
Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

NPS-IT-20-014

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Analysis of Differences between Versions of Software
Executables

December 2, 2019

Dr. Neil C. Rowe, Professor
Bruce D. Allen, Research Associate

Graduate School of Defense Management

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition
Research Program of the Graduate School of Defense Management at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to
print additional copies of reports, please contact the Acquisition Research Program
(ARP) via email, arp@nps.edu or at 831-656-3793.

mailto:arp@nps.edu

Acquisition Research Program
Graduate School of Defense Management - i -
Naval Postgraduate School

Abstract

Software is frequently involved today in acquisitions. It is important to identify

fraudulent, malicious, or illegally copied software but that is more difficult than

identifying those features in physical objects. This work applied methods of digital

forensics to this task. We studied differences between versions of software by

comparing their executable files. We used a large database (“corpus”) of around

2600 digital-forensic copies of secondary storage of computers and digital devices

purchased around the world. We extracted families of executable files in the EXE

and DLL formats having the same name, usually representing different updates of

the same software. We measured file similarities between files in the same family

by finding matches between 8-bit bytes in the two files, and then looking for

sequences of unbroken consecutive matches. We developed several kinds of useful

visualizations to show file similarities: Two ways to display the bytes that match

between two files, and two ways to show the similarities between members of a file

family over time. These methods should make it considerably easier to detect

fraudulent, malicious, or illegally copied software because it will stand out in the

visualizations.

Acquisition Research Program
Graduate School of Defense Management - ii -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - iii -
Naval Postgraduate School

NPS-IT-20-014

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Analysis of Differences between Versions of Software
Executables

December 2, 2019

Dr. Neil C. Rowe, Professor
Bruce D. Allen, Research Associate

Graduate School of Defense Management

Naval Postgraduate School

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Acquisition Research Program
Graduate School of Defense Management - iv -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - v -
Naval Postgraduate School

Table of Contents

Introduction ... 1

Literature Review .. 5

Data Used for Testing ... 7

Methodology: Preliminary File Analysis .. 11

Methodology: Byte Comparison Methods ... 17

Results: File Family Visualization.. 23

Results: Attempts to Improve Processing Speed .. 33

Results: Suspicious File Versions ... 39

Recommendations .. 41

Conclusions .. 43

References ... 45

Acquisition Research Program
Graduate School of Defense Management - vi -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - vii -
Naval Postgraduate School

List of Figures

Figure 1: Distribution of the total number of occurrences of a filename in our
corpus. ... 7

Figure 2: Fraction of distinct hash values (contents) per file name in our corpus. 8

Figure 3: Scatter plot of a random sample of entropies of 512-byte segments
versus relative position in a file. ... 11

Figure 4: Distribution of 512-byte entropies in one pacman.exe file found in
India. .. 12

Figure 5: Distribution of 512-byte entropies in a pacman.exe file found in
Thailand. .. 13

Figure 6: Distribution of 512-byte entropies in a third pacman.exe file found in
Thailand. .. 13

Figure 7: Entropies of an msrdc.dll file using 512-byte distributions. 14

Figure 8: Entropies of an msrd.dll file using 4096-byte distributions. 14

Figure 9: Histogram of average byte entropies on 512 successive bytes in our
corpus of executables. ... 15

Figure 10: Histogram of average byte entropies > 0.2 on 512 successive bytes
in our corpus of executables. ... 16

Figure 11: Distribution of byte values in all files in our test sample. 18

Figure 12: Byte matches between two versions of a file that do not have many
similarities. ... 19

Figure 13: Byte comparison between two similar versions of the same file. 20

Figure 14: Example comparison of two files using their texture vectors and
showing connections between file portions. 21

Figure 15: Example visualization of a file family. .. 23

Figure 16: Results of a zoom on the previous figure. .. 24

Figure 17: Details of files similar to node 144. .. 25

Figure 18: Tree visualization of the 73 distinct files of files named cdfview.dll in
our corpus. .. 26

Acquisition Research Program
Graduate School of Defense Management - viii -
Naval Postgraduate School

Figure 19: Modification times reported for all instances of cdfview.dll and other
files having hash values of cdfview.dll. .. 30

Figure 20: Visualization of the relationships between the cdfview.dll versions
where distance is approximated by 1 minus similarity. 31

Figure 21: Tree visualization of the 74 files of nvevt.dll in our corpus. 32

Figure 22: Tree diagram of 64 files of w2k_lsa_auth.dll in our corpus. 32

Figure 23: Plot of the sum of the 10 largest offset-evidence counts versus
ground truth of similarity between a sample of files. 33

Figure 24: 10th power of cosine similarity of byte distributions versus ground-
truth similarity for a sample of files. ... 34

Figure 25: Texture-vector similarity of two files versus ground-truth (sequence)
similarity for a sample of files. ... 35

Figure 26: Average similarity of 512-byte entropies versus ground truth. 36

Figure 27: Average similarity of 512-means versus ground truth. 37

Figure 28: Average similarities of most-common byte value in 512 bytes versus
ground truth. .. 37

Figure 29: Average median similarity for 512-byte segments versus ground
truth. .. 38

Acquisition Research Program
Graduate School of Defense Management - ix -
Naval Postgraduate School

List of Tables

Table 1: The most common file extensions of executables in our corpus. 8

Table 2: Executable file families used in our study. .. 10

Acquisition Research Program
Graduate School of Defense Management - x -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 1 -
Naval Postgraduate School

Introduction

Acquisition of software can be challenging compared to acquisition of other

products. Software is difficult to analyze, and lack of product liability means many

claims made by its vendors are very difficult to confirm and may be exaggerations

or, in rare cases, outright fraud. This work tried to characterize what is actually

being stored for some major software products and what happens to the software

after updates using methods of digital forensics. This provides a new way to verify

some of the claims made about software, and should provide additional clues to

detect malicious, fraudulent, or illegally copied software.

Software is implemented in a set of executable files. Executable files are

instructions for a computer or digital device to run the software. They are encoded

in the machine language of the computer or device, and are almost always created

by applying compiler software to source code. Executable files are much less

human-readable than source code. However, digital forensics rarely encounters

source code when it investigates computers and devices, as only executables are

necessary to run programs; source code is also more valuable proprietary

intellectual property than executables and is more subject to controlled access than

executables. Thus to do digital forensics on programs, an investigator needs tools

to analyze executables.

Machine language used by executables consists of instruction codes

(operators) and arguments (operands). 32-bit machines have 32-bit (4-byte)

instructions and 64-bit machines have 8-byte instructions. Operators specify the

type of operation to be performed and operands specify registers (fast storage),

memory addresses (slower storage), buffer numbers, or arithmetic constants. The

primary duty of compiles is to construct machine instructions that implement the

source code; in addition, compilers must assign registers and memory addresses to

the data. This means that minor changes to source code can force large number of

addresses to shift in memory. Compilers often do specify addresses relative to a

register value, but registers may change when parts of a program are expanded or

Acquisition Research Program
Graduate School of Defense Management - 2 -
Naval Postgraduate School

reduced in length. Thus some things in executable code will remain constant

through different versions – operators, some register arguments, and some buffer

arguments – and others will change. Comparing versions of an executable requires

focusing on the things that remain constant that are scattered through the file.

Acquisition Research Program
Graduate School of Defense Management - 3 -
Naval Postgraduate School

Scope of the Study

Our immediate goal was to study the differences between the same

executable (binary file) over time and between versions. This study had several

purposes. One purpose was to see how much could be told from an executable

alone about the changes over time. When an executable is recompiled for even a

minor update, most registers and addresses can change. However, instruction

codes (“opcodes”) and constant data should not change very much with different

versions, and we should be able to match them reliably. Blank areas are frequent in

executables, usually appearing as sequences of zero bytes, and we can match

those albeit less reliably. This means we should be able to see how much was

added or subtracted from the executable with each version to get an idea of the

magnitude of an update.

Our ultimate goal was to provide a basis for recognizing incompetent,

fraudulent, or malicious updates to software. A version without substantial changes

from a previous version could have been stolen and superficially modified. It could

also be malware that changed just a few bytes to remain hard to detect if the size

remains the same. However, malicious actors in cyberspace are increasingly

brazen, and many versions of software identified as malware are at the opposite

extreme of being completely different from legitimate versions. Our experiments

measured how different they were.

Acquisition Research Program
Graduate School of Defense Management - 4 -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 5 -
Naval Postgraduate School

Literature Review

Software development is a complex process, and a variety of projects have

attempted to assist to software engineers in understanding differences between

versions of software. Usually only a few features of source code change between

versions, and these can be found by comparisons of the source code (Palix et al,

2010). Changes can be abstracted by generalizations (Zeller and Snelting, 1997).

Most useful approaches to version analysis with source code focus on the changes

to components since most software engineering is component-based (Gergic, 2003).

Executables are more difficult to analyze.

Especially useful to software engineering is visualization to the relationships

between different versions of software, and many of these ideas apply to

executables as well. (Merino et al, 2018) provides a good survey of methods for

software visualization. These include visualization of clustering of versions by

similarity (Beyer and Hassan, 2006), tree diagrams of the relationships between

versions and components of versions (Arbuckle, 2008; Seeman and Gudenberg,

2009; Kaur and Singh, 2009; Novais et al, 2011; Elsen, 2013; Novais et al, 2107),

diagrams comparing versions that use color and position to encode features (Voinea

et al, 2005; Kuhn and Stocker, 2012; Hanjalic, 2013), and graphs showing version

evolution over time (Aghajani et al, 2017). Some work has addressed visualization

of graphs showing mappings between software components (Kim and Notkin, 2006;

Kaur and Singh, 2011), abstractions about the software (Rho and Wu, 1998), and

connections between parts within different software versions (Burch et al, 2005;

Voinea et al, 2005), the latter of which is more directly related to our project. Some

visualizations have involved human interaction to guide visualization (North et al,

2016). Some methods for visualizing comparisons between text documents are also

relevant to software such as drawing lines between matching items (Shannon et al,

2010).

Acquisition Research Program
Graduate School of Defense Management - 6 -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 7 -
Naval Postgraduate School

Data Used for Testing

We extracted a sample of executable names from the 2600 images in the full-

image portion of the Real Drive Corpus, a collection drive images obtained mostly by

purchase of used equipment around the world (Garfinkel et al, 2009). There were

29,821,053 executables identified in our corpus by their file extensions, having

3,312,861 different hash values (different contents). Figure 1 shows the distribution

of the number of files having the same filename in our corpus, and Figure 2 shows

the distribution of the fraction of distinct hash values to total files for each filename.

Most executable filenames occur only once, but a significant number of popular

executables occurred many times as shown on the left side of the graph.

Figure 1: Distribution of the total number of occurrences of a filename in our corpus.

Acquisition Research Program
Graduate School of Defense Management - 8 -
Naval Postgraduate School

Figure 2: Fraction of distinct hash values (contents) per file name in our corpus.

Table 1 shows the most common types of executables in our corpus based

on their extensions. For the experiments reported here we retrieved only files in the

DLL and EXE formats, the two most common program-executable formats; EXE is a

general-purpose format, and DLL is proprietary to Microsoft and used by most their

software. There were 2049 sample files in 56 file families listed in Table 2. Each

family had from 2 to 105 distinct file contents as indicated by their MD5 hashcodes.

We are currently adding further files to study.

Table 1: The most common file extensions of executables in our corpus.

Exten-
sion

Count Exten
-sion

Count Exten-
sion

Count Exten-
sion

Count

dll 16,188,565 exe 3,938,014 class 1,350,429 pyc 1,002,201
pyo 284,169 qtr 155,815 ocx 113,806 so 84,394
mexw32 77,185 dylib 65,895 rpm 60,250 com 56,636
obj 55,476 pyd 51,661 lxp 38,822 o 37,865
cls 26,856 beam 23,981 8bf 17,435

Acquisition Research Program
Graduate School of Defense Management - 9 -
Naval Postgraduate School

In our experiments for each file family, we found all occurrences of its family

name (e.g. “acrord32.dll” for the Adobe PDF reader in the 32-bit version) in the

metadata of our corpus which included their MD5 hash values; this metadata was

calculated during initial forensic analysis with the Fiwalk tool that produces data in

DFXML format (Garfinkel, 2009); Fiwalk is now included with the SleuthKit (TSK)

open-source tool (www.sleuthkit.org). We then used the SleuthKit “icat” command to

extract a file for each hash value from the images in EWF format (Expert Witness

Format). Since some corpus files could not be retrieved because of faulty drive

images (many were disk drives sold to the used-hardware market when they failed),

we tried retrievals for the same hash value until we found one that retrieved

successfully with a nonempty result. With so many drives, usually we found an

undamaged copy for each hash value for common software families. However, we

noted around 5% of files had more than one modification time for the same file

contents, something clearly incorrect. Some files matching on hash values did not

have the family name because they were updates and caches with temporary

names.

We excluded files over 1 megabyte from the file families since many were

faulty extractions due to problems by the forensic software in finding the end of the

file; executables are rarely over a million bytes, and files that large require

considerable processing time to analyze anyway. We only considered files not

marked for deletion in our experiments, as we have observed that metadata for

deleted files can be unreliable (Rowe, 2016). Nonetheless, some undeleted files

were faulty too as several kinds of things can go wrong is storing large amounts of

data. We also extracted the modification times for these files from Fiwalk since

modification time usually is set at the last change by the vendor and thus is a good

indicator of the age of the version. For this we used the earliest modification time of

all the instances that we could find of a hashcode.

Acquisition Research Program
Graduate School of Defense Management - 10 -
Naval Postgraduate School

Table 2: Executable file families used in our study.

Filename a0003775.dll acrord32.dll bitsigd.dll brmfbidi.dll
Hash count 16 6 6 5
Filename bthserv.dll ccalert.dll cdfview.dll deviceoperate.dll
Hash count 38 23 72 6
Filename directdb.dll dunzip32.dll libscreen_plugin.dll mfcm100u.dll
Hash count 88 34 37 37
Filename mqrt.dll msadcor.dll msident.dll mslbui.dll
Hash count 86 57 100 51
Filename msnetobj.dll msrdc.dll nvrshu.dll padrs804.dll
Hash count 72 70 32 26
Filename perfctrs.dll pmspl.dll pngfilt.dll rjcfspln.dll
Hash count 58 8 105 28
Filename safslv.dll scanmail.dll spra0402.dll tis_outlookx.dll
Hash count 30 2 6 7
Filename typeaheadfind

.dll
vsplugin.dll w2k_lsa_auth.dll webclnt.dll

Hash count 2 8 56 34
Filename winprint.dll wmpcd.dll xrxwiadr.dll
Hash count 8 54 13
Filename acrord32info.exe charmap.exe dns-sd.exe dsndup.exe
Hash count 34 50 11 18
Filename find.exe hotfix.exe iexplore.exe mobsync.exe
Hash count 47 36 81 84
Filename netscape.exe nppagent.exe nvudisp.exe powerpnt.exe
Hash count 3 52 105 10
Filename rtinstaller32.exe snapview.exe soundman.exe udlaunch.exe
Hash count 4 15 60 4
Filename uninstall_plugin

.exe
wmplayer.exe wmpshare.exe wordicon.exe

Hash count 24 39 44 11
Filename yserver.exe
Hash count 16

Acquisition Research Program
Graduate School of Defense Management - 11 -
Naval Postgraduate School

Methodology: Preliminary File Analysis

A simple technique of computing the entropy at periodic locations in a file

gives a good indicator of its structure. We found plotting the byte entropy on

consecutive 512-byte sequences worked well at indicating the parts of a file. Figure

3 shows a random sample of the segment entropies versus relative position in the

executable file. There are clear patterns, with entropies around 6 (suggesting

machine instructions) predominant in the front of the file, and more varied entropies

(suggesting data) in the rest of the file. The plot indicates that most executables are

in the form of a block of code followed by data.

Figure 3: Scatter plot of a random sample of entropies of 512-byte segments versus relative

position in a file.

More specific details can be found by examining individual files. The figures

below show three versions of the file pacman.exe which were judged to be malware

by at least one of the five tools used in (Rowe, 2016) of Bit9, OpenMalware,

VirusShare, Symantec, and ClamAV. Figure 4 shows a typical pattern for an

Acquisition Research Program
Graduate School of Defense Management - 12 -
Naval Postgraduate School

executable with a header including several bytes of zeros, machine instructions, and

then data starting around location 180000. Figure 5 shows an executable with fewer

machine instructions and more data. It also a very short header unlike the file in

Figure 4; DLL formats have consistent headers, but these are EXEs and they are

more varied. Figure 6 by contrast shows a pattern typical of encoded or

compressed code (subjected to an “executable packer”) with a short header and

very high entropies for the rest of the file. It is important to recognize encoded and

encrypted code because byte comparisons between two such files find only spurious

matches. Since these three files were all malware, the pictures suggest that there

is significant variation on malware, something true of the other malware files we saw

in our corpus.

Figure 4: Distribution of 512-byte entropies in one pacman.exe file found in India.

Acquisition Research Program
Graduate School of Defense Management - 13 -
Naval Postgraduate School

Figure 5: Distribution of 512-byte entropies in a pacman.exe file found in Thailand.

Figure 6: Distribution of 512-byte entropies in a third pacman.exe file found in Thailand.

Acquisition Research Program
Graduate School of Defense Management - 14 -
Naval Postgraduate School

We explored different window sizes of consecutive on which to calculate

entropies. Figure 7 plots an msrdc.dll file with a window size of 512 and Figure 8

plots it with a window size of 4096. The larger window size clearly smooths the data

but loses detail that could be important.

Figure 7: Entropies of an msrdc.dll file using 512-byte distributions.

Figure 8: Entropies of an msrd.dll file using 4096-byte distributions.

Acquisition Research Program
Graduate School of Defense Management - 15 -
Naval Postgraduate School

Figure 9 shows the histogram of byte entropies on groups of successive 512

byte in our corpus of executables, and Figure 10 shows the portion of this > 0.2 to

exclude the sharp peak at zero entropy. The peak at 7.5 represents encoded and

compressed data; the peak at 5.9 represents machine instructions; the peak at 3.2

represents Ascii text; and the peaks from 0.5-1.5 represent standard labels (using

16-bit encoding of Ascii with alternate zero bytes). The peak at zero represents

empty space, usually zero bytes, that are for data to be filled in later or to pad the file

to a byte boundary that is a power of 2. Since these usages are incompatible with

one another, it makes sense to partition the entropies into five ranges: 0-0.2, 0.2-2,

2-4, 4-6.7, and 6.5-8. Then it only makes sense to compare segments in the same

entropy range.

Figure 9: Histogram of average byte entropies on 512 successive bytes in our corpus of

executables.

Acquisition Research Program
Graduate School of Defense Management - 16 -
Naval Postgraduate School

Figure 10: Histogram of average byte entropies > 0.2 on 512 successive bytes in our corpus of

executables.

Acquisition Research Program
Graduate School of Defense Management - 17 -
Naval Postgraduate School

Methodology: Byte Comparison Methods

Randomly chosen executable files tend to have few similarities except for

their (short) headers. Even executables from the same family were observed not to

have many similarities because of the changes that occur with recompilation

mentioned in section 1, though there are exceptions. However, most instruction

codes and data constants will remain the same through different versions. To

compare executable file versions, then, we need to look carefully to find those

features of the files that we can match. The most basic and thorough approach is to

compare bytes between two files to try to find matches. We used this as the “ground

truth” for subsequent experiments with attempts to find faster methods. There are

256 possible byte values and we can index all their occurrences in two files we wish

to compare. Then we can find all possible matches of the same byte value from one

file to the other. Some will be coincidental since the probability of two random bytes

matching is 1/256. That means that two random files of lengths N and M will have

NM/256 matches on the average. However, if we can find a long sequence in one

file that matches to a corresponding sequence in the other file, that can be good

evidence beyond chance that we have found a block of code that has been shifted in

location between the versions. The degree of shift in position from the first file to the

second is termed an “offset”. We can find likely good offsets by creating histograms

of evidence for all offsets, and looking for the peaks of those histograms. We can

then search for sequences having those offsets.

Figure 11 shows that the overall distribution of the byte values for the 56 file

families in our test data is not uniform, with nonrandom patterns likely due the

relative popularity of different instruction codes and operand patterns. We can use

this to weight matches between files because matches on rare byte values are less

ambiguous than matches on common bytes. We weighted counts of matches

between the two files by the inverse of the number of occurrences of the byte value

in the smaller file since the smaller file has more control on the match possibilities.

We did completely exclude in this first phase any zero (00000000) bytes and all-one

Acquisition Research Program
Graduate School of Defense Management - 18 -
Naval Postgraduate School

(11111111) bytes because they are often used to indicate unused space, and

unused space is not specific enough to provide good matches.

Figure 11: Distribution of byte values in all files in our test sample.

This gave us a distribution of weighted counts for each possible value of

offset for a pair of files. We computed the mean and standard deviation of the offset

counts. Since with only 256 possible byte values, many matches between two files

are spurious, we recomputed the mean and standard deviation of the weighted

offset counts within two standard deviations of the mean, then excluded everything

less than two standard deviations above this mean. Since meaningful block

matches will have significantly higher weighted counts than the average, this

excludes many useless matches, reducing the data by roughly a factor of 100. The

mean was computed twice to exclude the largest values the second time, since we

found many meaningful matches of blocks that had considerably higher offset counts

than the average offset.

Acquisition Research Program
Graduate School of Defense Management - 19 -
Naval Postgraduate School

Then for the most popular offsets, we go back to the pair of files and look for

consecutive bytes at those offsets. Unfortunately, we cannot use any of the classic

algorithms for subsequence matching (Bergroth et al, 2000) because the

subsequences to be found cannot be enumerated in advance. We also look for

matches on every 2nd (alternating) byte, on every 4th byte (which helps identify

matching instruction codes on 32-bit machines), and every 8th byte (which helps

identify matching instruction codes on 64-bit machines). The minimum length of a

sequence considered was 8 matches for each of the four types of matches. The

following figures show a visual display of this matching for two files each. Blue

indicates blocks of successive bytes that match between the two files, green

indicates blocks matching every 2nd byte magenta indicates blocks matching every

4th byte, red indicates blocks matching every 8th byte, and white indicates areas for

which no match could be found. Black rectangles indicate the extent of the files. It

can be seen that files in Figure 12 do not have much in common as the files in

Figure 13.

Figure 12: Byte matches between two versions of a file that do not have many similarities.

Acquisition Research Program
Graduate School of Defense Management - 20 -
Naval Postgraduate School

Figure 13: Byte comparison between two similar versions of the same file.

A disadvantage of the previous diagrams is they fail to indicate what matches

exactly, so we developed an alternative visualization (Figure 14) (Allen, 2019). The

first five and last five rows of the image visualize five “texture-vector” components.

These components were the entropy of the segment byte values, mean byte value,

standard deviation of the byte values, mode (most common frequency) of the byte

values, and frequency of the mode. Later experiments also used the median.

Distances were computed as the Euclidean distance between two texture vectors;

similarities are the inverses of distances. Lines between the two bars representing

files indicate strong similarities between the texture vectors in the files.

Acquisition Research Program
Graduate School of Defense Management - 21 -
Naval Postgraduate School

Figure 14: Example comparison of two files using their texture vectors and showing
connections between file portions.

Acquisition Research Program
Graduate School of Defense Management - 22 -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 23 -
Naval Postgraduate School

Results: File Family Visualization

We also developed visualization techniques for families of files. Figure 15

shows a first version (Allen, 2019) giving a summary diagram for the file versions in

the wmplayer.exe family. Yellow dots represent file versions, and lines connecting

them indicate degrees of similarity of those files sufficiently similar. Green nodes

and red edges are those that have been highlighted for additional study by the user

with the interface. This red edge was hovered over by the cursor spanning nodes

170 and 174, along with detail about this edge and these two nodes. All nodes are

within the same file family because "Stay in group" is selected. The similarity slider

is set so that edges with a similarity measure less than 3.049 are not shown. The

similarity value used was the texture-vector similarity described previously.

Figure 15: Example visualization of a file family.

Acquisition Research Program
Graduate School of Defense Management - 24 -
Naval Postgraduate School

Figure 16 shows a screenshot of the results of a zoom on the above graph,

omitting edges with a similarity measure of less than 28.373. In this screenshot,

node 152 is hovered over. The display shows information about node 152, but this

information is not visible because the view is scrolled down.

Figure 16: Results of a zoom on the previous figure.

Figure 17 shows what happens when we click on node 144. It becomes

green and similarity along the y-axis is with respect to node 144. By clicking on

"Export” we get this exported view showing the timeline similarity graph for node

144, which we tuned to reject similarities less than 8.615.

Acquisition Research Program
Graduate School of Defense Management - 25 -
Naval Postgraduate School

Figure 17: Details of files similar to node 144.

Figure 18 shows a second version of our visualization as a tree, for the family

of cdfview.dll, a common Microsoft Windows file. Modification times should be equal

for files with the same hash value since they are the times when the vendor last

modified the file, so we have plotted only one file for each hash value. Here the

horizontal axis is time and the vertical axis represents cumulative similarity

calculated by adding similarities for related descendants in each family. In the

Figure, lines connect file versions which are related, defined as those having more

than a threshold similarity which was 0.5 for this diagram. Red dots indicate

malicious files as judged by at least one of five malware detection tools: Bit9,

OpenMalware, VirusShare, Symantec, and ClamAV. More background on our

malware-analysis infrastructure is given in (Rowe, 2015).

Similarity here was defined differently than for the previous visualizations,

using a sigmoid function on the sum of the sizes of the ten longest sequence

matches between the two files, 𝑠𝑠 = 𝑥𝑥/(𝑥𝑥 + 2000) where 𝑥𝑥 = ∑ 𝑙𝑙𝑖𝑖10
𝑖𝑖=1 where 𝑙𝑙𝑖𝑖 is the

length of the ith longest sequence of consecutive byte matches between the two

Acquisition Research Program
Graduate School of Defense Management - 26 -
Naval Postgraduate School

files. The sigmoid function was important to flatten the effects of extreme values of

matches since the sum varied widely from 0 to millions with our file families. We

started using this similarity measure when further experiments (in Section 7)

questioned the valued of texture-vector similarity.

Figure 18: Tree visualization of the 73 distinct files of files named cdfview.dll in our corpus.

The complete list of 73 files retrieved and analyzed for the cdfview.dll family is

given below. The index numbers given below for the files are also used in the

Figure but some are hard to see. The first part of each file name is its drive name

starting with 2-character country code, and the rest of the filename is the path to the

file in the directory structure of the operating system.

0: SG1-1066/WINNT/system32/cdfview.dll
1: HK99-6001/WINNT/$NtServicePackUninstall$/cdfview.dll

Acquisition Research Program
Graduate School of Defense Management - 27 -
Naval Postgraduate School

2: HK99-6001/WINNT/$NtUninstallKB896688-IE6SP1-
20051004.130236$/cdfview.dll
3: IL3-0207/WINNT/ $NtUninstallKB972260-IE6SP1-
20090722.120000$/cdfview.dll
4: DE001-0003/Muell/$NtUninstallKB912812-IE6SP1-
20060322.182418$/cdfview.dll
5: HK99-6001/WINNT/ServicePackFiles/i386/cdfview.dll
6: SG1-1066/WINNT/ServicePackFiles/i386/cdfview.dll
7: AE10-0025/WINDOWS/system32/cdfview.dll
8: MA1001-0001/WINDOWS/system32/dllcache/cdfview.dll
9: DE001-0003/Muell/$NtUninstallKB912812$/cdfview.dll
10: HK99-6001/WINNT/system32/dllcache/CDFVIEW.DLL
11: DE001-0003/Muell/$NtUninstallKB916281$/cdfview.dll
12: DE001-0003/Muell/hf_mig/KB912812/SP2QFE/cdfview.dll
13: DE001-0003/Muell/$NtUninstallKB918899$/cdfview.dll
14: DE001-0003/Muell/hf_mig/KB916281/SP2QFE/cdfview.dll
15: DE001-0003/Muell/$NtUninstallKB922760$/cdfview.dll
16: DE001-0003/Muell/hf_mig/KB918899/SP2QFE/cdfview.dll
17: DE001-0003/Muell/hf_mig/KB922760/SP2QFE/cdfview.dll
18: DE001-0003/Muell/$NtUninstallKB928090$/cdfview.dll
19: PS01-069/WINNT/$NtUninstallKB925454-IE6SP1-
20061116.120000$/cdfview.dll
20: PS01-069/WINNT/$NtUninstallKB928090-IE6SP1-
20070125.120000$/cdfview.dll
21: DE001-0003/Muell/$NtUninstallKB931768$/cdfview.dll
22: DE001-0003/Muell/hf_mig/KB928090/SP2QFE/cdfview.dll
23: DE001-0003/Muell/$NtUninstallKB933566$/cdfview.dll
24: DE001-0003/Muell/hf_mig/KB931768/SP2QFE/cdfview.dll
25: DE001-0003/Muell/$NtUninstallKB937143$/cdfview.dll
26: DE001-0003/Muell/hf_mig/KB933566/SP2QFE/cdfview.dll
27: IL005-0006/WINDOWS/$NtUninstallKB937143$/cdfview.dll
28: DE001-0003/Muell/$NtUninstallKB939653$cdfview.dll
29: IL005-0006/WINDOWS/$NtUninstallKB939653$/cdfview.dll
30: DE001-0003/Muell/hf_mig/KB937143/SP2QFE/cdfview.dll
31: DE001-0003/Muell/hf_mig/KB939653/SP2QFE/cdfview.dll
32: DE001-0003/Muell/$NtUninstallKB942615$/cdfview.dll
33: IL005-0006/WINDOWS/$NtUninstallKB942615$/cdfview.dll
34: DE001-0003/Muell/hf_mig/KB942615/SP2QFE/cdfview.dll
35: DE001-0003/Muell/system32/dllcache/cdfview.dll
36: IL005-0006/WINDOWS/$NtUninstallKB944533$/cdfview.dll
37: IL005-0006/WINDOWS/$NtUninstallKB947864$/cdfview.dll
38: IN10-0317/WINDOWS/system32/dllcache/cdfview.dll
39: IL005-0006/WINDOWS/$NtUninstallKB950759$/cdfview.dll
40: IL005-0006/WINDOWS/hf_mig/KB947864/SP2QFE/cdfview.dll
41: MA1001-0003/WINDOWS/system32/dllcache/cdfview.dll
42: IL005-0006/WINDOWS/hf_mig/KB950759/SP2QFE/cdfview.dll

Acquisition Research Program
Graduate School of Defense Management - 28 -
Naval Postgraduate School

43: IL005-0006/WINDOWS/$NtUninstallKB953838$/cdfview.dll
44: IL005-0006/WINDOWS/$NtUninstallKB956390$/cdfview.dll
45: IL005-0006/WINDOWS/hf_mig/KB953838/SP2QFE/cdfview.dll
46: IL005-0006/WINDOWS/hf_mig/KB956390/SP2QFE/cdfview.dll
47: IL005-0006/WINDOWS/$NtUninstallKB958215$/cdfview.dll
48: IL005-0007/WINNT/$NtUninstallKB963027-IE6SP1-
20090303.120000$/cdfview.dll
49: IL005-0007/WINNT/$NtUninstallKB969897-IE6SP1-
20090501.120000$/cdfview.dll
50: IL005-0006/WINDOWS/hf_mig/KB963027/SP2QFE/cdfview.dll
51: IL005-0006/WINDOWS/$NtUninstallKB969897$/cdfview.dll
52: IL005-0007/WINNT/$NtUninstallKB972260-IE6SP1-
20090722.120000$/cdfview.dll
53: IL005-0006/WINDOWS/hf_mig/KB969897/SP2QFE/cdfview.dll
54: IL005-0006/WINDOWS/$NtUninstallKB972260$/cdfview.dll
55: IL005-0007/WINNT/$NtUninstallKB974455-IE6SP1-
20090925.120000$/cdfview.dll
56: IL005-0006/WINDOWS/hf_mig/KB972260/SP2QFE/cdfview.dll
57: IL005-0006/WINDOWS/$NtUninstallKB974455$/cdfview.dll
58: IL3-0207/WINNT/system32/dllcache/CDFVIEW.DLL
59: IL005-0007/WINNT/$NtUninstallKB976325-IE6SP1-
20091027.120000$/cdfview.dll
60: IL3-
0207/WINNT/SoftwareDistribution/Download/d5d55eaac3e837d022d68f827116
8a8d/rtmgdr/cdfview.dll
61: IL005-0007/WINNT/system32/CDFVIEW.DLL
62: IL005-0006/WINDOWS/hf_mig/KB974455/SP2QFE/cdfview.dll
63: IL005-0006/WINDOWS/$NtUninstallKB976325$/cdfview.dll
64: IL005-0007/WINNT/$NtUninstallKB982381-IE6SP1-
20100414.120000$/cdfview.dll
65: IL005-0006/WINDOWS/hf_mig/KB976325/SP2QFE/cdfview.dll
66: IL005-0006/WINDOWS/$NtUninstallKB978207/$cdfview.dll
67: IL005-0006/WINDOWS/hf_mig/KB978207/SP2QFE/cdfview.dll
68: IL005-0006/WINDOWS/$NtUninstallKB980182$/cdfview.dll
69: IL3-
0207/WINNT/SoftwareDistribution/Download/9169eacb0c4e7dc5028638599c92
ac2e/rtmgdr/cdfview.dll
70: IL005-
0007/WINNT/SoftwareDistribution/Download/952d4c1e3e0c27aba62f38820c3fe
08a/rtmgdr/cdfview.dll
71: IL005-0007/WINNT/system32/CDFVIEW.DLL
72: IL005-0006/WINDOWS/system32/cdfview.dll

However, there are many files with identical contents (hash codes) in our

corpus; 1426 files in the corpus had name cdfview.dll or had a hash value of a file

Acquisition Research Program
Graduate School of Defense Management - 29 -
Naval Postgraduate School

having this file name. For example, here is the full list of files matching Hashcode 27

of 2595DCEF6BDAAD19B3A7F825CD5493DC. In order, three are from Israel on

three different drives, eight are from Palestine on six different drives, five are from

Singapore on five different drives, and six more are from Israel on four different

drives. The A0004153.dll and A0004174 are files matching on a hash value rather

than a name.

IL005-0006/WINDOWS/$NtUninstallKB937143$/cdfview.dll
IL006-0004/WINDOWS/$NtUninstallKB937143$/cdfview.dll
IL3-0205/WINDOWS/$NtUninstallKB937143$/cdfview.dll
PS01-015/WINDOWS/system32/cdfview.dll
PS01-015/WINDOWS/system32/dllcache/cdfview.dll
PS01-018/WINDOWS/$NtUninstallKB937143$/cdfview.dll
PS01-018/Program Files/SAP/FrontEnd/SAPgui/Lang/lgndllCS.txt
PS01-023/WINDOWS/$NtUninstallKB937143$/cdfview.dll
PS01-030/WINDOWS/$NtUninstallKB937143$/cdfview.dll
PS01-
070/WINDOWS/SoftwareDistribution/Download/493760be868721503b9abd615f
71e312/SP2GDR/cdfview.dll
PS01-076/WINDOWS/$NtUninstallKB937143$/cdfview.dll
SG001-7020/WINDOWS/$NtUninstallKB937143$/cdfview.dll
SG001-7021/WINDOWS/$NtUninstallKB937143$/cdfview.dll
SG1-1052/WINDOWS/$NtUninstallKB937143$/cdfview.dll
SG1-1063/WINDOWS/$NtUninstallKB937143$/cdfview.dll
SG1-1064/WINDOWS/$NtUninstallKB937143$/cdfview.dll
il2-0034/System/System Volume Information//restore{B8B901F5-EACA-4604-
957F-6EF34D7ECA70}/RP54/A0004153.dll
il2-0034/System/System Volume Information//restore{B8B901F5-EACA-4604-
957F-6EF34D7ECA70}/RP54/A0004174.dll
il2-0034/System/WINDOWS/$NtUninstallKB933566$/cdfview.dll
il3-0118/WINDOWS/$NtUninstallKB937143$/cdfview.dll
il3-0172/WINDOWS/$NtUninstallKB937143$/cdfview.dll
il3-0181/WINDOWS/$NtUninstallKB937143$/cdfview.dll

Figure 19 shows a different kind of visualization for this data, the modification

times of all 1426 files having name cdfview.dll or a hash value matching one such

file. There are several incorrect reported times, but these did not appear in the

above data because the drives they came from were generally faulty and we could

not retrieve files from them. Color encodes the last digit of the file number.

Acquisition Research Program
Graduate School of Defense Management - 30 -
Naval Postgraduate School

Figure 19: Modification times reported for all instances of cdfview.dll and other files having

hash values of cdfview.dll.

Figure 20 shows yet another visualization, of the relationships between the

files based solely on similarity. Distance between files was approximated by one

minus the similarity of the files. However, finding 2N coordinates in two dimensions

for N*N files is an overdetermined problem and needed an approximation achieved

by optimization. We minimized the absolute value of the logarithm of the ratios of

the achieved distanced to the desired distance, as described in (Rowe, 2018).

Acquisition Research Program
Graduate School of Defense Management - 31 -
Naval Postgraduate School

Figure 20: Visualization of the relationships between the cdfview.dll versions where distance

is approximated by 1 minus similarity.

Here are two more tree diagrams of file families. Figure 21 shows the file

family of ntevt.dll in our corpus. There was one main product line in the middle of

the period, plus an earlier line and a later line. They were apparently for different

operating systems because they overlap in time. Two long vertical sequences

involve different machines for each hashcode, so apparently a suite of somewhat

different versions was created for different operating systems or hardware. Most of

the dots at height 0.0 appear to be based on incorrect assignment of “ntevt.dll” as

the filename by faulty drives. Figure 22 shows the file family of w2k_lsa_auth.dll in

our corpus. This shows one predominant product line with a few variations on it.

Acquisition Research Program
Graduate School of Defense Management - 32 -
Naval Postgraduate School

Figure 21: Tree visualization of the 74 files of nvevt.dll in our corpus.

Figure 22: Tree diagram of 64 files of w2k_lsa_auth.dll in our corpus.

Acquisition Research Program
Graduate School of Defense Management - 33 -
Naval Postgraduate School

Results: Attempts to Improve Processing Speed

Since the “ground truth” approach of obtaining every possible match between

bytes of two files and looking for offset patterns required considerable processing

time, we experimented with alternative methods to find matches between bytes of

files. These can also be used in preprocessing to rule out obviously dissimilar pairs

of files.

One approach is to skip the time-consuming process of matching offsets and

just use the heights of the most-likely offsets to indicate overall pair similarity. Figure

23 shows a plot of the sum of counts of the evidence for the 10 highest offsets in file

comparisons versus the ground-truth (sequence) similarity in a random sample of

2000 file pairs. The figure shows that offset heights increase with ground truth but

not smoothly, though high values of both were correlated. It also shows that this

“peak” metric seems useful for preprocessing filtering but is not sufficient alone to

indicate similarity of two files.

Figure 23: Plot of the sum of the 10 largest offset-evidence counts versus ground truth of

similarity between a sample of files.

Acquisition Research Program
Graduate School of Defense Management - 34 -
Naval Postgraduate School

A quickly computable measure of similarity is to compare histograms of byte values

between two files using the classic technique of cosine similarity,

�𝑓𝑓(𝑖𝑖, 1) ∗ 𝑓𝑓(𝑖𝑖, 2)
𝑁𝑁

𝑖𝑖=1

(��𝑓𝑓(𝑖𝑖, 1)2
𝑁𝑁

𝑖𝑖=1

� ∗ ��𝑓𝑓(𝑖𝑖, 2)2
𝑁𝑁

𝑖𝑖=1

)

We have applied cosine similarity previously to many kinds of file attributes (Rowe,

2018). With only 256 values the cosine similarities are very high (close to their

maximum of 1), so we took the 10th power of the values to spread them out better

(Figure 24). Nonetheless, there is not much correlation with the sequence similarity

between two files, so we did not consider this further for purposes of initial filtering.

Figure 24: 10th power of cosine similarity of byte distributions versus ground-truth similarity

for a sample of files.

Another approach we used was to compare the “texture vectors” on 512- byte

segments of the two files, using the best match for each segment of the smaller file

where “best” was defined as the weighted distance between the statistics of the two

segments. Figure 25 shows the correlation of the five-element vector similarity with

Acquisition Research Program
Graduate School of Defense Management - 35 -
Naval Postgraduate School

the sequence similarity. Although the correlation is not good, there is an upward

trend from left to right. Still, it is not as good as the correlation with offsets peaks in

Figure 23.

Figure 25: Texture-vector similarity of two files versus ground-truth (sequence) similarity for a

sample of files.

We explored whether some of the five components of our texture vector could

provide better correlations with our ground truth of file-sequence similarity (Figure

26, Figure 27, Figure 28, and Figure 29). Unfortunately, none of them showed much

correlation. We conclude that there is no shortcut to measuring similarities between

executables besides comparing large numbers of bytes between the two files.

Acquisition Research Program
Graduate School of Defense Management - 36 -
Naval Postgraduate School

Figure 26: Average similarity of 512-byte entropies versus ground truth.

Acquisition Research Program
Graduate School of Defense Management - 37 -
Naval Postgraduate School

Figure 27: Average similarity of 512-means versus ground truth.

Figure 28: Average similarities of most-common byte value in 512 bytes versus ground truth.

Acquisition Research Program
Graduate School of Defense Management - 38 -
Naval Postgraduate School

Figure 29: Average median similarity for 512-byte segments versus ground truth.

Acquisition Research Program
Graduate School of Defense Management - 39 -
Naval Postgraduate School

Results: Suspicious File Versions

The visualizations in section 6 provide a good way to spot anomalous

software versions. A fraudulent or malicious version would likely not conform to the

patterns of update shown in diagrams like that of Figure 18. It would be difficult for a

fraudulent version to get its spacing in time and similarity to other versions to fit in

with the normal update framework. So it will often be noticeable as being too early

or too late compared the next update since updates tend to be quite regular for most

software. So inspecting our diagrams will likely reveal the more obvious kinds of

fraudulent activity.

Malware is a special case of fraudulent versions. Some of the executables in

our sample were flagged as malware by one of five anti-malware tools used in

(Rowe, 2015): Bit9, Symantec, ClamAV, OpenMalware, and VirusShare. We were

curious about the similarity of these to non-malicious versions of the software. One

approach to creating malware, used by many viruses, is to modify a few lines of

code. However, we saw no evidence of this with our data. The malware that did

occur in our sample was quite different from the legitimate executables. That

suggests that malware authors are becoming increasingly brazen in their

counterfeits of executables, and it also suggests they are not using viruses much

anymore.

Acquisition Research Program
Graduate School of Defense Management - 40 -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 41 -
Naval Postgraduate School

Recommendations

Our experiments suggest this approach is a good one to analyzing software in the

form of executables when source code is not available. We could see clear patterns

in the gradual evolution of software versions, and fraudulent or malicious activity

clearly stood out. Several kinds of visualizations appear to be helpful in doing this

analysis, especially matches of segments of two related executables and graphs of

the evolution in time of different versions of executables.

Acquisition Research Program
Graduate School of Defense Management - 42 -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 43 -
Naval Postgraduate School

Conclusions

We developed a toolkit to analyze relationships between different versions of

compiled program files, also called executables. It finds similar files by matching

sequences of bytes within the files. We applied it to data from real files from used

computer equipment purchased around the world. Plotting file similarity of files with

the same name over time showed interesting tree-like branching patterns showing

updates and new variants created by software vendors. A user interface we created

allows a user to focus on individual files and their similarities to other files, including

showing exactly which bytes match between two files. We also produced separate

visualizations focused only on similarity between the files having the same name

and only on the times of the files. We provide supplementary information of the

distribution of entropy within the files, which enables distinguishing machine code

from data and headers, and the complete list of all matching files including

duplicates found in our collection and where. We studied methods to speed up

processing.

This analysis can be used to identify anomalous behavior with files such as

with malware, fraud, or illegal copies because such files will not fit a normal update

pattern on our graphs and will stand out. The results of our study showed that this

approach can spot fraudulent software, malware, and illegally copied software.

Fraudulent software and malware will exhibit minimal similarities with other software,

and illegally copied software will exhibit very high similarities.

Acquisition Research Program
Graduate School of Defense Management - 44 -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 45 -
Naval Postgraduate School

References

B. Allen, Using texture vector analysis to identify file similarity, M.S. thesis, Naval
Postgraduate School, December 2019.

T. Arbuckle, “Visually summarising software change,” in 12th International
Conference Information Visualization, 2008.

E. Aghajani, A. Mocci, G. Bavota, and M. Lanza, “The code time machine,” in 2017
IEEE 25th International Conference on Program Comprehension (ICPC).

T. R. L. Bergroth, H. Hakonen, “A survey of longest common subsequence
algorithms,” in Proc. Int’l Symposium on String Processing Information
Retrieval (SPIRE ’00), 2000, pp. 39–48.

D. Beyer and A. Hassan, Animated visualization of software history using evolution
storyboards. Proc. 13th Working Conference on Reverse Engineering, 2006.

M. Burch, S. Diehl, and P. Weißgerber, “Visual data mining in software archives,” in
SoftVis ’05 Proceedings of the 2005 ACM symposium on Software
Visualization, 2005, pp. 37–46.

Elsen, S., VisGi: Visualizing Git branches. Proc. IEEE Working Conference on
Software Visualization, 2013.

S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt,, Bringing science to digital
forensics with standardized forensic corpora. Digital Investigation, Vol. 6
(August 2009), pp. S2-S11.

J. Gergic, Toward a versioning model for component-based software assembly.
Proc. Intl. Conf. on Software Maintenance, 2003.

M. Kim and D. Notkin, Program element matching for multi-version program
analyses. Proc. MSR, Shanghai, CN, May 2006, pp. 58-64.

A. Hanjalic, ClonEvol: Visualizing software evolution with code clones. IEEE
Working Conference on Software Visualization, Eindhoven, NL, October
2013.

J. Jang and D. Brumley, “Bitshred: Fast, scalable code reuse detection in binary
code,” in CMU-CyLab-10-006, 2009.

P. Kaur and H. Singh, A model for versioning control mechanism in component-
based systems. ACM SIGSOFT Software Engineering Notes, Vol. 36, No. 5,
September 2011.

A. Kuhn and M. Stocker, Code timeline: Storytelling with versioning data. Proc.
ICSE, Zurich, SW, 2012.

Acquisition Research Program
Graduate School of Defense Management - 46 -
Naval Postgraduate School

H. Koike and H.-C. Chu, “Vrcs: Integrating version control and module management
using interactive three-dimensional graphics,” in Graduate School of
Information Systems University of Electro-Communications Chofu, Tokvo
182, Japan, 1997.

L. Merino, M. Ghafari, C. Anslow, and O. Neirstrsz, A systematic literature review of
software visualization evaluation. Journal of Systems & Software, Vol. 144,
2018,, pp. 165-180.

K. North, A. Sarma, and M. Cohen, Understanding Git history: A multi-sense view.
Proc. SSE, Seattle, WA, US, November 2016

R. Novais, C. Lima, G. Carneiro, P. Junior, and M. Mendonca, An interactive
differential and temporal approach to visually analyze software evolution,
2011.

R. Novais, J. Santos, and M. Mendonca, Experimentally assessing the combination
of multiple visualization strategies for software evolution analysis. Journal of
Systems & Software, Vol. 128, 2017, pp. 56-71.

N. Palix, J. Lawall, and G. Muller, Tracking code patterns over multiple software
versions with Herodotos. Proc. AOSD, Rennes, FR, March 2010, pp. 169-
180.

J. Rho and C. Wu, “An efficient version model of software diagrams,” in Proceedings
1998 Asia Pacific Software Engineering Conference (Cat. No.98EX240), 2-4
Dec. 1988, Taipei, Taiwan, Taiwan.

N. C. Rowe, Finding contextual clues to malware using a large corpus. ISCC-SFCS
Third International Workshop on Security and Forensics in Communications
Systems, Larnaca, Cyprus, July 2015.

N. Rowe, Identifying forensically uninteresting files in a large corpus. EAI Endorsed
Transactions on Security and Safety, Vol. 16, No. 7, article e2, 2016.

N. Rowe, Associating drives based on their artifact and metadata distributions. In
10th International EAI Conference, ICDF2C 2018, New Orleans, LA, USA,
September 10–12, 2018, Proceedings.

J. Seemann and J. W. von Gudenberg, “Visualization of differences between
versions of object-oriented software,” in Proceedings of the Second
Euromicro Conference on Software Maintenance and Reengineering, 11-11
March 1998, Florence, Italy, Italy.

R. Shannon, A. Quigley, and P. Nixon, Deep diffs: Visually exploring the history of a
document. Proc. AVI 20, Rome, IT, May 2010.

L. Voinea, A. Telea, and J. J. van Wijk, “Cvsscan: Visualization of code evolution,” in
SoftVis ’05 Proceedings of the 2005 ACM symposium on software
visualization, 2005, pp. 47–56.

Acquisition Research Program
Graduate School of Defense Management - 47 -
Naval Postgraduate School

A. Zeller and G. Snelting, Unified versioning through feature logic. ACM
Transactions on Software Engineering and Methodology, Vol. 6, No. 4,
October 1997, pp. 398-441.

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Introduction
	Literature Review
	Data Used for Testing
	Methodology: Preliminary File Analysis
	Methodology: Byte Comparison Methods
	Results: File Family Visualization
	Results: Attempts to Improve Processing Speed
	Results: Suspicious File Versions
	Recommendations
	Conclusions
	References

