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Abstract 

Software is frequently involved today in acquisitions.  It is important to identify 

fraudulent, malicious, or illegally copied software but that is more difficult than 

identifying those features in physical objects.  This work applied methods of digital 

forensics to this task.  We studied differences between versions of software by 

comparing their executable files.  We used a large database (“corpus”) of around 

2600 digital-forensic copies of secondary storage of computers and digital devices 

purchased around the world.  We extracted families of executable files in the EXE 

and DLL formats having the same name, usually representing different updates of 

the same software.  We measured file similarities between files in the same family 

by finding matches between 8-bit bytes in the two files, and then looking for 

sequences of unbroken consecutive matches.  We developed several kinds of useful 

visualizations to show file similarities: Two ways to display the bytes that match 

between two files, and two ways to show the similarities between members of a file 

family over time.  These methods should make it considerably easier to detect 

fraudulent, malicious, or illegally copied software because it will stand out in the 

visualizations. 
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Introduction 

Acquisition of software can be challenging compared to acquisition of other 

products.  Software is difficult to analyze, and lack of product liability means many 

claims made by its vendors are very difficult to confirm and may be exaggerations 

or, in rare cases, outright fraud.  This work tried to characterize what is actually 

being stored for some major software products and what happens to the software 

after updates using methods of digital forensics.  This provides a new way to verify 

some of the claims made about software, and should provide additional clues to 

detect malicious, fraudulent, or illegally copied software. 

Software is implemented in a set of executable files.  Executable files are 

instructions for a computer or digital device to run the software.  They are encoded 

in the machine language of the computer or device, and are almost always created 

by applying compiler software to source code.  Executable files are much less 

human-readable than source code.  However, digital forensics rarely encounters 

source code when it investigates computers and devices, as only executables are 

necessary to run programs; source code is also more valuable proprietary 

intellectual property than executables and is more subject to controlled access than 

executables.  Thus to do digital forensics on programs, an investigator needs tools 

to analyze executables. 

Machine language used by executables consists of instruction codes 

(operators) and arguments (operands).  32-bit machines have 32-bit (4-byte) 

instructions and 64-bit machines have 8-byte instructions.  Operators specify the 

type of operation to be performed and operands specify registers (fast storage), 

memory addresses (slower storage), buffer numbers, or arithmetic constants.  The 

primary duty of compiles is to construct machine instructions that implement the 

source code; in addition, compilers must assign registers and memory addresses to 

the data.  This means that minor changes to source code can force large number of 

addresses to shift in memory.  Compilers often do specify addresses relative to a 

register value, but registers may change when parts of a program are expanded or 
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reduced in length.  Thus some things in executable code will remain constant 

through different versions – operators, some register arguments, and some buffer 

arguments – and others will change.  Comparing versions of an executable requires 

focusing on the things that remain constant that are scattered through the file. 
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Scope of the Study 

Our immediate goal was to study the differences between the same 

executable (binary file) over time and between versions.  This study had several 

purposes.  One purpose was to see how much could be told from an executable 

alone about the changes over time.  When an executable is recompiled for even a 

minor update, most registers and addresses can change.  However, instruction 

codes (“opcodes”) and constant data should not change very much with different 

versions, and we should be able to match them reliably.  Blank areas are frequent in 

executables, usually appearing as sequences of zero bytes, and we can match 

those albeit less reliably.  This means we should be able to see how much was 

added or subtracted from the executable with each version to get an idea of the 

magnitude of an update. 

Our ultimate goal was to provide a basis for recognizing incompetent, 

fraudulent, or malicious updates to software.  A version without substantial changes 

from a previous version could have been stolen and superficially modified.  It could 

also be malware that changed just a few bytes to remain hard to detect if the size 

remains the same.  However, malicious actors in cyberspace are increasingly 

brazen, and many versions of software identified as malware are at the opposite 

extreme of being completely different from legitimate versions.  Our experiments 

measured how different they were. 
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Literature Review 

Software development is a complex process, and a variety of projects have 

attempted to assist to software engineers in understanding differences between 

versions of software.  Usually only a few features of source code change between 

versions, and these can be found by comparisons of the source code (Palix et al, 

2010).  Changes can be abstracted by generalizations (Zeller and Snelting, 1997).  

Most useful approaches to version analysis with source code focus on the changes 

to components since most software engineering is component-based (Gergic, 2003).  

Executables are more difficult to analyze. 

Especially useful to software engineering is visualization to the relationships 

between different versions of software, and many of these ideas apply to 

executables as well.  (Merino et al, 2018) provides a good survey of methods for 

software visualization.  These include visualization of clustering of versions by 

similarity (Beyer and Hassan, 2006), tree diagrams of the relationships between 

versions and components of versions (Arbuckle, 2008; Seeman and Gudenberg, 

2009; Kaur and Singh, 2009; Novais et al, 2011; Elsen, 2013; Novais et al, 2107), 

diagrams comparing versions that use color and position to encode features (Voinea 

et al, 2005; Kuhn and Stocker, 2012; Hanjalic, 2013), and graphs showing version 

evolution over time (Aghajani et al, 2017).  Some work has addressed visualization 

of graphs showing mappings between software components (Kim and Notkin, 2006; 

Kaur and Singh, 2011), abstractions about the software (Rho and Wu, 1998), and  

connections between parts within different software versions (Burch et al, 2005; 

Voinea et al, 2005), the latter of which is more directly related to our project.  Some 

visualizations have involved human interaction to guide visualization (North et al, 

2016).  Some methods for visualizing comparisons between text documents are also 

relevant to software such as drawing lines between matching items (Shannon et al, 

2010). 
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Data Used for Testing 

We extracted a sample of executable names from the 2600 images in the full-

image portion of the Real Drive Corpus, a collection drive images obtained mostly by 

purchase of used equipment around the world (Garfinkel et al, 2009).  There were 

29,821,053 executables identified in our corpus by their file extensions, having 

3,312,861 different hash values (different contents).  Figure 1 shows the distribution 

of the number of files having the same filename in our corpus, and Figure 2 shows 

the distribution of the fraction of distinct hash values to total files for each filename.  

Most executable filenames occur only once, but a significant number of popular 

executables occurred many times as shown on the left side of the graph. 

 
Figure 1: Distribution of the total number of occurrences of a filename in our corpus. 
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Figure 2: Fraction of distinct hash values (contents) per file name in our corpus. 

Table 1 shows the most common types of executables in our corpus based 

on their extensions.  For the experiments reported here we retrieved only files in the 

DLL and EXE formats, the two most common program-executable formats; EXE is a 

general-purpose format, and DLL is proprietary to Microsoft and used by most their 

software.  There were 2049 sample files in 56 file families listed in Table 2.  Each 

family had from 2 to 105 distinct file contents as indicated by their MD5 hashcodes.  

We are currently adding further files to study. 

 
Table 1: The most common file extensions of executables in our corpus. 

Exten-
sion 

Count Exten
-sion 

Count Exten-
sion 

Count Exten-
sion 

Count 

dll 16,188,565 exe 3,938,014 class 1,350,429 pyc 1,002,201 
pyo 284,169 qtr 155,815 ocx 113,806 so 84,394 
mexw32 77,185 dylib 65,895 rpm 60,250 com 56,636 
obj 55,476 pyd 51,661 lxp 38,822 o 37,865 
cls 26,856 beam 23,981 8bf 17,435   
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In our experiments for each file family, we found all occurrences of its family 

name (e.g. “acrord32.dll” for the Adobe PDF reader in the 32-bit version) in the 

metadata of our corpus which included their MD5 hash values; this metadata was 

calculated during initial forensic analysis with the Fiwalk tool that produces data in 

DFXML format (Garfinkel, 2009); Fiwalk is now included with the SleuthKit (TSK) 

open-source tool (www.sleuthkit.org).  We then used the SleuthKit “icat” command to 

extract a file for each hash value from the images in EWF format (Expert Witness 

Format).  Since some corpus files could not be retrieved because of faulty drive 

images (many were disk drives sold to the used-hardware market when they failed), 

we tried retrievals for the same hash value until we found one that retrieved 

successfully with a nonempty result.  With so many drives, usually we found an 

undamaged copy for each hash value for common software families.  However, we 

noted around 5% of files had more than one modification time for the same file 

contents, something clearly incorrect.  Some files matching on hash values did not 

have the family name because they were updates and caches with temporary 

names. 

We excluded files over 1 megabyte from the file families since many were 

faulty extractions due to problems by the forensic software in finding the end of the 

file; executables are rarely over a million bytes, and files that large require 

considerable processing time to analyze anyway.  We only considered files not 

marked for deletion in our experiments, as we have observed that metadata for 

deleted files can be unreliable (Rowe, 2016).  Nonetheless, some undeleted files 

were faulty too as several kinds of things can go wrong is storing large amounts of 

data.  We also extracted the modification times for these files from Fiwalk since 

modification time usually is set at the last change by the vendor and thus is a good 

indicator of the age of the version.  For this we used the earliest modification time of 

all the instances that we could find of a hashcode.  
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Table 2: Executable file families used in our study. 

Filename a0003775.dll acrord32.dll bitsigd.dll brmfbidi.dll 
Hash count 16 6 6 5 
Filename bthserv.dll ccalert.dll cdfview.dll deviceoperate.dll 
Hash count 38 23 72 6 
Filename directdb.dll dunzip32.dll libscreen_plugin.dll mfcm100u.dll 
Hash count 88 34 37 37 
Filename mqrt.dll msadcor.dll msident.dll mslbui.dll 
Hash count 86 57 100 51 
Filename msnetobj.dll msrdc.dll nvrshu.dll padrs804.dll 
Hash count 72 70 32 26 
Filename perfctrs.dll pmspl.dll pngfilt.dll rjcfspln.dll 
Hash count 58 8 105 28 
Filename safslv.dll scanmail.dll spra0402.dll tis_outlookx.dll 
Hash count 30 2 6 7 
Filename typeaheadfind 

.dll 
vsplugin.dll w2k_lsa_auth.dll webclnt.dll 

Hash count 2 8 56 34 
Filename winprint.dll wmpcd.dll xrxwiadr.dll  
Hash count 8 54 13  
Filename acrord32info.exe charmap.exe dns-sd.exe dsndup.exe 
Hash count 34 50 11 18 
Filename find.exe hotfix.exe iexplore.exe mobsync.exe 
Hash count 47 36 81 84 
Filename netscape.exe nppagent.exe nvudisp.exe powerpnt.exe 
Hash count 3 52 105 10 
Filename rtinstaller32.exe snapview.exe soundman.exe udlaunch.exe 
Hash count 4 15 60 4 
Filename uninstall_plugin 

.exe 
wmplayer.exe wmpshare.exe wordicon.exe 

Hash count 24 39 44 11 
Filename yserver.exe    
Hash count 16    
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Methodology: Preliminary File Analysis 

A simple technique of computing the entropy at periodic locations in a file 

gives a good indicator of its structure.  We found plotting the byte entropy on 

consecutive 512-byte sequences worked well at indicating the parts of a file.  Figure 

3 shows a random sample of the segment entropies versus relative position in the 

executable file.  There are clear patterns, with entropies around 6 (suggesting 

machine instructions) predominant in the front of the file, and more varied entropies 

(suggesting data) in the rest of the file.  The plot indicates that most executables are 

in the form of a block of code followed by data. 

 
Figure 3: Scatter plot of a random sample of entropies of 512-byte segments versus relative 

position in a file. 

 

More specific details can be found by examining individual files.  The figures 

below show three versions of the file pacman.exe which were judged to be malware 

by at least one of the five tools used in (Rowe, 2016) of Bit9, OpenMalware, 

VirusShare, Symantec, and ClamAV.  Figure 4 shows a typical pattern for an 
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executable with a header including several bytes of zeros, machine instructions, and 

then data starting around location 180000.  Figure 5 shows an executable with fewer 

machine instructions and more data.  It also a very short header unlike the file in 

Figure 4; DLL formats have consistent headers, but these are EXEs and they are 

more varied.  Figure 6 by contrast shows a pattern typical of encoded or 

compressed code (subjected to an “executable packer”) with a short header and 

very high entropies for the rest of the file.  It is important to recognize encoded and 

encrypted code because byte comparisons between two such files find only spurious 

matches.   Since these three files were all malware, the pictures suggest that there 

is significant variation on malware, something true of the other malware files we saw 

in our corpus. 

 
Figure 4: Distribution of 512-byte entropies in one pacman.exe file found in India. 
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Figure 5: Distribution of 512-byte entropies in a pacman.exe file found in Thailand. 

 

 
Figure 6: Distribution of 512-byte entropies in a third pacman.exe file found in Thailand. 
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We explored different window sizes of consecutive on which to calculate 

entropies.  Figure 7 plots an msrdc.dll file with a window size of 512 and Figure 8 

plots it with a window size of 4096.  The larger window size clearly smooths the data 

but loses detail that could be important. 

 
Figure 7: Entropies of an msrdc.dll file using 512-byte distributions. 

 

 
Figure 8: Entropies of an msrd.dll file using 4096-byte distributions. 
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Figure 9 shows the histogram of byte entropies on groups of successive 512 

byte in our corpus of executables, and Figure 10 shows the portion of this > 0.2 to 

exclude the sharp peak at zero entropy.  The peak at 7.5 represents encoded and 

compressed data; the peak at 5.9 represents machine instructions; the peak at 3.2 

represents Ascii text; and the peaks from 0.5-1.5 represent standard labels (using 

16-bit encoding of Ascii with alternate zero bytes).  The peak at zero represents 

empty space, usually zero bytes, that are for data to be filled in later or to pad the file 

to a byte boundary that is a power of 2.  Since these usages are incompatible with 

one another, it makes sense to partition the entropies into five ranges: 0-0.2, 0.2-2, 

2-4, 4-6.7, and 6.5-8.  Then it only makes sense to compare segments in the same 

entropy range.  
 

 
Figure 9: Histogram of average byte entropies on 512 successive bytes in our corpus of 

executables. 
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Figure 10: Histogram of average byte entropies > 0.2 on 512 successive bytes in our corpus of 

executables. 
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Methodology: Byte Comparison Methods 

Randomly chosen executable files tend to have few similarities except for 

their (short) headers.  Even executables from the same family were observed not to 

have many similarities because of the changes that occur with recompilation 

mentioned in section 1, though there are exceptions.  However, most instruction 

codes and data constants will remain the same through different versions.  To 

compare executable file versions, then, we need to look carefully to find those 

features of the files that we can match.  The most basic and thorough approach is to 

compare bytes between two files to try to find matches.  We used this as the “ground 

truth” for subsequent experiments with attempts to find faster methods.  There are 

256 possible byte values and we can index all their occurrences in two files we wish 

to compare.  Then we can find all possible matches of the same byte value from one 

file to the other.  Some will be coincidental since the probability of two random bytes 

matching is 1/256.  That means that two random files of lengths N and M will have 

NM/256 matches on the average.  However, if we can find a long sequence in one 

file that matches to a corresponding sequence in the other file, that can be good 

evidence beyond chance that we have found a block of code that has been shifted in 

location between the versions.  The degree of shift in position from the first file to the 

second is termed an “offset”.  We can find likely good offsets by creating histograms 

of evidence for all offsets, and looking for the peaks of those histograms.  We can 

then search for sequences having those offsets. 

Figure 11 shows that the overall distribution of the byte values for the 56 file 

families in our test data is not uniform, with nonrandom patterns likely due the 

relative popularity of different instruction codes and operand patterns.  We can use 

this to weight matches between files because matches on rare byte values are less 

ambiguous than matches on common bytes.  We weighted counts of matches 

between the two files by the inverse of the number of occurrences of the byte value 

in the smaller file since the smaller file has more control on the match possibilities.  

We did completely exclude in this first phase any zero (00000000) bytes and all-one 
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(11111111) bytes because they are often used to indicate unused space, and 

unused space is not specific enough to provide good matches.    

 
Figure 11: Distribution of byte values in all files in our test sample. 

 

This gave us a distribution of weighted counts for each possible value of 

offset for a pair of files.  We computed the mean and standard deviation of the offset 

counts.  Since with only 256 possible byte values, many matches between two files 

are spurious, we recomputed the mean and standard deviation of the weighted 

offset counts within two standard deviations of the mean, then excluded everything 

less than two standard deviations above this mean.  Since meaningful block 

matches will have significantly higher weighted counts than the average, this 

excludes many useless matches, reducing the data by roughly a factor of 100.  The 

mean was computed twice to exclude the largest values the second time, since we 

found many meaningful matches of blocks that had considerably higher offset counts 

than the average offset. 
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Then for the most popular offsets, we go back to the pair of files and look for 

consecutive bytes at those offsets.  Unfortunately, we cannot use any of the classic 

algorithms for subsequence matching (Bergroth et al, 2000) because the 

subsequences to be found cannot be enumerated in advance.  We also look for 

matches on every 2nd (alternating) byte, on every 4th byte (which helps identify 

matching instruction codes on 32-bit machines), and every 8th byte (which helps 

identify matching instruction codes on 64-bit machines).  The minimum length of a 

sequence considered was 8 matches for each of the four types of matches.  The 

following figures show a visual display of this matching for two files each.  Blue 

indicates blocks of successive bytes that match between the two files, green 

indicates blocks matching every 2nd byte magenta indicates blocks matching every 

4th byte, red indicates blocks matching every 8th byte, and white indicates areas for 

which no match could be found.   Black rectangles indicate the extent of the files.  It 

can be seen that files in Figure 12 do not have much in common as the files in 

Figure 13. 

 
Figure 12: Byte matches between two versions of a file that do not have many similarities. 
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Figure 13: Byte comparison between two similar versions of the same file. 

 

A disadvantage of the previous diagrams is they fail to indicate what matches 

exactly, so we developed an alternative visualization (Figure 14) (Allen, 2019).  The 

first five and last five rows of the image visualize five “texture-vector” components.  

These components were the entropy of the segment byte values, mean byte value, 

standard deviation of the byte values, mode (most common frequency) of the byte 

values, and frequency of the mode.  Later experiments also used the median.  

Distances were computed as the Euclidean distance between two texture vectors; 

similarities are the inverses of distances.  Lines between the two bars representing 

files indicate strong similarities between the texture vectors in the files. 
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Figure 14: Example comparison of two files using their texture vectors and showing 
connections between file portions. 
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Results: File Family Visualization 

We also developed visualization techniques for families of files.  Figure 15 

shows a first version (Allen, 2019) giving a summary diagram for the file versions in 

the wmplayer.exe family.  Yellow dots represent file versions, and lines connecting 

them indicate degrees of similarity of those files sufficiently similar.  Green nodes 

and red edges are those that have been highlighted for additional study by the user 

with the interface.  This red edge was hovered over by the cursor spanning nodes 

170 and 174, along with detail about this edge and these two nodes.  All nodes are 

within the same file family because "Stay in group" is selected.  The similarity slider 

is set so that edges with a similarity measure less than 3.049 are not shown.  The 

similarity value used was the texture-vector similarity described previously. 

 
 

Figure 15: Example visualization of a file family. 
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Figure 16 shows a screenshot of the results of a zoom on the above graph, 

omitting edges with a similarity measure of less than 28.373. In this screenshot, 

node 152 is hovered over. The display shows information about node 152, but this 

information is not visible because the view is scrolled down. 

 

 

Figure 16: Results of a zoom on the previous figure. 

 

Figure 17 shows what happens when we click on node 144.  It becomes 

green and similarity along the y-axis is with respect to node 144.  By clicking on 

"Export” we get this exported view showing the timeline similarity graph for node 

144, which we tuned to reject similarities less than 8.615. 
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Figure 17: Details of files similar to node 144. 

 

Figure 18 shows a second version of our visualization as a tree, for the family 

of cdfview.dll, a common Microsoft Windows file.  Modification times should be equal 

for files with the same hash value since they are the times when the vendor last 

modified the file, so we have plotted only one file for each hash value.  Here the 

horizontal axis is time and the vertical axis represents cumulative similarity 

calculated by adding similarities for related descendants in each family.  In the 

Figure, lines connect file versions which are related, defined as those having more 

than a threshold similarity which was 0.5 for this diagram.  Red dots indicate 

malicious files as judged by at least one of five malware detection tools: Bit9, 

OpenMalware, VirusShare, Symantec, and ClamAV.  More background on our 

malware-analysis infrastructure is given in (Rowe, 2015). 

Similarity here was defined differently than for the previous visualizations, 

using a sigmoid function on the sum of the sizes of the ten longest sequence 

matches between the two files, 𝑠𝑠 = 𝑥𝑥/(𝑥𝑥 + 2000) where 𝑥𝑥 = ∑ 𝑙𝑙𝑖𝑖10
𝑖𝑖=1  where 𝑙𝑙𝑖𝑖 is the 

length of the ith longest sequence of consecutive byte matches between the two 
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files.  The sigmoid function was important to flatten the effects of extreme values of 

matches since the sum varied widely from 0 to millions with our file families.  We 

started using this similarity measure when further experiments (in Section 7) 

questioned the valued of texture-vector similarity.  

 
Figure 18: Tree visualization of the 73 distinct files of files named cdfview.dll in our corpus. 

 

The complete list of 73 files retrieved and analyzed for the cdfview.dll family is 

given below.  The index numbers given below for the files are also used in the 

Figure but some are hard to see.  The first part of each file name is its drive name 

starting with 2-character country code, and the rest of the filename is the path to the 

file in the directory structure of the operating system. 

0: SG1-1066/WINNT/system32/cdfview.dll 
1: HK99-6001/WINNT/$NtServicePackUninstall$/cdfview.dll 
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2: HK99-6001/WINNT/$NtUninstallKB896688-IE6SP1-
20051004.130236$/cdfview.dll 
3: IL3-0207/WINNT/ $NtUninstallKB972260-IE6SP1-
20090722.120000$/cdfview.dll 
4: DE001-0003/Muell/$NtUninstallKB912812-IE6SP1-
20060322.182418$/cdfview.dll 
5: HK99-6001/WINNT/ServicePackFiles/i386/cdfview.dll 
6: SG1-1066/WINNT/ServicePackFiles/i386/cdfview.dll 
7: AE10-0025/WINDOWS/system32/cdfview.dll 
8: MA1001-0001/WINDOWS/system32/dllcache/cdfview.dll 
9: DE001-0003/Muell/$NtUninstallKB912812$/cdfview.dll 
10: HK99-6001/WINNT/system32/dllcache/CDFVIEW.DLL 
11: DE001-0003/Muell/$NtUninstallKB916281$/cdfview.dll 
12: DE001-0003/Muell/$hf_mig$/KB912812/SP2QFE/cdfview.dll 
13: DE001-0003/Muell/$NtUninstallKB918899$/cdfview.dll 
14: DE001-0003/Muell/$hf_mig$/KB916281/SP2QFE/cdfview.dll 
15: DE001-0003/Muell/$NtUninstallKB922760$/cdfview.dll 
16: DE001-0003/Muell/$hf_mig$/KB918899/SP2QFE/cdfview.dll 
17: DE001-0003/Muell/$hf_mig$/KB922760/SP2QFE/cdfview.dll 
18: DE001-0003/Muell/$NtUninstallKB928090$/cdfview.dll 
19: PS01-069/WINNT/$NtUninstallKB925454-IE6SP1-
20061116.120000$/cdfview.dll 
20: PS01-069/WINNT/$NtUninstallKB928090-IE6SP1-
20070125.120000$/cdfview.dll 
21: DE001-0003/Muell/$NtUninstallKB931768$/cdfview.dll 
22: DE001-0003/Muell/$hf_mig$/KB928090/SP2QFE/cdfview.dll 
23: DE001-0003/Muell/$NtUninstallKB933566$/cdfview.dll 
24: DE001-0003/Muell/$hf_mig$/KB931768/SP2QFE/cdfview.dll 
25: DE001-0003/Muell/$NtUninstallKB937143$/cdfview.dll 
26: DE001-0003/Muell/$hf_mig$/KB933566/SP2QFE/cdfview.dll 
27: IL005-0006/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
28: DE001-0003/Muell/$NtUninstallKB939653$cdfview.dll 
29: IL005-0006/WINDOWS/$NtUninstallKB939653$/cdfview.dll 
30: DE001-0003/Muell/$hf_mig$/KB937143/SP2QFE/cdfview.dll 
31: DE001-0003/Muell/$hf_mig$/KB939653/SP2QFE/cdfview.dll 
32: DE001-0003/Muell/$NtUninstallKB942615$/cdfview.dll 
33: IL005-0006/WINDOWS/$NtUninstallKB942615$/cdfview.dll 
34: DE001-0003/Muell/$hf_mig$/KB942615/SP2QFE/cdfview.dll 
35: DE001-0003/Muell/system32/dllcache/cdfview.dll 
36: IL005-0006/WINDOWS/$NtUninstallKB944533$/cdfview.dll 
37: IL005-0006/WINDOWS/$NtUninstallKB947864$/cdfview.dll 
38: IN10-0317/WINDOWS/system32/dllcache/cdfview.dll 
39: IL005-0006/WINDOWS/$NtUninstallKB950759$/cdfview.dll 
40: IL005-0006/WINDOWS/$hf_mig$/KB947864/SP2QFE/cdfview.dll 
41: MA1001-0003/WINDOWS/system32/dllcache/cdfview.dll 
42: IL005-0006/WINDOWS/$hf_mig$/KB950759/SP2QFE/cdfview.dll 
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43: IL005-0006/WINDOWS/$NtUninstallKB953838$/cdfview.dll 
44: IL005-0006/WINDOWS/$NtUninstallKB956390$/cdfview.dll 
45: IL005-0006/WINDOWS/$hf_mig$/KB953838/SP2QFE/cdfview.dll 
46: IL005-0006/WINDOWS/$hf_mig$/KB956390/SP2QFE/cdfview.dll 
47: IL005-0006/WINDOWS/$NtUninstallKB958215$/cdfview.dll 
48: IL005-0007/WINNT/$NtUninstallKB963027-IE6SP1-
20090303.120000$/cdfview.dll 
49: IL005-0007/WINNT/$NtUninstallKB969897-IE6SP1-
20090501.120000$/cdfview.dll 
50: IL005-0006/WINDOWS/$hf_mig$/KB963027/SP2QFE/cdfview.dll 
51: IL005-0006/WINDOWS/$NtUninstallKB969897$/cdfview.dll 
52: IL005-0007/WINNT/$NtUninstallKB972260-IE6SP1-
20090722.120000$/cdfview.dll 
53: IL005-0006/WINDOWS/$hf_mig$/KB969897/SP2QFE/cdfview.dll 
54: IL005-0006/WINDOWS/$NtUninstallKB972260$/cdfview.dll 
55: IL005-0007/WINNT/$NtUninstallKB974455-IE6SP1-
20090925.120000$/cdfview.dll 
56: IL005-0006/WINDOWS/$hf_mig$/KB972260/SP2QFE/cdfview.dll 
57: IL005-0006/WINDOWS/$NtUninstallKB974455$/cdfview.dll 
58: IL3-0207/WINNT/system32/dllcache/CDFVIEW.DLL 
59: IL005-0007/WINNT/$NtUninstallKB976325-IE6SP1-
20091027.120000$/cdfview.dll 
60: IL3-
0207/WINNT/SoftwareDistribution/Download/d5d55eaac3e837d022d68f827116
8a8d/rtmgdr/cdfview.dll 
61: IL005-0007/WINNT/system32/CDFVIEW.DLL 
62: IL005-0006/WINDOWS/$hf_mig$/KB974455/SP2QFE/cdfview.dll 
63: IL005-0006/WINDOWS/$NtUninstallKB976325$/cdfview.dll 
64: IL005-0007/WINNT/$NtUninstallKB982381-IE6SP1-
20100414.120000$/cdfview.dll 
65: IL005-0006/WINDOWS/$hf_mig$/KB976325/SP2QFE/cdfview.dll 
66: IL005-0006/WINDOWS/$NtUninstallKB978207/$cdfview.dll 
67: IL005-0006/WINDOWS/$hf_mig$/KB978207/SP2QFE/cdfview.dll 
68: IL005-0006/WINDOWS/$NtUninstallKB980182$/cdfview.dll 
69: IL3-
0207/WINNT/SoftwareDistribution/Download/9169eacb0c4e7dc5028638599c92
ac2e/rtmgdr/cdfview.dll 
70: IL005-
0007/WINNT/SoftwareDistribution/Download/952d4c1e3e0c27aba62f38820c3fe
08a/rtmgdr/cdfview.dll 
71: IL005-0007/WINNT/system32/CDFVIEW.DLL 
72: IL005-0006/WINDOWS/system32/cdfview.dll 

 

However, there are many files with identical contents (hash codes) in our 

corpus; 1426 files in the corpus had name cdfview.dll or had a hash value of a file 
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having this file name.  For example, here is the full list of files matching Hashcode 27 

of 2595DCEF6BDAAD19B3A7F825CD5493DC.  In order, three are from Israel on 

three different drives, eight are from Palestine on six different drives, five are from 

Singapore on five different drives, and six more are from Israel on four different 

drives.  The A0004153.dll and A0004174 are files matching on a hash value rather 

than a name. 

IL005-0006/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
IL006-0004/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
IL3-0205/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
PS01-015/WINDOWS/system32/cdfview.dll 
PS01-015/WINDOWS/system32/dllcache/cdfview.dll 
PS01-018/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
PS01-018/Program Files/SAP/FrontEnd/SAPgui/Lang/lgndllCS.txt 
PS01-023/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
PS01-030/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
PS01-
070/WINDOWS/SoftwareDistribution/Download/493760be868721503b9abd615f
71e312/SP2GDR/cdfview.dll 
PS01-076/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
SG001-7020/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
SG001-7021/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
SG1-1052/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
SG1-1063/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
SG1-1064/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
il2-0034/System/System Volume Information//restore{B8B901F5-EACA-4604-
957F-6EF34D7ECA70}/RP54/A0004153.dll 
il2-0034/System/System Volume Information//restore{B8B901F5-EACA-4604-
957F-6EF34D7ECA70}/RP54/A0004174.dll 
il2-0034/System/WINDOWS/$NtUninstallKB933566$/cdfview.dll 
il3-0118/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
il3-0172/WINDOWS/$NtUninstallKB937143$/cdfview.dll 
il3-0181/WINDOWS/$NtUninstallKB937143$/cdfview.dll 

 

Figure 19 shows a different kind of visualization for this data, the modification 

times of all 1426 files having name cdfview.dll or a hash value matching one such 

file.  There are several incorrect reported times, but these did not appear in the 

above data because the drives they came from were generally faulty and we could 

not retrieve files from them.  Color encodes the last digit of the file number. 
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Figure 19: Modification times reported for all instances of cdfview.dll and other files having 

hash values of cdfview.dll. 

Figure 20 shows yet another visualization, of the relationships between the 

files based solely on similarity.  Distance between files was approximated by one 

minus the similarity of the files.  However, finding 2N coordinates in two dimensions 

for N*N files is an overdetermined problem and needed an approximation achieved 

by optimization.  We minimized the absolute value of the logarithm of the ratios of 

the achieved distanced to the desired distance, as described in (Rowe, 2018). 



Acquisition Research Program 
Graduate School of Defense Management - 31 - 
Naval Postgraduate School 

 
Figure 20: Visualization of the relationships between the cdfview.dll versions where distance 

is approximated by 1 minus similarity. 

Here are two more tree diagrams of file families.  Figure 21 shows the file 

family of ntevt.dll in our corpus.  There was one main product line in the middle of 

the period, plus an earlier line and a later line.  They were apparently for different 

operating systems because they overlap in time.  Two long vertical sequences 

involve different machines for each hashcode, so apparently a suite of somewhat 

different versions was created for different operating systems or hardware.  Most of 

the dots at height 0.0 appear to be based on incorrect assignment of “ntevt.dll” as 

the filename by faulty drives.  Figure 22 shows the file family of w2k_lsa_auth.dll in 

our corpus.  This shows one predominant product line with a few variations on it. 
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Figure 21: Tree visualization of the 74 files of nvevt.dll in our corpus. 

 

 
Figure 22: Tree diagram of 64 files of w2k_lsa_auth.dll in our corpus. 

 



Acquisition Research Program 
Graduate School of Defense Management - 33 - 
Naval Postgraduate School 

Results: Attempts to Improve Processing Speed 

Since the “ground truth” approach of obtaining every possible match between 

bytes of two files and looking for offset patterns required considerable processing 

time, we experimented with alternative methods to find matches between bytes of 

files.  These can also be used in preprocessing to rule out obviously dissimilar pairs 

of files. 

One approach is to skip the time-consuming process of matching offsets and 

just use the heights of the most-likely offsets to indicate overall pair similarity.  Figure 

23 shows a plot of the sum of counts of the evidence for the 10 highest offsets in file 

comparisons versus the ground-truth (sequence) similarity in a random sample of 

2000 file pairs.  The figure shows that offset heights increase with ground truth but 

not smoothly, though high values of both were correlated.  It also shows that this 

“peak” metric seems useful for preprocessing filtering but is not sufficient alone to 

indicate similarity of two files. 

 
Figure 23: Plot of the sum of the 10 largest offset-evidence counts versus ground truth of 

similarity between a sample of files. 
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A quickly computable measure of similarity is to compare histograms of byte values 

between two files using the classic technique of cosine similarity, 

�𝑓𝑓(𝑖𝑖, 1) ∗ 𝑓𝑓(𝑖𝑖, 2)
𝑁𝑁

𝑖𝑖=1

(��𝑓𝑓(𝑖𝑖, 1)2
𝑁𝑁

𝑖𝑖=1

� ∗ ��𝑓𝑓(𝑖𝑖, 2)2
𝑁𝑁

𝑖𝑖=1
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We have applied cosine similarity previously to many kinds of file attributes (Rowe, 

2018).  With only 256 values the cosine similarities are very high (close to their 

maximum of 1), so we took the 10th power of the values to spread them out better 

(Figure 24).  Nonetheless, there is not much correlation with the sequence similarity 

between two files, so we did not consider this further for purposes of initial filtering. 

 
Figure 24: 10th power of cosine similarity of byte distributions versus ground-truth similarity 

for a sample of files. 

 

Another approach we used was to compare the “texture vectors” on 512- byte 

segments of the two files, using the best match for each segment of the smaller file 

where “best” was defined as the weighted distance between the statistics of the two 

segments.  Figure 25 shows the correlation of the five-element vector similarity with 
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the sequence similarity.  Although the correlation is not good, there is an upward 

trend from left to right.  Still, it is not as good as the correlation with offsets peaks in 

Figure 23. 

 
Figure 25: Texture-vector similarity of two files versus ground-truth (sequence) similarity for a 

sample of files. 

We explored whether some of the five components of our texture vector could 

provide better correlations with our ground truth of file-sequence similarity (Figure 

26, Figure 27, Figure 28, and Figure 29).  Unfortunately, none of them showed much 

correlation.  We conclude that there is no shortcut to measuring similarities between 

executables besides comparing large numbers of bytes between the two files. 
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Figure 26: Average similarity of 512-byte entropies versus ground truth. 
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Figure 27: Average similarity of 512-means versus ground truth. 

 

 
Figure 28: Average similarities of most-common byte value in 512 bytes versus ground truth. 
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Figure 29: Average median similarity for 512-byte segments versus ground truth. 
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Results: Suspicious File Versions 

The visualizations in section 6 provide a good way to spot anomalous 

software versions.  A fraudulent or malicious version would likely not conform to the 

patterns of update shown in diagrams like that of Figure 18.  It would be difficult for a 

fraudulent version to get its spacing in time and similarity to other versions to fit in 

with the normal update framework.  So it will often be noticeable as being too early 

or too late compared the next update since updates tend to be quite regular for most 

software.  So inspecting our diagrams will likely reveal the more obvious kinds of 

fraudulent activity. 

Malware is a special case of fraudulent versions.  Some of the executables in 

our sample were flagged as malware by one of five anti-malware tools used in 

(Rowe, 2015): Bit9, Symantec, ClamAV, OpenMalware, and VirusShare.   We were 

curious about the similarity of these to non-malicious versions of the software.  One 

approach to creating malware, used by many viruses, is to modify a few lines of 

code.  However, we saw no evidence of this with our data.  The malware that did 

occur in our sample was quite different from the legitimate executables.  That 

suggests that malware authors are becoming increasingly brazen in their 

counterfeits of executables, and it also suggests they are not using viruses much 

anymore. 
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Recommendations 

Our experiments suggest this approach is a good one to analyzing software in the 

form of executables when source code is not available.  We could see clear patterns 

in the gradual evolution of software versions, and fraudulent or malicious activity 

clearly stood out.  Several kinds of visualizations appear to be helpful in doing this 

analysis, especially matches of segments of two related executables and graphs of 

the evolution in time of different versions of executables. 
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Conclusions 

We developed a toolkit to analyze relationships between different versions of 

compiled program files, also called executables.  It finds similar files by matching 

sequences of bytes within the files.  We applied it to data from real files from used 

computer equipment purchased around the world.  Plotting file similarity of files with 

the same name over time showed interesting tree-like branching patterns showing 

updates and new variants created by software vendors.  A user interface we created 

allows a user to focus on individual files and their similarities to other files, including 

showing exactly which bytes match between two files.  We also produced separate 

visualizations focused only on similarity between the files having the same name 

and only on the times of the files.  We provide supplementary information of the 

distribution of entropy within the files, which enables distinguishing machine code 

from data and headers, and the complete list of all matching files including 

duplicates found in our collection and where.  We studied methods to speed up 

processing.   

This analysis can be used to identify anomalous behavior with files such as 

with malware, fraud, or illegal copies because such files will not fit a normal update 

pattern on our graphs and will stand out.  The results of our study showed that this 

approach can spot fraudulent software, malware, and illegally copied software.  

Fraudulent software and malware will exhibit minimal similarities with other software, 

and illegally copied software will exhibit very high similarities. 
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