetic radiation the target creates that will get back to the sensor (Driggers 

et al., 2012). 

EO/IR Sensors on Surface Ships 

Before the advent of electro-optics, direct optics were a commander’s main 

resource in support of tactical decision-making. Binoculars, stadimeters, and 

periscopes were the keys to situational awareness and obtaining fire control solutions 

for torpedoes and gun engagements (Davidson, 2015). With the invention of EO, 

warfighters are no longer restricted to the limitations of the human eye. The 

application of using television cameras and the discovery of light-sensitive 

semiconductor materials allow images to be converted into electrical signals that are 

fed into displays for humans to process information. EO sensors paired with the 

ability of infrared detection allow warfighters to discern a target in the most vast and 

unlit environments (Davidson, 2015).  

In Stefan Nitschke’s (2007) article “New Generation Naval Electro Optics,” he 

states, “Electro Optical/Infrared technology is an invaluable aid for the 21st century 

battlespace arena. It provides surface warships, submarines, and maritime aviation 

operating in the varying naval environment with extensive image gathering, 

navigational, and targeting capabilities" (p. 87). The constant advances in EO/IR 

systems have developed sensors with integral lasers that are used to measure 

distances with extreme accuracy and are a fraction of the size of the range finders of 

legacy ships (Davidson, 2015). In the report given by the Institute of Defense 

Analyses entitled A Tutorial on Electro-Optical/Infrared (EO/IR) Theory and Systems, 

it is stated that “the performance of an EO/IR sensor depends on the optics, detector, 

display, target-background contrast and the intensity of the illumination source” 

(Koretsky et al., 2013, p. 5)  
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Technological advances have emphasized the importance of the opportunity 

and the necessity to re-invest in the newest technologies and systems. These 

advances in technology will drive future EO/IR systems purchases by the DoD. 

These system acquisitions will require credible and reliable cost estimations to 

ensure the DoD manages its budget effectively. With the complexity and uniqueness 

of EO/IR systems, an efficient cost estimation model is needed to account for all life-

cycle costs. The additional aspect of uncertainty should also be considered in the 

estimation. The cost estimation model we are proposing considers total ownership 

costs and uncertainty for the acquisition of EO/IR systems for U.S. Navy surface 

ships. This model will serve as a proof of concept to help future DoD decision-makers 

understand the cost associated with EO/IR systems so they can make strategic 

investments. 
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Total Ownership Cost Model Overview 

In standard life-cycle-based TOC analysis, a basic set of assumptions 

includes that there are significant acquisition costs prior to the system being 

operational, usually denoted as Year 0, followed by subsequent operational years 

(e.g., Year 1 to Year 10 in Figure 8), where O&M costs apply. In the last year of 

operations, additional disposition or salvage costs may be incurred to either dispose 

of the system or render it inoperable (e.g., Year 10 in Figure 9). Furthermore, the total 

costs can be computed as a simple summation of all expenses incurred and to be 

incurred throughout the life cycle of the system. Conversely, applying economic 

theory, these costs can be discounted annually at some prespecified discount rate to 

account for the time value of money (i.e., a dollar tomorrow is not equivalent in 

purchasing power to a dollar today, due to various factors such as economic growth 

rates, purchasing power parity, inflation, and interest rates, as well as opportunity 

cost of holding money). Finally, the O&M costs may be themselves subject to 

changes over time (e.g., due to inflationary pressures, budgetary cutbacks, periodic 

technology insertions, cost inflation, and the like), and the model allows for such 

manual adjustments.  

 

Figure 8. Typical Life-Cycle Cost Over Time 
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We assume that the reader is somewhat familiar with the basics of Microsoft 

Excel and understands the rudiments of Monte Carlo simulations to capture the 

future uncertainties of the cost structure. While this current section discusses the 

basics of the model, the next section covers the basic applications of Monte Carlo 

simulation techniques. Note that Risk Simulator does not have to be used in the 

model to obtain reasonable results. It is only used when uncertainty or risk analysis 

needs to be applied in the model, and when Monte Carlo simulations are applied to 

obtain the empirical probability distributions of the results.  
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Figure 9. Input Worksheet 
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Figure 9 illustrates the first two dozen rows of the model while Figures 10 and 

11 show the last two dozen rows of the model. The following list provides additional 

clarity and guidance to this worksheet: 

• The Excel file has five worksheets (Systems A–E) where each worksheet is 
meant for a different system, or one of these can be set as the current or 
baseline system. If additional systems need to be included for analysis, we 
recommend creating a new file (simply perform a File | Save As to create a 
duplicate file).  

• The figures in this document show a sample dataset where all unit and dollar 
inputs are set to 1 or $1, respectively. This was done intentionally to illustrate 
the location of data entry cells as well as to have some sample results to show 
how the model works. You can access the same results either by manually 
entering these unitary values or by opening the associated “TOC Model—
Example Only (Repeated Data and Locked Sheets).xlsx” file to follow along.  

• Row 1 is where you enter the name of the system. You can enter the system 
name in cell D1. Then, enter any discount rate value ≥ 0%. The discount rate 
is used to calculate the present value of all future cash flows. Use 0% if no 
present valuation is needed, or enter the annualized cost of money (e.g., from 
3% for inflationary adjustments only to 15% to account for risks and 
reinvestment opportunity costs of the cash flows). Also, here you can select 
the economic or operational life of this current system. These inputs can be 
unique for each of the five systems under analysis. 

• Row 2 allows you to select the uncertainty range on which to perform risk-
based Monte Carlo simulations. You can select to not run any simulations, a 
small ±5% range, standard ±10% to ±20% range, wide ±25% to ±40%, or a 
highly uncertain ±45% to ±50% range. These ranges will be automatically 
computed and applied as probability distributions on the inputted costs (see 
the following bullet points) in order to run simulations. There is also a section 
where you can enter notes about the system under analysis (cells D2:O2). 

• Row 3 allows you to enter an annual positive growth rate or an annual 
negative decline rate to be applied to the O&M over time, starting in the 
second year. This allows the user to increment the O&M over time or perform 
a similar reduction in costs over the lifetime of the system. 

• The data input grid starts from row 6 to row 187, around columns B to P. All 
white colored cells with borders are user input cells. You can also make 
modifications to subsection headers (e.g., rows 6, 24, etc.) and line item titles 
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(e.g., cells B7:B23). The subsections and line item titles are generic inputs 
and can be changed as required. There is also an “Other:” line item that can 
be used as required.  

• Because the model has been structured to run simulations and other 
advanced analytics, it is highly recommended that the user does not make 
any structural adjustments and modifications (i.e., please do not delete 
worksheets or insert rows and columns unnecessarily). Also, the model has 
been optimized for printing and any major modifications will muddle the 
printing capabilities. 

• The number of units per system and number of platforms (columns C and D) 
have to be ≥ 0 and are self-explanatory. The acquisition cost, operational cost, 
maintenance per year, and replacement per year are on a per unit basis. If 
you wish to enter the total replacement cost for the year, first take that value 
and divide it by the product of units with the number of platforms to obtain a 
per unit cost. Enter only per unit costs. Continue data entry until row 145.  

• All grayed-out cells are computed values and should be left alone. If you wish 
to audit the calculations, first unlock/unprotect the worksheet and then select a 
cell to view its calculations. 

• Area B147: D177 looks at nonrecurring costs to the acquisition process of this 
current system. All acquisition costs are summed and set as today’s (Year 0) 
cost.  

• Area B179:D187 looks at the nonrecurring end of life or disposition costs. 
These costs will be incurred at the end of the selected economic life (droplist 
circa cell K2), and will be discounted appropriately based on the discount rate 
and term of life selected.  

• Replicate the data entry described here for up to five systems as required. If 
fewer than five systems are needed, simply ignore the unused worksheets but 
remember not to delete them unnecessarily. If more than five systems are 
required, create a copy of the file, and apply these remaining systems as a 
separate file. Changing the structure of the file may invalidate some of the 
preset simulation models and assumptions. 
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Figure 10. Input Worksheet (Nonrecurring Acquisition Cost) 
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Figure 11. Input Worksheet (Nonrecurring End of Life-Cycle Cost) 

Figure 12 illustrates the Monte Carlo simulations section. This table 

summarizes the sections of the costs and created simulation variables (cells in 

green). Figure 13 shows how these simulated results will be used to generate the life 

cycle of the cost structure of the system, where the economic life of the system is 

accounted for, as well as any required discounting to generate the present value of 

the costs. Simulation will perturb the cells in green (Figure 12), and as these are input 

assumptions, the subsequent calculations based on these inputs will simulate and 

change (Figure 13).  

Note that, by default, 10,000 simulation trials have been set because 

triangular probability distributions were applied on each of the subtotaled cost items, 

and the process is modeled to run without any predetermined seed values. 

 



 

Acquisition Research Program 
Graduate School of Defense Management - 43 - 
Naval Postgraduate School 

 

 

Figure 12. Monte Carlo Uncertainty Simulation 
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Figure 13. Life-Cycle Cost Cash Flow Calculations 
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In the summary worksheet, the total costs as well as present values of total 

costs for various economic and useful lives are tabulated (Figure 14). You can view 

the results as tables and charts. Here, a comparative cross-sectional analysis of 

alternatives assessment can be seen, and a growth of the costs can be seen in the 

charts. Note that these results and charts are single-point estimates and are 

calculated prior to any simulations.  

Running the simulation will make changes to the cells in Figures 15 and 16 as 

previously discussed. If the other worksheets have populated inputs, these 

worksheets will also be run, and the results will be presented as probability 

distributions (Figure 17). Each system’s calculated Total Cost and the Present Value 

of Total Costs will be shown (for the selected economic and useful life) as probability 

distributions and simulation statistics. Users can also perform comparative analysis 

by using Overlay Charts (bottom of Figure 17), generate reports of the statistical 

results (Figure 18), and run detailed reports of the analysis (Figure 19), as well as 

other analytics such as scenario analysis and sensitivity analysis. 
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Figure 14. Life-Cycle Cost Cash Flow Results and Dashboard 
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Figure 15. Example Simulation Results 
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Figure 16. Example Simulation Statistics Tables (Only Sample Basic Results Shown) 
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Figure 17. Example Simulation Report 



 

Acquisition Research Program 
Graduate School of Defense Management - 50 - 
Naval Postgraduate School 

Finally, in the Summary worksheet, users have the option to adjust the cost 

cash flow series by making ± $ adjustments in the empty cells with borders (Figure 

18). This capability allows for any known factors to be applied every few years, such 

as technology insertion, foreseen major structural modifications, or any other such 

adjustments. The cash flows will be adjusted accordingly in this worksheet. Note that 

as of the current version, simulations will not be applied to any such modifications, 

only single-point results. 
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Figure 18. Manual Adjustments to Life-Cycle Cost Cash Flow 
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Model Application and Results 

Introduction 

The inputs for this model were sourced from the program components lists 

provided by the research sponsor, NAVSEA, for the (generic or specific) EO/IR 

sensor. The cost estimates for this model were sourced using rough of order 

magnitude (ROM) values. The values fluctuate slightly between the five different 

systems to illustrate the differing systems’ costs between contract estimates. 

These values were explicitly created to further the proof of concept of the model 

and therefore do not necessarily reflect the accurate value for component, part, 

or salary of support team members. However, these values do show how the 

simulation can provide an estimate of an entire system and demonstrate how 

much impact each variable will have on the overall life-cycle cost estimate. In this 

example, we simulate a cost estimate of an EO/IR system being implemented on 

55 platforms with a service life of 20 years. 

Model Inputs and Data 

The Total Ownership Cost is calculated by summing the initial Acquisition 

Cost, Operation Cost, Maintenance Cost, and Disposal Cost. The model 

accounts for these four phases, beginning with the Acquisition Cost. In a real-

world scenario, a cost analyst would utilize the technical specifications given by 

the program office to enter the required values. From the technical specifications, 

the analyst would insert two crucial metrics. The first is the number of platforms 

that will receive the system, and the second is the number of components 

required in each system. Since real-world data is not available for this notional 

model, this research uses the ROM system to fill in the blanks. 

In Systems A–E, the model uses 55 as the number of platforms. Though 

the number of platforms remains the same in the simulation, the technical 

specifications for the number of components required for each sensor are 
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different. Figure 19 shows the input column for Number of Platforms and Number 

of Units per System. 

 
Figure 19. Number of Platforms and Units per System 

The Acquisition Unit Cost accounts for all of the planning, design, and 

construction costs to make each component possible. The model also considers 

the estimated cost for a replacement component. The estimated cost for 

replacement parts should be considerably lower than the initial Acquisition Cost 

because developed technology will only need to be reproduced instead of being 

redeveloped. The Operational Cost per year is an estimate of the amount 

required to run the component for a year. The Operation Cost includes 

equipment depreciation, costs of the energy source used to power the 

component, cost of damage due to use, and so on. Similarly, the Maintenance 

cost is an estimate based on the amount required to maintain the equipment 

every year. Figure 20 shows the categories for Acquisition and Operation and 

Maintenance Costs.  
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Figure 20. Categories for Acquisition and Operation and Maintenance Costs
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Once the cost analyst has entered the acquisition cost for the hardware 

and software required for the system, the analyst must remember to account for 

the human element. The analyst will need to ensure that the cost required to pay 

for those responsible for the design, logistics, management, and technology are 

represented in the model. This model uses the Acquisition Cost column to record 

the initial salary of each job. The Number of Platforms column describes the 

number of teams required for each system. The Number of Units per System 

column describes the number of people required on each team. The Operation 

Cost column is used to annotate the continuing salary for the human element for 

the remainder of the program’s life. Essentially, this is how an analyst would 

annotate a recurring salary payment. Throughout the five systems, the number of 

people per team and the amount requested per salary will vary. Figure 21 shows 

an example of where salaries are input into the model.  

 
Figure 21. Manpower and Personnel Salary Input Section 

All of the costs mentioned previously are recurring costs, costs that will be 

multiplied by the number of years of the program and summed to get the total 

cost. Analysts must be sure not to forget to account for all of the one-time costs 

associated with the origins of any project. Figure 22 shows the list of 

nonrecurring costs accounted for in the model. 
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Figure 22. Nonrecurring Acquisition and Procurement Costs 

Finally, we account for all of the disposal and end-of-life-cycle costs that 

will also be one-time costs. Figure 23 shows the nonrecurring end-of-life-cycle 

costs. 

 
Figure 23. Nonrecurring End-of-Life-Cycle Costs 
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Results and Analysis 

Once the data have been manually inputted into the model, the cost 

analyst can utilize the multitude of charts, graphs, and tools to analyze the total 

ownership cost of the systems. These graphs, charts, and tools will allow the 

analyst to compare multiple cost estimates over the entire life of the system at 

the same time. This research analyzed the following tables and charts to 

highlight the functionality of the model: Total Net Life-Cycle Cost, Present Value 

of Discounted Total Net Life-Cycle Cost, Cash Total Net Cost at Five-Year 

Increments, Total Ownership Cost Forecast Statistic Table, Simulation 

Probability Charts, and the Tornado Analysis.  

Total Net Life-Cycle Costs and Cash Total Net Cost at Five-Year Increments 

Figure 24 shows the Total Net Life-Cycle Cost for all five systems over a 

span of 30 years. The table and graph show the cost for the systems broken 

down into 5-year estimates. The model projects the life span of the system past 

the 20-year expected service life. This extension allows the cost analyst to 

consider cost out to the 30-year point, as many DoD systems tend to exceed 

their expected service lives. However, the 5-year increments also allow a 

decision-maker to understand the total net cost of disposing of a system before 

its 20-year service life. The side-by-side comparison enables a decision-maker to 

graphically perceive the potential differences between the cost estimates of the 

multiple systems. When choosing between alternatives, Figure 24 can be a 

beneficial decision aid. 

In the analysis table in Figure 24, the 20-Year Cash Total Net Cost ranges 

from $554 million (System C) to $771 million (System D). If cost was the 

determining factor, a decision-maker could quickly determine that System C 

should be selected. To make the comparison even easier to analyze, Figure 25 

provides a side-by-side comparison of all five systems at each of the five-year 

increments. Looking at the 20-Year Total Net Cost Graph, it can be clearly seen 

that System C has the lowest Total Net Cost. 
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Cost analysis should only be one part of the picture when it comes to 

making the correct strategic decision. For example, each system’s specifications 

and capabilities––its military benefits or returns––should also be computed, such 

that each system will have its own return on investment (ROI). Nonetheless, the 

major component of any ROI analysis is its cost. The focus of this research is to 

determine this cost computation. Another aspect of TOC analysis is its use in 

cost mitigation, cost savings, and cost deferred, which constitute another point of 

view of cost-based decision analytics. 
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Figure 24. Total Net Life-Cycle Cost 
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Figure 25. Five-Year Increment of Net Total Cost 
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Present Value of Discounted Total Net Life-Cycle Cost 

While Figure 26 shows the Total Net Life-Cycle Cost, it does not include 

consideration of economic factors such as the time value of money and 

uncertainty risk. To mitigate these factors in the model, Figure 26 incorporates a 

Net Present Value Life-Cycle Cost estimate using a discount rate of 3% (i.e., the 

government’s cost of money, where we can use 20-year and 30-year Treasury 

bond yields as proxies). In the analysis table in Figure 26, the 20-Year Total Net 

Cost ranges from $554 million (System C) to $771 million (System D), but when 

looking at the more realistic Present Value Discounted Net Life-Cycle Cost, the 

range between Systems C and D decreases to $418 million and $577 million. Not 

only do the estimates for the minimum and maximum values decrease when the 

discount factor is applied, but the delta of the range between the values also 

shrinks by $57.8 million. Incorporating the discount rate into the model gives the 

decision-maker a complete analysis of the costs. Specifically, it shows the value 

of the lifetime cost of a system in today’s money, thereby putting all systems with 

different life cycles and life spans on an equal footing with each other, for a better 

cost comparison. 
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Figure 26. Present Value of Discounted Net Life-Cycle Cost
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Stochastic Total Ownership Cost Forecast Statistics Table 

The Forecast Statistics Table, shown in Figure 27, summarizes the 

distribution of the Total Life-Cycle Cost and the Total Present Value (PV) Life-

Cycle Cost for the five systems at different points in the life cycle of the system 

based on risk-based simulation and stochastic TOC models used to value the 

alternative cost paths. Figure 27 highlights the outcomes of running 10,000 trials 

using the Monte Carlo Risk Simulator. The takeaways from this figure are the 

mean, standard deviation, maximum, minimum, and range data points. These 

metrics provide a decision-maker with a better understanding of how uncertainty 

can affect the Total Life-Cycle Cost and Total PV Life-Cycle Cost of a system. 

System C looks at the cost over a 20-year life span. Using the Monte 

Carlo Risk Simulator, the maximum Total Life-Cycle Cost of the system is $568 

million, while the minimum is $540 million. These values represent the worst- and 

best-case scenarios, respectively. The simulations produced a Total Life-Cycle 

Cost range of $28 million and a mean value of $554 million. The standard 

deviation of Total Life-Cycle Cost simulations for System C is $4.5 million, 

meaning 68.2% of the estimates will fall within ±$4.5 million of the mean if the 

distribution is somewhat normally distributed. Figure 27 also shows the same 

metrics for the PV of the Total Life-Cycle Cost for all systems.  
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Figure 27. Total Ownership Cost Forecast Statistics Table
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Simulation Probability Charts 

A simulation probability chart is a histogram or frequency distribution of all 

of the total life-cycle costs of a system based on 10,000 simulation runs or trials. 

The probability chart produces a graphic representation of the information 

contained in the forecast statistics table. Figure 28 shows the frequency 

distribution of the total life-cycle cost for System A over a 20-year life. In the 

figure, it can be seen that System A’s frequency distribution is shaped as a 

roughly symmetrical bell curve centered on a mean of $700 million. Using this 

chart, an analyst could confidently conclude the total life-cycle cost for this 

system will fall between $679 million and $721 million. The figure also shows the 

90% confidence interval of the TOC to be between $690 million and $710 million. 

This means that there is a 90% chance that given all uncertainties that exist in 

each of the input assumptions, the 20-year total lifetime cost for System A will be 

between these two values. In addition, there is only a 5% chance that the cost 

can be below $690 million and a 5% chance it can exceed $710 million. 

Figure 29 uses the same frequency distribution over the same 20-year 

system life as in Figure 28; however, Figure 29 takes into account the discount 

rate to better illustrate the economic factor of inflation over time. Similarly, the 

90% confidence interval in present values is between $518 million and $533 

million. 



 

Acquisition Research Program 
Graduate School of Defense Management - 66 - 
Naval Postgraduate School 

 
Figure 28. Total Life Cycle-Cost for System A (20 Years) 

 
Figure 29. Total Present Value Life-Cycle Cost for System A (20 Years) 
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Figure 30 shows the total life-cycle cost for System B; however, the 

system’s life span has been extended to 25 years versus 20 years. The 

probability charts allow cost analysts to graphically compare the frequency 

distributions of two different systems with varying life spans. As seen in a 

comparison between Figure 28 and Figure 30, System A has a shorter life span 

and lower total cost range. Through this analysis, a decision-maker can 

determine if the extended life span of System B is worth the higher total life-cycle 

cost. Figure 31 displays the total PV life-cycle cost for System B, which has been 

adjusted using a discount factor for inflation.  

 
Figure 30. Total Life-Cycle Cost for System B (25 Years) 
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Figure 31. Total Present Value Life-Cycle Cost for System B (25 Years) 

Figure 32 shows the total life-cycle cost for System D; however, the 

system’s life span has been shortened to 10 years versus the original 20 years. 

The probability chart allows an analyst to compare the total life-cycle cost of a 

system with a shorter life span to systems with longer life spans. In a comparison 

between Figure 28 and Figure 32, System A has a longer life span and a lower 

total cost range than System D. This comparison illustrates that despite System 

D’s shorter life span, the total life-cycle cost is higher than that of System A. This 

could be a vital metric for decision-makers to consider when determining which 

system has the best value. Figure 33 shows System D’s total PV life-cycle cost to 

account for economic factors. These probability distributions can also be overlaid 

and compared against one another for a better view of the potential cost spreads, 

as shown in Figure 34. 
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Figure 32. Total Life-Cycle Cost for System D (10 Years) 

 
Figure 33. Total Present Value Life-Cycle Cost for System D (10 Years) 
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Figure 34. Probability Distribution Cost Overlay of the Five Systems 

Tornado Analysis 

The tornado analysis chart gives decision-makers the ability to break 

down which variables have the most significant impact on the overall outcome of 

the simulation. By focusing on the top critical factors, decision-makers can focus 

on cost reduction techniques in places that will have the most effect. The tornado 

analysis allows the decision-makers to adjust how many critical variables to 

display. Figure 35 shows the tornado analysis chart detailing the 20 most 

impactful variables on the TOC model. Based on the notional cost values 

inputted into the model, the number of platforms containing that ancillary material 

is the most critical factor. 
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Figure 35. Tornado Analysis 
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Conclusion 

Key Conclusions 

The purpose of this report was to develop a total ownership with life-cycle 

cost model while considering uncertainty for EO/IR sensors on U.S. Navy surface 

ships. Through the examination of total ownership cost (TOC) modeling over the 

life cycle of EO/IR sensors, including the inception phase of Acquisition Costs, 

followed by annual Operations and Maintenance expenses, along with a final set 

of Disposition Costs, we were able to develop a useful model for TOC 

estimations. Using Monte Carlo risk simulation, our model accounts for risk and 

uncertainty when producing cost estimates. The model also provides analysts 

with a more realistic estimate by factoring in economic theory, such as economic 

growth, annual discount rate, and inflation.  

As discussed, the cost analysis models presented should be only one part 

of a larger picture when it comes to making the correct strategic investment 

decisions. For example, each system’s specifications, capabilities, military 

benefits, or financial and non-economic returns, should also be computed, such 

that each system will have its own return on investment (ROI). Nonetheless, the 

major component of any ROI analysis is its cost. The focus of this current 

research is to determine a suitable method to compute critical life cycle cost. 

Another use of TOC modeling is in determining cost mitigation, cost savings, and 

cost deferred, that is, what the cost differential might be or an Analysis of 

Alternatives, which constitutes another point of view of cost-based decision 

analytics. 

The model allows decision-makers to have better decision analytics of the 

costs of EO/IR surface sensors. These analytics can be used in subsequent cost 

comparisons between different sensor platforms, Analysis of Alternatives, and 
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portfolio allocation of resources. Specifically, PEO IWS (Integrated Warfare 

Systems) and NAVSEA can utilize this model in future program cost estimation 

development. Since the model is tailorable to different sensor configurations, it 

can provide clarity in analyzing different and complex alternative sensor systems 

to develop and outfit the fleet. The results of this model give decision-makers a 

more effective metric to analyze TOC under uncertainty; this can reduce cost 

overflow and prevent budget overruns. Ultimately, the model allows leadership to 

make more informed decisions in the DoD acquisition process and maximize the 

use of its limited resources. 

Current Research Limitations and Follow-on Research 

The main limitation of the current study is that notional cost data was used 

to provide a proof of concept that the model functions as designed. However, this 

presents an opportunity for future research whereby additional follow-on research 

with empirical data should be conducted. This model can analyze cost data in 

past, present, and future EO/IR models.  

Beginning with historical data, a cost analyst could compile a list of 

program components associated with a system that is either retired or currently 

in use. Once the list of components is obtained, the analyst can then associate 

the estimated historical cost assigned to each component during the program’s 

initial cost estimate (e.g., a program cost estimate developed in 1992). Using the 

original cost data and component list, the analyst could then run the new total 

ownership with life-cycle cost model under uncertainty. This would produce a 

new cost estimate for the program, which could then be compared to the original 

estimate and the actual life-cycle cost of the program. Executing this study would 

determine whether the TOC model developed in this thesis is a superior method 

of cost estimation for the DoD. 

Another follow-on study could be done using the data from a program that 

is currently undergoing its initial cost estimation. The cost estimate could be done 
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in conjunction with the DoD’s current methods of cost estimation. Another 

researcher could partner with PEO IWS and the new system’s program office to 

complete a cost estimate using the TOC model developed in this thesis. This 

process would allow for real-time cost comparisons at different stages in the 

acquisition process. The comparison between the two estimates would provide 

decision-makers with another method of verifying assumptions and validating 

that their cost estimates are reasonable and credible. Concurrently conducting 

the cost estimates allows researchers and cost estimators to compare their 

estimates to actual cost data at the different increments throughout the program’s 

life cycle. This comparison would determine which method of cost estimation was 

more accurate at different points in the system’s life cycle.  

These follow-on studies require real-world cost data from historical or 

current EO/IR programs. While data collection may prove difficult and time-

consuming, this research would be beneficial to the DoD and well worth the 

investment. Working with PEO IWS and the program office’s cost estimation 

teams could result in model improvements and provide an even more robust total 

ownership with life-cycle cost model under uncertainty.  

Other Applications and Conclusions 

This thesis focuses specifically on the application of this TOC model with 

regard to EO/IR sensors on surface ships; it barely scratches the surface of the 

model’s potential. This model could be applied to any one of the thousands of 

acquisition projects in the DoD. The model’s use is not confined to EO/IR 

sensors on surface ships but can be adjusted and developed for various 

programs. The process and the strength of the results that the model would 

provide would be the same; the only necessary change a cost analyst would 

need to make is to alter the list of components to reflect whichever system or 

program is being analyzed. In the same fashion, this model could also provide 
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contractors and non-DoD organizations with an additional method of cost 

estimation.  

Cost estimation is not an exact science; however, this model provides a 

coherent method of estimating the total ownership with life-cycle costs under 

uncertainty for EO/IR sensors on surface ships. It gives a decision-maker another 

tool when evaluating alternative programs and courses of action. The ultimate 

goal of this model is to provide a more effective tool in determining how the DoD 

spends its limited resources on competing priorities. While follow-on research 

needs to be conducted to validate the efficacy of the model, this thesis offers a 

proof of concept and takes a step towards DoD portfolio optimization.  
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Appendix A. A Primer on Integrated Risk 
Management 

In earlier times, chance was something that occurred in nature, and 

humans were simply subjected to it as a ship is to the capricious tosses of the 

waves in an ocean. Even up to the time of the Renaissance, the future was 

thought to be simply a chance occurrence of completely random events and 

beyond the control of humans. However, with the advent of games of chance, 

human greed has propelled the study of risk and chance to ever mirror real-life 

events more closely. Although these games were initially played with great 

enthusiasm, no one actually sat down and figured out the odds. Of course, the 

individual who understood and mastered the concept of chance was bound to be 

in a better position to profit from such games of chance. It was not until the mid-

1600s that the concept of chance was properly studied, and the first such serious 

endeavor can be credited to Blaise Pascal, one of the fathers of the study of 

choice, chance, and probability. Fortunately for us, after many centuries of 

mathematical and statistical innovations from pioneers such as Pascal, Bernoulli, 

Bayes, Gauss, LaPlace, and Fermat, and with the advent of blazing fast 

computing technology, our modern world of uncertainty can be explained with 

much more elegance through methodological rigorous hands-on applications of 

risk and uncertainty. Even as recent as two and a half decades ago, computing 

technology was only in its infancy, and running complex and advanced analytical 

models would have seemed a fantasy, but today, with the assistance of more 

powerful and enabling software packages, we have the ability to practically apply 

such techniques with great ease. For this reason, we have chosen to learn from 

human history that with innovation comes the requisite change in human 

behavior to apply these new methodologies as the new norm for rigorous risk-

benefit analysis.  
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To the people who lived centuries ago, risk was simply the inevitability of 

chance occurrence beyond the realm of human control. Many phony soothsayers 

profited from their ability to convincingly profess their clairvoyance by simply stating 

the obvious or reading the victims’ body language and telling them what they wanted 

to hear. We modern-day humans, ignoring for the moment the occasional seers 

among us, with our fancy technological achievements, are still susceptible to risk and 

uncertainty. We may be able to predict the orbital paths of planets in our solar system 

with astounding accuracy, or to predict the escape velocity required to shoot a man 

from the Earth to the Moon, or to drop a smart bomb within a few feet of its target 

thousands of miles away, but when it comes to, say, predicting a firm’s revenues the 

following year, we are at a loss. Humans have been struggling with risk our entire 

existence, but through trial and error, and through the evolution of human knowledge 

and thought, we have devised ways to describe, quantify, hedge, and take 

advantage of risk.  

In the U.S. military context, risk analysis, real options analysis, and portfolio 

optimization techniques are enablers of a new way of approaching the problems of 

estimating return on investment (ROI) and estimating the risk-value of various 

strategic real options. There are many new DoD requirements for using more 

advanced analytical techniques. For instance, the Clinger–Cohen Act of 1996 

mandates the use of portfolio management for all federal agencies. The Government 

Accountability Office’s (1997) Assessing Risks and Returns: A Guide for Evaluating 

Federal Agencies’ IT Investment Decision-Making requires that IT investments apply 

ROI measures. DoD Directive 8115.01, issued in October 2005, mandates the use of 

performance metrics based on outputs, with ROI analysis required for all current and 

planned IT investments. DoD Directive 8115.bb implements policy and assigns 

responsibilities for the management of DoD IT investments as portfolios within the 

DoD enterprise where they defined a portfolio to include outcome performance 

measures and an expected return on investment. The DoD Risk Management 

Guidance Defense Acquisition guidebook requires that alternatives to the traditional 
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cost estimation need to be considered because legacy cost models tend not to 

adequately address costs associated with information systems or the risks 

associated with them.  

In this quick primer, advanced quantitative risk-based concepts will be 

introduced, namely, the hands-on applications of Monte Carlo simulation, real options 

analysis, stochastic forecasting, portfolio optimization, and knowledge value added. 

These methodologies rely on common metrics and existing techniques (e.g., return 

on investment, discounted cash flow, cost-based analysis, and so forth), and 

complement these traditional techniques by pushing the envelope of analytics, and 

not replacing them outright. It is not a complete change of paradigm, and we are not 

asking the reader to throw out what is tried and true, but to shift one’s paradigm, to 

move with the times, and to improve upon what is tried and true. These new 

methodologies are used in helping make the best possible decisions, allocate 

budgets, predict outcomes, create portfolios with the highest strategic value and 

returns on investment, and so forth, where the conditions surrounding these 

decisions are risky or uncertain. They can be used to identify, analyze, quantify, 

value, predict, hedge, mitigate, optimize, allocate, diversify, and manage risk for 

military options.  

Why Is Risk Important in Making Decisions? 

Before we embark on the journey to review these advanced techniques, 

let us first consider why risk is critical when making decisions, and how traditional 

analyses are inadequate in considering risk in an objective way. Risk is an 

important part of the decision-making process. For instance, suppose projects 

are chosen based simply on an evaluation of returns alone or cost alone; clearly 

the higher-return or lower-cost project will be chosen over lower-return or higher-

cost projects.  
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As mentioned, projects with higher returns will in most cases bear higher 

risks. And those projects with immediately lower returns would be abandoned. In 

those cases, where return estimates are wholly derived from cost data (with some 

form of cost in the numerator and denominator of ROI), the best thing to do is reduce 

all the costs, that is, never invest in new projects. The result of this primary focus on 

cost reduction is a stifling of innovation and new ways of doing things. The goal is not 

simply cost reduction. In this case, the simplest approach is to fire everyone and sell 

off all the assets. The real question that must be answered is how cost compares to 

desired outputs, that is, “cost compared to what?” 

To encourage a focus on improving processes and innovative technologies, a 

new way of calculating return on investment that includes a unique numerator is 

required. ROI is a basic productivity ratio that requires unique estimates of the 

numerator (i.e., value, revenue in common units of measurement) and the 

denominator (i.e., costs, investments in dollars). ROI estimates must be placed within 

the context of a longer term view that includes estimates of risk and the ability of 

management to adapt as they observe the performance of their investments over 

time. Therefore, instead of relying purely on immediate ROIs or costs, a project, 

strategy, process innovation, or new technology should be evaluated based on its 

total strategic value, including returns, costs, and strategic options, as well as its 

risks. Figures A.1 and A.2 illustrate the errors in judgment when risks are ignored. 

Figure A.1 lists three mutually exclusive projects with their respective costs to 

implement, expected net returns (net of the costs to implement), and risk levels (all in 

present values). Clearly, for the budget-constrained decision-maker, the cheaper the 

project the better, resulting in the selection of Project X. The returns-driven decision-

maker will choose Project Y with the highest returns, assuming that budget is not an 

issue. Project Z will be chosen by the risk-averse decision-maker as it provides the 

least amount of risk while providing a positive net return. The upshot is that, with 

three different projects and three different decision-makers, three different decisions 

will be made. Who is correct and why? 
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Figure A.1. Why Is Risk Important? 

Figure A.2 shows that Project Z should be chosen. For illustration purposes, 

suppose all three projects are independent and mutually exclusive, and that an 

unlimited number of projects from each category can be chosen but the budget is 

constrained at $1,000. Therefore, with this $1,000 budget, 20 project Xs can be 

chosen, yielding $1,000 in net returns and $500 risks, and so forth. It is clear from 

Figure A.2 that project Z is the best project as for the same level of net returns 

($1,000), the least amount of risk is undertaken ($100). Another way of viewing this 

selection is that for each $1 of returns obtained, only $0.10 of risk is involved on 

average, or that for each $1 of risk, $10 in returns are obtained on average. This 

example illustrates the concept of bang for the buck or getting the best value 

(benefits and costs both considered) with the least amount of risk. An even more 

blatant example is if there are several different projects with identical single-point 

average net benefit or cost of $10 million each. Without risk analysis, a decision-

maker should in theory be indifferent in choosing any of the projects. However, with 

risk analysis, a better decision can be made. For instance, suppose the first project 

has a 10% chance of exceeding $10 million, the second a 15% chance, and the third 

a 55% chance. Additional critical information is obtained on the riskiness of the 

project or strategy and a better decision can be made.  
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Figure A.2. Adding an Element of Risk 

Military and business leaders have been dealing with risk since the 

beginning of the history of war and commerce. In most cases, decision-makers 

have looked at the risks of a particular project, acknowledged their existence, 

and moved on. Little quantification was performed in the past. In fact, most 

decision-makers look only to single-point estimates of a project’s benefit or 

profitability. Figure A.3 shows an example of a single-point estimate. The 

estimated net revenue of $30 is simply that, a single point whose probability of 

occurrence is close to zero. Even in the simple model shown in Figure A.3, the 

effects of interdependencies are ignored, and in traditional modeling jargon, we 

have the problem of garbage-in, garbage-out (GIGO). As an example of 

interdependencies, the units sold are probably negatively correlated to the price 

of the product, and positively correlated to the average variable cost; ignoring 

these effects in a single-point estimate will yield grossly incorrect results. There 

are numerous interdependencies in military options as well; for example, the 

many issues in logistics and troop movements beginning with the manufacturer 

all the way to the warrior in the field.  
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In the following commercial example, if the unit sales variable becomes 11 

instead of 10, the resulting revenue may not simply be $35. The net revenue may 

actually decrease due to an increase in variable cost per unit while the sale price may 

actually be slightly lower to accommodate this increase in unit sales. Ignoring these 

interdependencies will reduce the accuracy of the model.  

 

Figure A.3. Single-Point Estimates 

One traditional approach used to deal with risk and uncertainty is the 

application of scenario analysis. For example, scenario analysis is a central part of 

the capabilities-based planning approach in widespread use for developing DoD 

strategies. In the previous commercial example, suppose three scenarios were 

generated: the worst-case, nominal-case, and best-case scenarios. When different 

values are applied to the unit sales, the resulting three scenarios’ net revenues are 

obtained. As earlier, the problems of interdependencies are not addressed with these 

common approaches. The net revenues obtained are simply too variable. Not much 

can be determined from such an analysis.  
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In the military planning case, the problems are exacerbated by the lack of 

objective ways to estimate benefits in common units. Without the common-unit 

benefits analysis, it becomes difficult, if not impossible, to compare the net benefits of 

various scenarios. In addition, interdependencies must be interpreted in a largely 

subjective manner, making it impossible to apply powerful mathematical and 

statistical tools that enable more objective portfolio analysis. The problem arises for 

the top leaders in the DoD to make judgment calls, or selections among alternatives 

(often referred to as “trades”) about the potential benefits and risks of numerous 

projects and technologies investments. 

A related approach is to perform a what-if or sensitivity analysis. Each variable 

is perturbed a prespecified amount (e.g., unit sales is changed ±10%, sales price is 

changed ±5%, and so forth) and the resulting change in net benefits is captured. This 

approach is useful for understanding which variables drive or impact the result the 

most. Performing such analyses by hand or with simple Excel spreadsheets is 

tedious and provides marginal benefits at best. A related approach that has the same 

goals but employs a more powerful analytic framework is the use of computer-

modeled Monte Carlo simulation and tornado sensitivity analysis, where all 

perturbations, scenarios, and sensitivities are run hundreds of thousands of times 

automatically.  

Therefore, computer-based Monte Carlo simulation, one of the advanced 

concepts introduced in this paper, can be viewed as simply an extension of the 

traditional approaches of sensitivity and scenario testing. The critical success drivers 

or the variables that affect the bottom-line variables the most, which at the same time 

are uncertain, are simulated. In simulation, the interdependencies are accounted for 

by using correlation analysis. The uncertain variables are then simulated tens of 

thousands of times automatically to emulate all potential permutations and 

combinations of outcomes. The resulting net revenues-benefits from these simulated 

potential outcomes are tabulated and analyzed. In essence, in its most basic form, 
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simulation is simply an enhanced version of traditional approaches, such as 

sensitivity and scenario analysis, but automatically performed thousands of times 

while accounting for all the dynamic interactions between the simulated variables. 

The resulting net revenues from simulation, as seen in Figure A.4, show that there is 

a 90% probability that the net revenues will fall between $19.44 and $41.25, with a 

5% worst-case scenario of net revenues falling below $19.44. Rather than having 

only three scenarios, simulation created 5,000 scenarios, or trials, where multiple 

variables are simulated and changing simultaneously (unit sales, sale price, and 

variable cost per unit), while their respective relationships or correlations are 

maintained.  

 

Figure A.4. Simulation Results 

Monte Carlo simulation, named for the famous gambling capital of Monaco, is 

a very potent methodology. For the practitioner, simulation opens the door for solving 

difficult and complex but practical problems with great ease. Perhaps the most 

famous early use of Monte Carlo simulation was by the Nobel physicist Enrico Fermi 

(sometimes referred to as the father of the atomic bomb) in 1930, when he used a 

random method to calculate the properties of the newly discovered neutron. Monte 
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Carlo methods were central to the simulations required for the Manhattan Project, 

where, in the 1950s, Monte Carlo simulation was used at Los Alamos for early work 

relating to the development of the hydrogen bomb and became popularized in the 

fields of physics and operations research. The Rand Corporation and the U.S. Air 

Force were two of the major organizations responsible for funding and disseminating 

information on Monte Carlo methods during this time, and today there is a wide 

application of Monte Carlo simulation in many different fields including engineering, 

physics, research and development, business, and finance. 

Simplistically, Monte Carlo simulation creates artificial futures by generating 

thousands and even hundreds of thousands of sample paths of outcomes and 

analyzes their prevalent characteristics. In practice, Monte Carlo simulation methods 

are used for risk analysis, risk quantification, sensitivity analysis, and prediction. An 

alternative to simulation is the use of highly complex stochastic closed-form 

mathematical models. For a high-level decision-maker, taking graduate level 

advanced math and statistics courses is just not logical or practical. A well-informed 

analyst would use all available tools at his or her disposal to obtain the same answer 

the easiest and most practical way possible. And in all cases, when modeled 

correctly, Monte Carlo simulation provides similar answers to the more 

mathematically elegant methods. In addition, there are many real-life applications 

where closed-form models do not exist and the only recourse is to apply simulation 

methods. So, what exactly is Monte Carlo simulation and how does it work? 

Monte Carlo simulation in its simplest form is a random number generator that 

is useful for forecasting, estimation, and risk analysis. A simulation calculates 

numerous scenarios of a model by repeatedly picking values from a user-predefined 

probability distribution for the uncertain variables and using those values for the 

model. As all those scenarios produce associated results in a model, each scenario 

can have a forecast. Forecasts are events (usually with formulas or functions) that 

you define as important outputs of the model.  
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Think of the Monte Carlo simulation approach as picking golf balls out of a 

large basket repeatedly with replacement. The size and shape of the basket depend 

on the distributional input assumption (e.g., a normal distribution with a mean of 100 

and a standard deviation of 10, versus a uniform distribution or a triangular 

distribution) where some baskets are deeper or more symmetrical than others, 

allowing certain balls to be pulled out more frequently than others. The number of 

balls pulled repeatedly depends on the number of trials simulated. Each ball is 

indicative of an event, scenario, or condition that can occur. For a large model with 

multiple related assumptions, imagine the large model as a very large basket, 

wherein many baby baskets reside. Each baby basket has its own set of colored golf 

balls that are bouncing around. Sometimes these baby baskets are linked with each 

other (if there is a correlation between the variables), forcing the golf balls to bounce 

in tandem whereas in other uncorrelated cases, the balls are bouncing independently 

of one another. The balls that are picked each time from these interactions within the 

model (the large basket) are tabulated and recorded, providing a forecast output 

result of the simulation. 

As the U.S. military is not in the business of making money, referring to 

revenues throughout this paper may appear to be a misnomer. For nonprofit 

organizations, especially in the military, we require Knowledge Value Added 

(KVA), which will provide the required “benefits” or “revenue” proxy estimates to 

run ROI analysis. ROI is a basic productivity ratio with revenue in the numerator 

and cost to generate the revenue in the denominator (actually ROI is revenue-

cost/cost). KVA generates ROI estimates by developing a market comparable 

price per common unit of output multiplied by the number of outputs to achieve a 

total revenue estimate.  

KVA is a methodology whose primary purpose is to describe all organizational 

outputs in common units. It provides a means to compare the outputs of all assets 

(human, machine, information technology) regardless of the aggregated outputs 
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produced. For example, the purpose of a military process may be to gather signal 

intelligence or plan for a ship alteration. KVA would describe the outputs of both 

processes in common units, thus making their performance comparable.  

KVA measures the value provided by human capital assets and IT assets by 

analyzing an organization, process, or function at the process level. It provides 

insights into each dollar of IT investment by monetizing the outputs of all assets, 

including intangible assets (e.g., assets produced by IT and humans). By capturing 

the value of knowledge embedded in an organization’s core processes (i.e., 

employees and IT), KVA identifies the actual cost and revenue of a process, product, 

or service. Because KVA identifies every process required to produce an aggregated 

output in terms of the historical prices and costs per common unit of output of those 

processes, unit costs and unit prices can be calculated. The methodology has been 

applied in 45 areas within the DoD, from flight scheduling applications to ship 

maintenance and modernization processes. 

As a performance tool, the KVA methodology  

• compares all processes in terms of relative productivity, 

• allocates revenues and costs to common units of output, 

• measures value added by IT by the outputs it produces, and 

• relates outputs to cost of producing those outputs in common units. 

Based on the tenets of complexity theory, KVA assumes that humans and 

technology in organizations add value by taking inputs and changing them 

(measured in units of complexity) into outputs through core processes. The amount 

of change an asset within a process produces can be a measure of value or benefit. 

The additional assumptions in KVA include the following:  

• Describing all process outputs in common units (e.g., using a 
knowledge metaphor for the descriptive language in terms of the time it 
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takes an average employee to learn how to produce the outputs) 
allows historical revenue and cost data to be assigned to those 
processes historically. 

• All outputs can be described in terms of the time required to learn how 
to produce them.  

• Learning Time, a surrogate for procedural knowledge required to 
produce process outputs, is measured in common units of time. 
Consequently, Units of Learning Time = Common Units of Output (K).  

• A common unit of output makes it possible to compare all outputs in 
terms of cost per unit as well as price per unit, because revenue can 
now be assigned at the suborganizational level. 

• Once cost and revenue streams have been assigned to 
suborganizational outputs, normal accounting and financial 
performance and profitability metrics can be applied (Rodgers & 
Housel, 2006; Pavlou et al., 2005; Housel & Kanevsky, 1995). 

Describing processes in common units also permits market comparable data 

to be generated, which is particularly important for nonprofits like the U.S. military. 

Using a market comparable approach, data from the commercial sector can be used 

to estimate price per common unit, allowing for revenue estimates of process outputs 

for nonprofits. This approach also provides a common-unit basis to define benefit 

streams regardless of the process analyzed.  

KVA differs from other nonprofit ROI models because it allows for revenue 

estimates, enabling the use of traditional accounting, financial performance, and 

profitability measures at the sub-organizational level. KVA can rank processes by the 

degree to which they add value to the organization or its outputs. This ranking assists 

decision-makers to identify how much processes add value. Value is quantified in two 

key metrics: Return on Knowledge (ROK: revenue/cost) and ROI (revenue-

investment cost/investment cost). The outputs from a KVA analysis become the input 

into the ROI models and real options analysis. By tracking the historical volatility of 

price and cost per unit as well as ROI, it is possible to establish risk (as compared to 
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uncertainty) distributions, which is important for accurately estimating the value of 

real options. 

The KVA method has been applied to numerous military core processes 

across the services. The KVA research has more recently provided a means for 

simplifying real options analysis for DoD processes. Current KVA research will 

provide a library of market comparable price and cost per unit of output estimates. 

This research will enable a more stable basis for comparisons of performance across 

core processes. This data also provides a means to establish risk distribution profiles 

for Integrated Risk Management approaches such as real options, and KVA currently 

is being linked directly to the Real Options Super Lattice Solver and Risk Simulator 

software for rapid adjustments to real options valuation projections. 
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Appendix B. Understanding Probability 
Distributions 

This appendix demonstrates the power of Monte Carlo risk simulation, but 

in order to get started with simulation, one first needs to understand the concept 

of probability distributions. This appendix continues with the use of the author’s 

Risk Simulator software and shows how simulation can be very easily and 

effortlessly implemented in an existing Excel model.  

To begin to understand probability, consider the following example. You want 

to look at the distribution of nonexempt wages within one department of a large 

company. First, you gather raw data—in this case, the wages of each nonexempt 

employee in the department. Second, you organize the data into a meaningful format 

and plot the data as a frequency distribution on a chart. To create a frequency 

distribution, you divide the wages into group intervals and list these intervals on the 

chart’s horizontal axis. Then you list the number or frequency of employees in each 

interval on the chart’s vertical axis. Now you can easily see the distribution of 

nonexempt wages within the department. 

A glance at Figure A.5 reveals that the employees earn from $7.00 to $9.00 

per hour. You can chart this data as a probability distribution. A probability distribution 

shows the number of employees in each interval as a fraction of the total number of 

employees. To create a probability distribution, you divide the number of employees 

in each interval by the total number of employees and list the results on the chart’s 

vertical axis. 
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Number of 
Employees

60

50

40

30

20

10

Hourly Wage Ranges in Dollars

   7.00  7.50  8.00  8.50  9.00

 

Figure A.5. Frequency Histogram I 

Figure A.6 shows the number of employees in each wage group as a fraction 

of all employees; you can estimate the likelihood or probability that an employee 

drawn at random from the whole group earns a wage within a given interval. For 

example, assuming the same conditions exist at the time the sample was taken, the 

probability is 0.20 (a one in five chance) that an employee drawn at random from the 

whole group earns $8.50 an hour.  

Probability distributions are either discrete or continuous. Discrete probability 

distributions describe distinct values, usually integers, with no intermediate values 

and are shown as a series of vertical bars. A discrete distribution, for example, might 

describe the number of heads in four flips of a coin as 0, 1, 2, 3, or 4. Continuous 

probability distributions are actually mathematical abstractions because they assume 

the existence of every possible intermediate value between two numbers; that is, a 

continuous distribution assumes there is an infinite number of values between any 

two points in the distribution. However, in many situations, you can effectively use a 

continuous distribution to approximate a discrete distribution even though the 

continuous model does not necessarily describe the situation exactly. 
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Probability

0.33

Hourly Wage Ranges in Dollars
   7.00  7.50  8.00  8.50  9.00

 

Figure A.6. Frequency Histogram II 

Selecting a Probability Distribution 

Plotting data is one method for selecting a probability distribution. The 

following steps provide another process for selecting probability distributions that 

best describe the uncertain variables in your spreadsheets. 

To select the correct probability distribution, use the following steps: 

• Look at the variable in question. List everything you know about the 
conditions surrounding this variable. You might be able to gather 
valuable information about the uncertain variable from historical data. If 
historical data are not available, use your own judgment, based on 
experience, listing everything you know about the uncertain variable. 

• Review the descriptions of the probability distributions. 

• Select the distribution that characterizes this variable. A distribution 
characterizes a variable when the conditions of the distribution match 
those of the variable. 

Alternatively, if you have historical, comparable, contemporaneous, or 

forecast data, you can use Risk Simulator’s distributional fitting modules to find the 

best statistical fit for your existing data. This fitting process will apply some advanced 
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statistical techniques to find the best distribution and its relevant parameters that 

describe the data.  

Probability Density Functions, Cumulative Distribution Functions, and 
Probability Mass Functions 

In mathematics and Monte Carlo simulation, a probability density function 

(PDF) represents a continuous probability distribution in terms of integrals. If a 

probability distribution has a density of f(x), then intuitively the infinitesimal 

interval of [x, x + dx] has a probability of f(x) dx. The PDF therefore can be seen 

as a smoothed version of a probability histogram; that is, by providing an 

empirically large sample of a continuous random variable repeatedly, the 

histogram using very narrow ranges will resemble the random variable’s PDF. 

The probability of the interval between [a, b] is given by ( )
b

a

f x dx∫ , which means 

that the total integral of the function f must be 1.0. It is a common mistake to think 

of f(a) as the probability of a, when, in fact, f(a) can sometimes be larger than 1—

consider a uniform distribution between 0.0 and 0.5. The random variable x 

within this distribution will have f(x) greater than 1. The probability, in reality, is 

the function f(x)dx discussed previously, where dx is an infinitesimal amount.  

The cumulative distribution function (CDF) is denoted as F(x) = P(X ≤ x) 

indicating the probability of X taking on a less than or equal value to x. Every CDF is 

monotonically increasing, is continuous from the right, and at the limits, has the 

following properties: lim ( ) 0
x

F x
→−∞

=  and lim ( ) 1
x

F x
→+∞

= . Further, the CDF is related to the 

PDF by ( ) ( ) ( ) ( )
b

a

F b F a P a X b f x dx− = ≤ ≤ = ∫ , where the PDF function f is the 

derivative of the CDF function F.  
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In probability theory, a probability mass function, or PMF, gives the probability 

that a discrete random variable is exactly equal to some value. The PMF differs from 

the PDF in that the values of the latter, defined only for continuous random variables, 

are not probabilities; rather, its integral over a set of possible values of the random 

variable is a probability. A random variable is discrete if its probability distribution is 

discrete and can be characterized by a PMF. Therefore, X is a discrete random 

variable if ( ) 1
u

P X u= =∑  as u runs through all possible values of the random variable 

X.  

Normal Distribution 

The normal distribution is the most important distribution in probability theory 

because it describes many natural phenomena, such as people’s IQs or heights. 

Decision-makers can use the normal distribution to describe uncertain variables such 

as the inflation rate or the future price of gasoline. 

The three main conditions underlying the normal distribution: 

• Some value of the uncertain variable is the most likely (the mean of the 
distribution). 

• The uncertain variable could as likely be above the mean as it could be 
below the mean (symmetrical about the mean). 

• The uncertain variable is more likely in the vicinity of the mean than 
further away. 

The mathematical constructs for the normal distribution are as follows: 

2

2
( )
21( )

2

x

f x e    for all values of x
µ

σ

πσ

− −

= and μ; while σ > 0 

Mean = µ 
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Standard Deviation = σ 

Skewness = 0 (this applies to all inputs of mean and standard deviation) 

Excess Kurtosis = 0 (this applies to all inputs of mean and standard deviation) 

Mean (μ) and standard deviation (σ) are the distributional parameters. 

Input requirements: Standard deviation > 0 and can be any positive value 

whereas mean can be any value 

PERT Distribution 

The PERT distribution is widely used in project and program management 

to define the worst-case, nominal-case, and best-case scenarios of project 

completion time. It is related to the beta and triangular distributions. PERT 

distribution can be used to identify risks in project and cost models based on the 

likelihood of meeting targets and goals across any number of project components 

using minimum, most likely, and maximum values, but it is designed to generate 

a distribution that more closely resembles realistic probability distributions. The 

PERT distribution can provide a close fit to the normal or lognormal distributions. 

Like the triangular distribution, the PERT distribution emphasizes the most likely 

value over the minimum and maximum estimates. However, unlike the triangular 

distribution, the PERT distribution constructs a smooth curve that places 

progressively more emphasis on values around (near) the most likely value, in 

favor of values around the edges. In practice, this means that we trust the 

estimate for the most likely value, and we believe that even if it is not exactly 

accurate (as estimates seldom are), we have an expectation that the resulting 

value will be close to that estimate. Assuming that many real-world phenomena 

are normally distributed, the appeal of the PERT distribution is that it produces a 

curve similar to the normal curve in shape, without knowing the precise 
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parameters of the related normal curve. Minimum, most likely, and maximum are 

the distributional parameters. 

The mathematical constructs for the PERT distribution are shown here:  

1 1 2 1

1 2 1

( ) ( )( )
( 1, 2)( )

4( ) 4( )
6 61 6 2 6

A A

A A

x Min Max xf x
B A A Max Min

Min Likely Max Min Likely MaxMin Max
where A and A

Max Min Max Min

and B is the Beta function

− −

+ −

− −
=

−

+ + + +   − −   
= =   − −   

   

 

Mean = 
4

6
Min Mode Max+ +

 

Standard Deviation = ( )( )
7

Min Maxµ µ− −  

Skew = 
7 2

( )( ) 4
Min Max

Min Max
µ

µ µ
+ − 

 − −    

Excess Kurtosis is a complex function and cannot be readily computed. 

Input requirements: Min ≤ Most Likely ≤ Max and can be positive, negative, or zero. 

Triangular Distribution 

The triangular distribution describes a situation where you know the 

minimum, maximum, and most likely values to occur. For example, you could 

describe the number of cars sold per week when past sales show the minimum, 

maximum, and usual number of cars sold. 

The three main conditions underlying the triangular distribution: 
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• The minimum number of items is fixed. 

• The maximum number of items is fixed. 

• The most likely number of items falls between the minimum and 
maximum values, forming a triangular-shaped distribution, which 
shows that values near the minimum and maximum are less likely to 
occur than those near the most-likely value. 

The mathematical constructs for the triangular distribution are as follows: 

2( )
( )( min)

( )
2( )

( )( )

x Min    for Min  x  Likely
Max Min Likely

f x
Max x    for Likely  x  Max

Max Min Max Likely

− < < − −=  − < <
 − −  

Mean = 
1 ( )
3

Min Likely Max+ +
 

Standard Deviation = 2 2 21 ( )
18

Min Likely Max Min Max Min Likely Max Likely+ + − − −  

Skewness = 
2 2 2 3/ 2

2( 2 )(2 )( 2 )
5( )
Min Max Likely Min Max Likely Min Max Likely
Min Max Likely MinMax MinLikely MaxLikely

+ − − − − +
+ + − − −  

Excess Kurtosis = -0.6 (this applies to all inputs of Min, Max, and Likely)  

Minimum (Min), most likely (Likely) and maximum (Max) are the parameters. 

Input requirements:  

Min ≤ Most Likely ≤ Max and can take any value. 

However, Min < Max and can take any value. 
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Uniform Distribution 

With the uniform distribution, all values fall between the minimum and 

maximum and occur with equal likelihood.  

The three main conditions underlying the uniform distribution: 

• The minimum value is fixed. 

• The maximum value is fixed. 

• All values between the minimum and maximum occur with equal 
likelihood. 

The mathematical constructs for the uniform distribution are as follows: 

1( )f x    for all values such that Min Max
Max Min

= <
−  

Mean = 2
Min Max+

 

Standard Deviation = 
2( )

12
Max Min−  

Skewness = 0 (this applies to all inputs of Min and Max) 

Excess Kurtosis = -1.2 (this applies to all inputs of Min and Max) 

Maximum value (Max) and minimum value (Min) are the distributional parameters. 

Input requirements: Min < Max and can take any value. 
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