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Abstract

Software is frequently involved today in acquisitions. It is important to identify
fraudulent, malicious, or illegally copied software but that is more difficult than
identifying those features in physical objects. This work applied methods of digital
forensics to this task. We studied differences between versions of software by
comparing their executable files. We used a large database (“corpus”) of around
2600 digital-forensic copies of secondary storage of computers and digital devices
purchased around the world. We extracted families of executable files in the EXE
and DLL formats having the same name, usually representing different updates of
the same software. We measured file similarities between files in the same family
by finding matches between 8-bit bytes in the two files, and then looking for
sequences of unbroken consecutive matches. We developed several kinds of useful
visualizations to show file similarities: Two ways to display the bytes that match
between two files, and two ways to show the similarities between members of a file
family over time. These methods should make it considerably easier to detect
fraudulent, malicious, or illegally copied software because it will stand out in the

visualizations.
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Introduction

Acquisition of software can be challenging compared to acquisition of other
products. Software is difficult to analyze, and lack of product liability means many
claims made by its vendors are very difficult to confirm and may be exaggerations
or, in rare cases, outright fraud. This work tried to characterize what is actually
being stored for some major software products and what happens to the software
after updates using methods of digital forensics. This provides a new way to verify
some of the claims made about software, and should provide additional clues to

detect malicious, fraudulent, or illegally copied software.

Software is implemented in a set of executable files. Executable files are
instructions for a computer or digital device to run the software. They are encoded
in the machine language of the computer or device, and are almost always created
by applying compiler software to source code. Executable files are much less
human-readable than source code. However, digital forensics rarely encounters
source code when it investigates computers and devices, as only executables are
necessary to run programs; source code is also more valuable proprietary
intellectual property than executables and is more subject to controlled access than
executables. Thus to do digital forensics on programs, an investigator needs tools

to analyze executables.

Machine language used by executables consists of instruction codes
(operators) and arguments (operands). 32-bit machines have 32-bit (4-byte)
instructions and 64-bit machines have 8-byte instructions. Operators specify the
type of operation to be performed and operands specify registers (fast storage),
memory addresses (slower storage), buffer numbers, or arithmetic constants. The
primary duty of compiles is to construct machine instructions that implement the
source code; in addition, compilers must assign registers and memory addresses to
the data. This means that minor changes to source code can force large number of
addresses to shift in memory. Compilers often do specify addresses relative to a

register value, but registers may change when parts of a program are expanded or
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reduced in length. Thus some things in executable code will remain constant
through different versions — operators, some register arguments, and some buffer
arguments — and others will change. Comparing versions of an executable requires

focusing on the things that remain constant that are scattered through the file.
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Scope of the Study

Our immediate goal was to study the differences between the same
executable (binary file) over time and between versions. This study had several
purposes. One purpose was to see how much could be told from an executable
alone about the changes over time. When an executable is recompiled for even a
minor update, most registers and addresses can change. However, instruction
codes (“opcodes”) and constant data should not change very much with different
versions, and we should be able to match them reliably. Blank areas are frequent in
executables, usually appearing as sequences of zero bytes, and we can match
those albeit less reliably. This means we should be able to see how much was
added or subtracted from the executable with each version to get an idea of the

magnitude of an update.

Our ultimate goal was to provide a basis for recognizing incompetent,
fraudulent, or malicious updates to software. A version without substantial changes
from a previous version could have been stolen and superficially modified. It could
also be malware that changed just a few bytes to remain hard to detect if the size
remains the same. However, malicious actors in cyberspace are increasingly
brazen, and many versions of software identified as malware are at the opposite
extreme of being completely different from legitimate versions. Our experiments

measured how different they were.
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Literature Review

Software development is a complex process, and a variety of projects have
attempted to assist to software engineers in understanding differences between
versions of software. Usually only a few features of source code change between
versions, and these can be found by comparisons of the source code (Palix et al,
2010). Changes can be abstracted by generalizations (Zeller and Snelting, 1997).
Most useful approaches to version analysis with source code focus on the changes
to components since most software engineering is component-based (Gergic, 2003).

Executables are more difficult to analyze.

Especially useful to software engineering is visualization to the relationships
between different versions of software, and many of these ideas apply to
executables as well. (Merino et al, 2018) provides a good survey of methods for
software visualization. These include visualization of clustering of versions by
similarity (Beyer and Hassan, 2006), tree diagrams of the relationships between
versions and components of versions (Arbuckle, 2008; Seeman and Gudenberg,
2009; Kaur and Singh, 2009; Novais et al, 2011; Elsen, 2013; Novais et al, 2107),
diagrams comparing versions that use color and position to encode features (Voinea
et al, 2005; Kuhn and Stocker, 2012; Hanjalic, 2013), and graphs showing version
evolution over time (Aghajani et al, 2017). Some work has addressed visualization
of graphs showing mappings between software components (Kim and Notkin, 2006;
Kaur and Singh, 2011), abstractions about the software (Rho and Wu, 1998), and
connections between parts within different software versions (Burch et al, 2005;
Voinea et al, 2005), the latter of which is more directly related to our project. Some
visualizations have involved human interaction to guide visualization (North et al,
2016). Some methods for visualizing comparisons between text documents are also
relevant to software such as drawing lines between matching items (Shannon et al,
2010).
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Data Used for Testing

We extracted a sample of executable names from the 2600 images in the full-
image portion of the Real Drive Corpus, a collection drive images obtained mostly by
purchase of used equipment around the world (Garfinkel et al, 2009). There were
29,821,053 executables identified in our corpus by their file extensions, having
3,312,861 different hash values (different contents). Figure 1 shows the distribution
of the number of files having the same filename in our corpus, and Figure 2 shows
the distribution of the fraction of distinct hash values to total files for each filename.
Most executable filenames occur only once, but a significant number of popular

executables occurred many times as shown on the left side of the graph.

450000 . . . T T T

400000

350000 - ]

300000 - .

250000

Count

200000 - 4

150000

100000

50000 -

0 ‘lhl.'l.-.‘“— ilin. 1 ) ] 1 |
2

4 6 8 10 12 14
Logarithm of 1 plus the number of occurences of a filename

Figure 1: Distribution of the total number of occurrences of a filename in our corpus.
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Figure 2: Fraction of distinct hash values (contents) per file name in our corpus.

Table 1 shows the most common types of executables in our corpus based
on their extensions. For the experiments reported here we retrieved only files in the
DLL and EXE formats, the two most common program-executable formats; EXE is a
general-purpose format, and DLL is proprietary to Microsoft and used by most their
software. There were 2049 sample files in 56 file families listed in Table 2. Each
family had from 2 to 105 distinct file contents as indicated by their MDS hashcodes.
We are currently adding further files to study.

Table 1: The most common file extensions of executables in our corpus.

Exten- Count Exten | Count Exten- | Count Exten- | Count
sion -sion sion sion

dll 16,188,565 | exe 3,938,014 | class 1,350,429 | pyc 1,002,201
pyo 284,169 qtr 155,815 0CX 113,806 SO 84,394
mexw32 | 77,185 dylib | 65,895 rpm 60,250 com 56,636
obj 55,476 pyd 51,661 Ixp 38,822 0 37,865
cls 26,856 beam | 23,981 8bf 17,435
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In our experiments for each file family, we found all occurrences of its family
name (e.g. “acrord32.dll” for the Adobe PDF reader in the 32-bit version) in the
metadata of our corpus which included their MD5 hash values; this metadata was
calculated during initial forensic analysis with the Fiwalk tool that produces data in
DFXML format (Garfinkel, 2009); Fiwalk is now included with the SleuthKit (TSK)
open-source tool (www.sleuthkit.org). We then used the SleuthKit “icat” command to
extract a file for each hash value from the images in EWF format (Expert Witness
Format). Since some corpus files could not be retrieved because of faulty drive
images (many were disk drives sold to the used-hardware market when they failed),
we tried retrievals for the same hash value until we found one that retrieved
successfully with a nonempty result. With so many drives, usually we found an
undamaged copy for each hash value for common software families. However, we
noted around 5% of files had more than one modification time for the same file
contents, something clearly incorrect. Some files matching on hash values did not
have the family name because they were updates and caches with temporary

names.

We excluded files over 1 megabyte from the file families since many were
faulty extractions due to problems by the forensic software in finding the end of the
file; executables are rarely over a million bytes, and files that large require
considerable processing time to analyze anyway. We only considered files not
marked for deletion in our experiments, as we have observed that metadata for
deleted files can be unreliable (Rowe, 2016). Nonetheless, some undeleted files
were faulty too as several kinds of things can go wrong is storing large amounts of
data. We also extracted the modification times for these files from Fiwalk since
modification time usually is set at the last change by the vendor and thus is a good
indicator of the age of the version. For this we used the earliest modification time of

all the instances that we could find of a hashcode.
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Table 2: Executable file families used in our study.

Filename a0003775.dll acrord32.dll | bitsigd.dll brmfbidi.dll

Hash count | 16 6 6 5

Filename bthserv.dll ccalert.dll cdfview.dll deviceoperate.dll

Hash count | 38 23 72 6

Filename directdb.dll dunzip32.dll | libscreen plugin.dll | mfcm100u.dll

Hash count | 88 34 37 37

Filename mgqrt.dll msadcor.dll msident.dll mslbui.dll

Hash count | 86 57 100 51

Filename | msnetobj.dll msrdc.dll nvrshu.dll padrs804.dll

Hash count | 72 70 32 26

Filename | perfctrs.dll pmspl.dil pngfilt.dll rjcfspin.dll

Hash count | 58 8 105 28

Filename safslv.dll scanmail.dll | spra0402.d1l tis_outlookx.dll

Hash count | 30 2 6 7

Filename typeaheadfind vsplugin.dll w2k Isa auth.dll webclnt.dll
dll

Hash count | 2 8 56 34

Filename winprint.dll wmpcd.dll xrxwiadr.dll

Hash count | 8 54 13

Filename acrord32info.exe | charmap.exe | dns-sd.exe dsndup.exe

Hash count | 34 50 11 18

Filename find.exe hotfix.exe iexplore.exe mobsync.exe

Hash count | 47 36 81 84

Filename netscape.exe nppagent.exe | nvudisp.exe powerpnt.exe

Hash count | 3 52 105 10

Filename rtinstaller32.exe | snapview.exe | soundman.exe udlaunch.exe

Hash count | 4 15 60 4

Filename uninstall plugin | wmplayer.exe | wmpshare.exe wordicon.exe
.exe

Hash count | 24 39 44 11

Filename yserver.exe

Hash count | 16

B ncien
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Methodology: Preliminary File Analysis

A simple technique of computing the entropy at periodic locations in a file
gives a good indicator of its structure. We found plotting the byte entropy on
consecutive 512-byte sequences worked well at indicating the parts of a file. Figure
3 shows a random sample of the segment entropies versus relative position in the
executable file. There are clear patterns, with entropies around 6 (suggesting
machine instructions) predominant in the front of the file, and more varied entropies
(suggesting data) in the rest of the file. The plot indicates that most executables are

in the form of a block of code followed by data.

fom®™ oF oRee

-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
Relative position in file

Figure 3: Scatter plot of a random sample of entropies of 512-byte segments versus relative
position in a file.

More specific details can be found by examining individual files. The figures
below show three versions of the file pacman.exe which were judged to be malware
by at least one of the five tools used in (Rowe, 2016) of Bit9, OpenMalware,

VirusShare, Symantec, and ClamAV. Figure 4 shows a typical pattern for an
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executable with a header including several bytes of zeros, machine instructions, and
then data starting around location 180000. Figure 5 shows an executable with fewer
machine instructions and more data. It also a very short header unlike the file in
Figure 4; DLL formats have consistent headers, but these are EXEs and they are
more varied. Figure 6 by contrast shows a pattern typical of encoded or
compressed code (subjected to an “executable packer”) with a short header and
very high entropies for the rest of the file. It is important to recognize encoded and
encrypted code because byte comparisons between two such files find only spurious
matches. Since these three files were all malware, the pictures suggest that there
is significant variation on malware, something true of the other malware files we saw

in our corpus.

0 50000 100000 150000 200000 250000
Location in bytes

Figure 4: Distribution of 512-byte entropies in one pacman.exe file found in India.

ACQUISITION RESEARCH PROGRAM
b7  GRADUATE SCHOOL OF DEFENSE MANAGEMENT -12 -
NAVAL POSTGRADUATE SCHOOL



0 1 1 1 1 1 1 1 1
0 20000 40000 60000 80000 100000 120000 140000 160000 180000
Location in bytes

Figure 5: Distribution of 512-byte entropies in a pacman.exe file found in Thailand.

0 1 1 1 1 1 1 1 1
0 200000 400000 600000 8000001000000120000014000001600000L800000
Location in bytes

Figure 6: Distribution of 512-byte entropies in a third pacman.exe file found in Thailand.
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We explored different window sizes of consecutive on which to calculate
entropies. Figure 7 plots an msrdc.dll file with a window size of 512 and Figure 8
plots it with a window size of 4096. The larger window size clearly smooths the data

but loses detail that could be important.

0 20000 40000 60000 80000 100000 120000 140000 160000
Location in bytes

Figure 7: Entropies of an msrdc.dll file using 512-byte distributions.

0 50000 100000 150000 200000
Location in bytes

Figure 8: Entropies of an msrd.dll file using 4096-byte distributions.
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Figure 9 shows the histogram of byte entropies on groups of successive 512
byte in our corpus of executables, and Figure 10 shows the portion of this > 0.2 to
exclude the sharp peak at zero entropy. The peak at 7.5 represents encoded and
compressed data; the peak at 5.9 represents machine instructions; the peak at 3.2
represents Ascii text; and the peaks from 0.5-1.5 represent standard labels (using
16-bit encoding of Ascii with alternate zero bytes). The peak at zero represents
empty space, usually zero bytes, that are for data to be filled in later or to pad the file
to a byte boundary that is a power of 2. Since these usages are incompatible with
one another, it makes sense to partition the entropies into five ranges: 0-0.2, 0.2-2,
2-4,4-6.7, and 6.5-8. Then it only makes sense to compare segments in the same
entropy range.

30000 T T T T T

25000 F

20000 F

15000 |

Overall count

10000 |

5000 }

8-bit entropy

Figure 9: Histogram of average byte entropies on 512 successive bytes in our corpus of
executables.
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Figure 10: Histogram of average byte entropies > 0.2 on 512 successive bytes in our corpus of
executables.
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Methodology: Byte Comparison Methods

Randomly chosen executable files tend to have few similarities except for
their (short) headers. Even executables from the same family were observed not to
have many similarities because of the changes that occur with recompilation
mentioned in section 1, though there are exceptions. However, most instruction
codes and data constants will remain the same through different versions. To
compare executable file versions, then, we need to look carefully to find those
features of the files that we can match. The most basic and thorough approach is to
compare bytes between two files to try to find matches. We used this as the “ground
truth” for subsequent experiments with attempts to find faster methods. There are
256 possible byte values and we can index all their occurrences in two files we wish
to compare. Then we can find all possible matches of the same byte value from one
file to the other. Some will be coincidental since the probability of two random bytes
matching is 1/256. That means that two random files of lengths N and M will have
NM/256 matches on the average. However, if we can find a long sequence in one
file that matches to a corresponding sequence in the other file, that can be good
evidence beyond chance that we have found a block of code that has been shifted in
location between the versions. The degree of shift in position from the first file to the
second is termed an “offset”. We can find likely good offsets by creating histograms
of evidence for all offsets, and looking for the peaks of those histograms. We can

then search for sequences having those offsets.

Figure 11 shows that the overall distribution of the byte values for the 56 file
families in our test data is not uniform, with nonrandom patterns likely due the
relative popularity of different instruction codes and operand patterns. We can use
this to weight matches between files because matches on rare byte values are less
ambiguous than matches on common bytes. We weighted counts of matches
between the two files by the inverse of the number of occurrences of the byte value
in the smaller file since the smaller file has more control on the match possibilities.

We did completely exclude in this first phase any zero (00000000) bytes and all-one
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(11111111) bytes because they are often used to indicate unused space, and
unused space is not specific enough to provide good matches.

19

18 |

17}

16

Log of count

15}

14|

13 | | | | |
0 50 100 150 200 250 300
Byte value

Figure 11: Distribution of byte values in all files in our test sample.

This gave us a distribution of weighted counts for each possible value of
offset for a pair of files. We computed the mean and standard deviation of the offset
counts. Since with only 256 possible byte values, many matches between two files
are spurious, we recomputed the mean and standard deviation of the weighted
offset counts within two standard deviations of the mean, then excluded everything
less than two standard deviations above this mean. Since meaningful block
matches will have significantly higher weighted counts than the average, this
excludes many useless matches, reducing the data by roughly a factor of 100. The
mean was computed twice to exclude the largest values the second time, since we
found many meaningful matches of blocks that had considerably higher offset counts

than the average offset.
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Then for the most popular offsets, we go back to the pair of files and look for
consecutive bytes at those offsets. Unfortunately, we cannot use any of the classic
algorithms for subsequence matching (Bergroth et al, 2000) because the
subsequences to be found cannot be enumerated in advance. We also look for
matches on every 2" (alternating) byte, on every 4" byte (which helps identify
matching instruction codes on 32-bit machines), and every 8" byte (which helps
identify matching instruction codes on 64-bit machines). The minimum length of a
sequence considered was 8 matches for each of the four types of matches. The
following figures show a visual display of this matching for two files each. Blue
indicates blocks of successive bytes that match between the two files, green
indicates blocks matching every 2" byte magenta indicates blocks matching every
4t pyte, red indicates blocks matching every 8" byte, and white indicates areas for
which no match could be found. Black rectangles indicate the extent of the files. It
can be seen that files in Figure 12 do not have much in common as the files in

Figure 13.
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Figure 12: Byte matches between two versions of a file that do not have many similarities.
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Figure 13: Byte comparison between two similar versions of the same file.

A disadvantage of the previous diagrams is they fail to indicate what matches
exactly, so we developed an alternative visualization (Figure 14) (Allen, 2019). The
first five and last five rows of the image visualize five “texture-vector” components.
These components were the entropy of the segment byte values, mean byte value,
standard deviation of the byte values, mode (most common frequency) of the byte
values, and frequency of the mode. Later experiments also used the median.
Distances were computed as the Euclidean distance between two texture vectors;
similarities are the inverses of distances. Lines between the two bars representing

files indicate strong similarities between the texture vectors in the files.
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Texture Vector Similarity Version 1.0.0 Scale: 1.1 Step: 1 Section size; 500

Texture weights: 5td. dev.: 0.500, Mean: 0.500, Mode: 0.000. Mode Count: 0.500, Entropy: 0.500, Distance threshold: 5.000. Buckets: 304
Histogram height statistics: 5td. dev.: 57.2778, Mean: 68.3487, Max: 230, Sum: 10389

File 1: fermaliwork/bdallen/executable files 500 wmplayer exefiN10-0345 Program_Files Windows Media Player wrnplayer.exe.tmp

Size: 151552 Modtime: 2004-08-04 04:26:58 MD5: 47298BTDEOOLAS19EEIEDODADSOFAIDE

File 2: fsmalhwork/bdallenfexecutable fles S00Mwmplayer exsL005-0003 Program Files Windows Media_ Player wmplayer.exitmp

Size: 151552 Modtime: 2008-04-14 18:00:00 MD5: FOFE1232C1AIBIIFARC TEIBEFI4FZEDF
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Figure 14: Example comparison of two files using their texture vectors and showing
connections between file portions.
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