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Abstract 
Executable programs run on computers and digital devices. These programs are pre-installed 
by the device vendor or are downloaded or copied from a storage media. It is useful to study 
file similarity between executable files to verify valid updates, identify potential copyright 
infringement, identify malware, and detect other abuse of purchased software. 

An alternative to relying on simplistic methods of file comparison, such as comparing their 
hash codes to see if they are identical, is to identify the “texture” of files and then assess its 
similarity between files. To test this idea, we experimented with a sample of 23 Windows 
executable file families and 1,386 files. We identified points of similarity between files by 
comparing sections of data in their standard deviations, means, modes, mode counts, and 
entropies. When vectors were sufficiently similar, we calculated the offsets (shifts) between 
the sections to get them to align. Using analysis on these shifts, we can measure file 
similarity efficiently. By plotting similarity vs. time, we can track the progression of similarity 
between files. 

Introduction 
Software of unknown pedigree abounds. This is partly due to software being 

distributed as executable code or a “binary,” and evaluating the contents of a binary is 
technically challenging. 

Numerous updates to a binary can occur over the useful life of the executable to 
address new software requirements, fix software defects, or port the software to a different 
computing platform. Each of these requires recompilation and results in a new binary. 

Executable code can be analyzed using reverse-engineering tools that recover 
information about the binary’s structure, function, and behavior. Some tools recognize data 
regions inside the code, while more advanced tools analyze the machine instructions to 
make inferences about the code’s function. Because of the differences in instruction set 
architectures (ISAs), tools use models of ISAs. However, reverse engineering of a binary 
can be resource-intensive and can be stymied by deliberate anti-reversing techniques used 
to protect the binary file. 

Executable code is vulnerable to malware. By replacing machine instructions with 
malicious ones, executable code can be transformed into malware. Malware can divert 
execution of code to perform one or more malicious tasks. Detection of malware contained 
in adversarial malware binaries is technically challenging, even with the use of artificial-
intelligence techniques such as deep learning (Kolosnjaji et al., 2018). 

We introduce here an approach based on texture vectors to allow executables to be 
compared against each other without requiring reverse engineering of the binaries. Our 
approach can be used as a first step to determine whether reverse engineering is needed. 
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Background 
Contents of an Executable File 

A binary contains more than just executable code. It includes fixed data, reserved 
space, and links to executable code that is external to the file (Josse, Bachaalany, Gazet, & 
Dang, 2014). Similarities in fixed data and fixed links are easiest to find because they can be 
matched directly. Reserved space usually consists of bytes with zero values, and is found in 
many places in a typical executable file. It can complicate similarity measurements since 
there can be many false matches with zero bytes. 

The portion of an executable file that contains the actual executable code consists of 
machine instructions and their associated operands. When executable code is modified, 
many machine instructions remain the same but usually their locations shift. Then the 
memory addresses encoded in their operands may change to compensate for this shift 
unless the code uses addressing relative to a register. However, register arguments 
encoded in operands may also shift. 
Identifying File Similarity 

Numerous approaches exist for identifying similarities between files. They can be 
used on text files, binary files, images, video, and audio. A few apply to files containing 
executable code. Some of these executable-analysis tools visualize software evolution in 
source code using version-control information or source-code file analysis (Arbuckle, 2008). 
A three-dimensional graph can show where code accesses the operating system or other 
information about code flow, and it can also graph how these numbers change over the 
evolution of a software product. The Code Time Machine tool does this to show the 
evolution of code metrics for a given file (Aghajani, Mocci, Bavota, & Lanza, 2017). It shows 
values along a timeline for the number of lines of code, number of methods, and cyclomatic 
complexity (i.e., the number of paths the code can take given the possible conditions written 
into the code). A three-dimensional graph of files and file relations between versions relates 
files. Circles represent releases, squares represent files, and edges represent associations 
(Koike & Chu, 1997). Other tools that graph code evolution are CVSScan (Voinea, Telea, & 
Van Wijk, 2005) and EPOSee (Burch, Diehl, & Weigerber, 2005).  

There are many types of files. Three important ones are: 

• Text: Text typically consists of words arranged in sentences. It may also be 
fragmented because of formatting, as in a formatted PDF file, or may be in 
short phrases in data tables or in the data section of executable code. We 
can measure text similarity by comparing words. 

• Arbitrary bytes: What may appear as arbitrary bytes may be numeric data, 
compressed data, or executable codes. Numeric data often has low entropy 
because many of the bytes tend to be zero. Compressed data has high 
entropy because unused byte patterns in the data are removed. 

• Audio and video: Audio and video data consists of bytes arranged in 
sequences. Bytes can be compared by aligning the sequences. 

There are many algorithms for identifying similarities in data. Some work better than 
others given the type of data being compared. Methods used in comparing files are: 

• Comparing byte sequences: Comparing content of text files to identify 
similarity is a common operation. One approach tries to find the longest 
common subsequences, where text that does not match is identified as new 
or deleted content (Bergroth & Hakonen, 2000). Algorithms for efficient string 
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matching include Knuth-Morris-Pratt (Wikipedia, 2020), which allows 
searching without backtracking when a near match is found and Boyer-Moore 
(Cole, 2018), which skips alignments when searching for specific text. 
Although intended for text, both algorithms may be used with executable 
code. Another popular algorithm for text files is implemented in the “diff” utility 
developed for the Linux operating system (Shotts, 2019). 

• Comparing executable bytes: Comparing bytes in files is similar to 
comparing text in files. However, bytes of files containing executable code 
are unlikely to match on operands and thus only the operators should be 
compared. For Intel architectures, operands are usually spaced at 4-byte or 
8-byte intervals. Because of this, Cabezas and Mooij (n.d.) says that “binary 
file analysis by both binary diffing and cryptographic hash signatures 
comparison is a very limited approach to identify source code being re-used” 
and suggests metadata analysis. Regardless, for Intel architectures, it is 
useful to compare at every fourth or eighth byte because this will often align 
runs of comparisons with operators. 

• Comparing histograms: We can identify common sequences of N bytes (N-
grams) between files and contiguous sequences of bytes of a given length 
and compute a histogram of them. In Jang and Brumley (2009), 5-grams are 
used, and a Bloom filter is used as an efficient data structure for storing N-
gram patterns that are found. Overall file similarity can be measured with the 
Jaccard index, the count of N-grams in common divided by number of distinct 
N-grams in both files. To take frequencies of the N-grams into account in 
measuring similarity, the cosine similarity or the Kullback-Leibler divergence 
can be used (Rowe, 2018). 

• Transforming values before comparison: It may work better to measure 
similarity on transforms of the data values. This is commonly done for audio 
and video data; perceptual hashing provides a similar hash output if features 
are similar (Hadmi, Puech, Said, & Ouahman, 2012). For images, we can 
transform the image to frequency space, or apply convolutions to it to 
enhance features. For signals, we can apply the Fourier transform to obtain 
frequencies. 

• Comparing metadata: Initial comparisons of files can use their descriptive 
data to decide if they are sufficiently related to be worth further analysis. For 
example, if we know two executable files are built to run on a Microsoft 
Windows system using the same Intel instruction-set architecture, they are 
worth comparing. We can also compare metadata about sections and data 
structures within the files (Cabezas & Mooij, n.d.). Metadata includes: 

o File types and subtypes. 
o Data compression parameters. Cloning is indicated if the compressed 

size is significantly smaller than the combined size of its parts 
(Cabezas & Mooij, n.d.)  

o Mentions of precompiled libraries. 
o Hashcodes on the files. 

• Comparing decompiled data: Executable files can be decompiled into text, 
and we can compare this text. Disassemblers and decompilers can do this, 
though they are not perfect. Disassemblers turn the bytes of executable code 
into corresponding machine code mnemonics and symbolic names, 
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addresses, and offsets. Decompilers go further by turning bytes into source 
code. 

Identifying similarities specifically between versions of source code can be 
accomplished in several ways: 

• Object-oriented analysis: Software objects in source-code versions can be 
visually compared using a difference graph (Seemann & Von Gudenberg, 
1998). A graph of each version can be created where nodes are classes and 
node attributes are class methods and variables. Edges connect nodes 
where attributes of one node reference attributes of another. Then a class 
relation diagram is constructed that highlights differences in class relations in 
two software versions. 

• Software-diagram analysis: Software diagrams created during design may 
be compared if available (Rho & Wu, 1988). 

• Version control analysis: Many products used by the software industry 
manage source code versioning with a repository (Swierstra & Lh, 2014). 
Then there is often documentation of the differences between versions. 

Calculating File Similarity 
In this section, we present our texture-vector approach. We perform three layers of 

calculations to make inferences about similarity and how and where files are similar. Our 
steps are as follows: 

1. Calculate texture-vector datasets from the two files to be compared. 
2. Compare texture-vector datasets to identify similarity offsets and produce a 

similarity offset histogram. 
3. Calculate statistics from the heights of the similarity offset histogram to 

produce a single similarity measure for the comparison of the two files. 
This process is illustrated in Figure 1. 

 
Figure 1. Inference Process 

Calculating Texture-Vector Data 
Texture vectors are calculated from the byte values of contiguous sections of binary 

data. Although many transform algorithms are possible, we are specifically interested in 
transforms that can both represent some unique characteristic of the data and possess a 
value that can be meaningfully compared to other values to measure similarity. 

Sections measured as similar by many transforms have stronger similarities than 
others. We tested the following transforms for calculating texture vectors on the integer 
values of the bytes: 

• Standard deviation: The standard deviation of the byte values in a section of 
binary data. Two sections with a similar amount of deviation may be similar. 
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• Mean: The average byte value in the section. When executable code 
changes, operators may remain the same and help maintain the same mean. 

• Mode: The most frequent byte value in the section. Often this value was zero 
in our data. This value is nonmetric and can only be used in computing 
similarity distances in the sense that it is identical or not. 

• Mode Count: The count of occurrence of the most frequent byte value in the 
section. 

• Entropy: The Shannon entropy of the byte values in the section. Two 
sections may be similar if the amount of randomness in each section is 
similar. 

Calculating Texture-Vector Distance 
Two texture vectors are defined as similar when the first texture-vector is within a 

threshold of closeness to the second texture vector by the weighted square of the L2 
(Euclidean) distance metric (Defant, 2011). The similarity can be thought of as 1/d2 where 
d is distance, calculated as: d = w1(dv1)2 + w2(dv2)2 + w3(dv3)2 + w4(dv4)2 + w5(dv5)2 

where dv is the difference at a given vector element and w is the weight for a given vector 
element. For example, if texture-vector 1 has values [100, 30, 220, 50, 80], texture-vector 2 
has values [101, 32,225, 51, 80], and weights [w1, w2, w3, w4, w5] are [0.25, 0.25, 0.0, 
0.25, then the L2 distance d2 is  
 
0.25 ∗ 12 + 0.25 ∗ 22 + 0.0 ∗ 52 + 0.25 ∗ 12 + 0.25 ∗ 02 = 0.25 + 1.0 + 0 + 0.25 + 0 = 1.5.  

A threshold of similarity was used for our graphics. For instance, if the acceptance 
threshold is 1.0, these vectors are not similar because 1.5 $ 1.0. We set weight values by 
experiment, as explained in the section Tuning Rejection Thresholds. A good threshold 
identifies numerous correct similarities between the sections of data from which the texture 
vectors were calculated while excluding non-similarities. 
Calculating Similarity Offsets Between Sections 

We calculate similarity offsets by comparing all the texture vectors in one file against 
all the texture vectors in another file and counting the offsets between the files where the 
texture vector distance is within the threshold of closeness. When there are many offsets 
with the same value, this gives high confidence in those byte matches. 

We implemented a display to show consistently strong offsets between two files. The 
display draws lines connecting similar texture vectors. The pattern and quantity of similarity 
lines indicates the nature and degree of file similarity. Figure 2 shows an example of two 
very similar versions of executable code, where the texture vector pattern of each file is 
shown across the top and bottom, and the lines between them indicate points of similarity. 
The files are both roughly 220 KB in length. 
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Figure 2. Texture patterns of two very similar executable files and lines 

connecting them indicating points of similarity. 
Calculating Similar-Section Offset Histograms 

We calculate a similarity offset histogram from the set of offsets identified when 
searching for sufficiently similar texture vectors. There can be many thousands of offset 
values where similar-section matches can occur. To quantify this distribution of offsets, we 
create a similarity offset histogram and distribute calculated offset values across 
approximately 400 buckets, which sufficiently categorizes offsets in a viewable form. 
Consistent offset values are found as peaks on the histogram of offset values and represent 
likely meaningful similarities. 

We calculate the measure of similarity between two files from the heights in the 
similarity offset histogram to provide a numeric measure of similarity between files. A large 
spread in heights suggests similarity at specific offsets, indicating similarity, while minimal 
spread in heights suggests a random distribution of similarity offsets, likely a result of false 
positives. 
Calculating Similarity Measures Between Files 

We calculate the measure of similarity between two files from the magnitude of the 
standard deviation of the heights of the compensated histogram as described in the section 
Calculating Similar-Section Offset Histograms. An example of calculated similarity measure, 
along with the texture vectors, similarity offsets, and similar-section offset histograms, is 
shown in Figure 3. The top part describes the files being compared, the weights used in 
calculating the texture-vector distance, and statistics about the view, including the calculated 
similarity measure of 334.3535. The middle part shows the two texture-vector patterns, 
which visually appear identical, along with the center region saturated black with similarity 
lines. The bottom part shows the similarity histograms, where the similar-section offset 
histograms have spikes and low points. We conclude that these two files are nearly identical 
in the section Results. 
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Figure 3. Example of high value of high similarity in file family iexplore exe. 

Tracking Versions of Executable Code 
We can also graph a network of relationships between different versions of the same 

executable. By using the file modification time for the horizontal axis and the calculated 
similarity measure described in the section Calculating Similarity Measures Between Files 
as the vertical axis, we can show the relationships between versions. Files that have a 
larger similarity measure to the selected file are plotted higher on the vertical axis. Files 
whose similarity measure is below a user-selectable measure are not plotted. By adjusting 
the similarity threshold using the SD slider in the Texture-Vector Browser GUI tool, we can 
remove files with minimal similarity to reveal clusters of files that match with greater 
similarity. Using this graph, we can make inferences; for example, releases with a similar 
modification time may be a result of bug fixes or security updates; releases with a smaller 
similarity measure may have more functional differences or may have added malware. An 
example of this graph is shown in Figure 9. 

Preparing the Dataset of Executable Files 
The dataset we studied consisted of executable files, texture-vector files, and 

similarity-graph files. The initial set of files was a sample of executable .exe and .dll files 
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extracted from the Real Data Corpus (Garfinkel, Farrell, Roussev, & Dinolt, 2009). The Real 
Data Corpus consists of “images” (copies) of used disk drives and other devices obtained 
from non-U.S. countries. The files were extracted using the icat extraction tool from The 
Sleuth Kit forensics tool, https://forensicswiki.org/wiki/The_Sleuth_Kit. Rowe (2018) picked 
23 representative families of executables defined by a file name for each. Since many of the 
files were faulty, he used a software wrapper that loaded files for each distinct file contents 
(as indicated by its hash code) until the wrapper found a non-faulty copy. Names were 
changed from the original ones to distinguish files with the same names and different 
contents. The initial set consisted of 1,386 files. Of these, 162 were excluded because their 
size was greater than 1 MB and 55 were excluded because their size was less than 1 KB. 
Of the remaining 1,169 files, 35 were excluded because they were identical based on their 
MD5 cryptographic hash, leaving 1,134 files in our dataset. Figure 4 shows the distribution 
of file sizes. Note that since all files are from various countries and no files are from the 
United States, our collection may exclude important versions of software. 

 

 

 

 
Figure 4. Histogram of file sizes for our dataset. 

The distribution of files by file modification time is shown in Figure 5. 

https://forensicswiki.org/wiki/The_Sleuth_Kit
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Figure 5. Histogram of file modification times for our dataset. 

Statistics on the 23 file families that we studied are shown in Table 1. This includes 
source-code family tabulate_drive_data_py, which allows us to compare some versioned 
source-code files too. 

Table 1. Files by File Family 
File Family File 

count 
Min file 

size 
Max file 

size 
Mean file 

size 
Standard 
deviation 

of file 
size 

a0003775 dll 14 1591 853504 258271.
6 

318135.
5 bthserv dll 37 1067 92160 31455.4 19509.8 

ccalert dll 23 189560 267880 225524.
2 

21199.8 
cdfview dll 244 1178 409600 144513.

2 
39662.1 

dunzip32 dll 34 11091 149040 114370.
9 

26991.3 
hotfix exe 33 53248 112912 94098.4 13263.9 
iexplore exe 216 3506 903168 461304.

5 
277712.
7 mobsync exe 80 8192 970752 156818.

5 
141438.
6 msrdc dll 6 159232 194048 174933.

3 
15696.5 

nvrshu dll 32 151552 262144 240128.
0 

33724.4 
pacman exe 2 165594 241693 203643.

5 
53810.1 

policytool exe 104 1224 787508 54764.8 84605.1 
powerpnt exe 19 2310 676112 366290.

8 
236454.
6 rtinstaller32 exe 4 135168 158312 146740.

0 
9843.3 

safrslv dll 29 1582 65536 41681.3 12648.2 
tabulate drive data 

 
23 18647 47544 34090.3 7213.7 

typeaheadfind dll 2 35920 39856 37888.0 2783.2 
udlaunch exe 4 118784 118784 118784.

0 
0.0 
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vsplugin dll 8 65606 118801 88180.2 15049.3 
webclnt dll 80 1261 611328 96930.6 92513.1 
winprint dll 7 12048 44544 29627.4 13120.4 
wmplayer exe 120 2864 520192 142871.

3 
101072.
6 xrxwiadr dll 13 8192 311296 123327.

4 
75040.4 

 
Preparing the Texture-Vector Files 

We created the texture-vector .tv files with the sbatch_calc_tv.bash program, which 
is part of the Texture-Vector Generator toolset. Due to the computational burden, we 
calculated texture vectors on the Naval Postgraduate School (NPS) Hamming 
supercomputer using sbatch parallel processing. We then copied these .tv files to the 
Texture-Vector Similarity repository, renaming them to their MD5 cryptographic hash value, 
for access by the Texture-Vector Similarity GUI tool. 
Tuning Rejection Thresholds 

Similarity is indicated when the square of the L2 distance measure is less than an 
acceptance threshold, as described in the section Calculating Texture-Vector Distance. We 
performed our tuning with two arbitrarily selected larger files in the ccalert_dll file family. We 
began with a default weight of 0.5 for the standard deviation, mean, mode count, and 
entropy transforms and, after some experimentation, we selected a distance rejection 
threshold of 5.0 because it resulted in reasonable similarity offsets without an oversaturation 
of matches. We selected a default weight of 0.0 for the mode because mode values do not 
quantifiably compare with each other, though an alternative could be to set distances 
between modes to 0 for identical values and 1 for nonidentical values. 

We examined our tuning of weight values by setting all weight values to 0.0 and 
then, one weight at a time, examined the saturation of matched offsets as we adjusted the 
weight for each texture contribution from 0.0 to 1.0. For each weight adjustment, we 
observed that the quantity of similarity offsets identified would vary as we changed the 
weight and also that there was a visually understandable quantity of similarity at weight 0.5. 
Given this, we accepted our weight and rejection threshold values as our default values. 
These defaults are shown in Table 2. 

Table 2. Texture-Vector Threshold Settings Default 
Setting Type Value 
Standard 
Deviation Weight 0.5 

Mean Weight 0.5 

Mode Weight 0.0 

Mode Count Weight 0.5 

Entropy Weight 0.5 

Rejection 
threshold 

Threshold 5.0 
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Preparing the Similarity-graph Files 
We created the similarity-graph files by running the sbatch_ddiff_tv.bash program, 

which is part of the Texture-Vector Similarity toolset. We calculated the similarity metrics on 
the NPS Hamming supercomputer using sbatch parallel processing with a job queue size of 
700, resulting in a graph of 1,134 nodes and 463,486 edges from which we can create a 
similarity matrix across all file families. We compared files across file families in order to 
measure similarity between known dissimilar files. There are 642,411 possible edges, but 
we dropped 178,925 of them because they had less than two similarity matches. This 
processing took about 15 hours. Runtime of each file pair varied because file sizes varied. 

Node data consists of the node index, filename, file family, file size, file-modification 
time, and file MD5 hashcode. Edge data consists of the edge’s source and target file node 
indexes along with the standard deviation, mean, maximum, and sum similarity metrics 
described in the section Calculating Similarity Measures Between Files. 

Results 
To evaluate the ability of our tools to identify similarities between executable files, we 

examined the 642,411 texture-vector similarity measures calculated for each pair of files for 
the 1,134 files. Of the 642,411 possible comparisons, 463,486 of them produced nonzero 
similarity values. Similarity measure values varied from zero to about 300. The distribution of 
these 463,486 similarity values across all files in our dataset is shown in Figure 6. Due to 
the uneven distribution of these values, a similarity threshold cannot be calculated using a 
normal Gaussian distribution. Most similarity measure values were less than 10, which is 
where the curve becomes level. This suggests that actual similarity between two files may 
be indicated when their similarity measure is greater than 10. 

 
Figure 6. Histogram of similarity matches across all files in our dataset. 
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Evaluating Similarities 
To establish a baseline of what the similarity measure values are for similar files, we 

calculated the mean similarity measures within and across file families. We tested whether 
the similarity measure between files of the same file family was higher than the similarity 
measure between files in different file families. The confusion matrix for file similarity across 
all file families in our dataset is in Table 3. Rows and columns represent file families using 
the numbers in the second column. The mean similarity measures between files within file 
families is typically greater than the mean similarity between files in other file families, 
showing that our approach for identifying file similarity is useful. 

Table 3. Mean file similarity between file families. 

T bl  4  F
 

No. 1 2 3 4 5 6 7 8 9 10 11 12 
a0003775 dll 1 4.5 1.2 5.4 2.1 3.8 3.0 3.6 2.8 2.2 3.3 5.1 2.3 
bthserv dll 2 1.2 3.7 1.2 0.7 0.7 0.7 0.5 0.7 0.6 0.3 0.9 0.6 
ccalert dll 3 5.4 1.2 11.4 2.5 3.9 3.2 2.2 2.9 3.6 4.3 4.8 2.2 
cdfview dll 4 2.1 0.7 2.5 10.0 1.3 1.1 1.6 2.2 1.8 0.9 1.7 0.8 
dunzip32 dll 5 3.8 0.7 3.9 1.3 5.1 2.3 4.0 2.1 2.0 3.4 3.6 1.6 
hotfix exe 6 3.0 0.7 3.2 1.1 2.3 8.5 1.3 2.0 1.4 3.8 3.1 1.6 
iexplore exe 7 3.6 0.5 2.2 1.6 4.0 1.3 130.2 9.3 1.6 2.4 1.5 7.5 
mobsync exe 8 2.8 0.7 2.9 2.2 2.1 2.0 9.3 6.1 1.5 2.3 2.7 1.6 
msrdc dll 9 2.2 0.6 3.6 1.8 2.0 1.4 1.6 1.5 4.5 1.4 2.0 0.9 
nvrshu dll 10 3.3 0.3 4.3 0.9 3.4 3.8 2.4 2.3 1.4 32.9 6.2 2.1 
pacman exe 11 5.1 0.9 4.8 1.7 3.6 3.1 1.5 2.7 2.0 6.2 1.5 2.2 
policytool exe 12 2.3 0.6 2.2 0.8 1.6 1.6 7.5 1.6 0.9 2.1 2.2 2.6 
powerpnt exe 13 3.5 0.4 2.2 1.1 3.1 1.5 41.2 5.8 1.4 2.6 2.2 4.6 
rtinstaller32 exe 14 3.4 0.9 4.1 2.0 3.6 2.0 1.6 2.3 2.2 2.3 2.8 1.2 
safrslv dll 15 1.9 0.9 2.2 1.1 1.2 1.6 1.1 1.1 0.7 2.0 2.0 1.0 
tabulate drive data py 16 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 - 0.1 - 0.3 
typeaheadfind dll 17 0.9 0.6 1.3 0.7 0.4 0.3 0.4 0.5 0.7 0.1 0.7 0.5 
udlaunch exe 18 2.9 0.4 3.3 1.1 2.5 - 1.3 1.7 1.8 3.3 3.0 - 
vsplugin dll 19 3.0 0.6 3.4 1.0 2.0 2.5 4.0 1.8 1.2 3.2 3.0 1.6 
webclnt dll 20 3.3 1.0 3.6 1.1 2.3 1.3 1.8 1.8 1.5 2.2 2.8 1.0 
winprint dll 21 0.8 0.5 0.9 0.4 0.6 0.5 0.4 0.5 0.5 0.4 0.6 0.6 
wmplayer exe 22 3.1 0.4 3.1 0.9 2.4 2.0 21.7 3.6 1.3 3.0 2.8 2.4 
xrxwiadr dll 23 11.5 0.8 12.1 2.5 9.2 4.1 3.2 4.6 3.3 12.9 13.0 3.8 

 

Family No. 13 14 15 16 17 18 19 20 21 22 23 
a0003775 dll 1 3.5 3.4 1.9 0.1 0.9 2.9 3.0 3.3 0.8 3.1 11.5 
bthserv dll 2 0.4 0.9 0.9 0.1 0.6 0.4 0.6 1.0 0.5 0.4 0.8 
ccalert dll 3 2.2 4.1 2.2 0.1 1.3 3.3 3.4 3.6 0.9 3.1 12.1 
cdfview dll 4 1.1 2.0 1.1 0.1 0.7 1.1 1.0 1.1 0.4 0.9 2.5 
dunzip32 dll 5 3.1 3.6 1.2 0.1 0.4 2.5 2.0 2.3 0.6 2.4 9.2 
hotfix exe 6 1.5 2.0 1.6 0.1 0.3 - 2.5 1.3 0.5 2.0 4.1 
iexplore exe 7 41.2 1.6 1.1 0.2 0.4 1.3 4.0 1.8 0.4 21.7 3.2 
mobsync exe 8 5.8 2.3 1.1 0.1 0.5 1.7 1.8 1.8 0.5 3.6 4.6 
msrdc dll 9 1.4 2.2 0.7 - 0.7 1.8 1.2 1.5 0.5 1.3 3.3 
nvrshu dll 10 2.6 2.3 2.0 0.1 0.1 3.3 3.2 2.2 0.4 3.0 12.9 
pacman exe 11 2.2 2.8 2.0 - 0.7 3.0 3.0 2.8 0.6 2.8 13.0 
policytool exe 12 4.6 1.2 1.0 0.3 0.5 - 1.6 1.0 0.6 2.4 3.8 
powerpnt exe 13 76.0 1.5 1.0 0.2 0.2 1.5 2.8 1.7 0.3 12.6 8.2 
rtinstaller32 exe 14 1.5 13.4 1.1 0.1 0.4 3.1 1.9 2.0 0.6 1.7 6.3 
safrslv dll 15 1.0 1.1 3.3 0.1 0.8 - 1.4 1.2 0.6 1.1 2.6 
tabulate drive data py 16 0.2 0.1 0.1 2.8 0.1 - 0.2 0.2 - 0.1 0.3 
typeaheadfind dll 17 0.2 0.4 0.8 0.1 2.3 0.2 0.5 0.8 0.4 0.2 0.6 
udlaunch exe 18 1.5 3.1 - - 0.2 - 2.1 0.9 0.5 2.2 3.6 
vsplugin dll 19 2.8 1.9 1.4 0.2 0.5 2.1 3.2 1.7 0.5 2.7 3.5 
webclnt dll 20 1.7 2.0 1.2 0.2 0.8 0.9 1.7 3.8 0.7 1.5 5.0 
winprint dll 21 0.3 0.6 0.6 - 0.4 0.5 0.5 0.7 1.1 0.4 0.6 
wmplayer exe 22 12.6 1.7 1.1 0.1 0.2 2.2 2.7 1.5 0.4 9.1 5.7 
xrxwiadr dll 23 8.2 6.3 2.6 0.3 0.6 3.6 3.5 5.0 0.6 5.7 15.9 
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Although the greatest average similarity for a given file family is usually within that 
file family, there are exceptions, as between file families a0003775_dll and xrxwiadr_dll. 
This inconsistency could be due to the differences in file size or to other attributes within the 
files in these two file groups. An example similarity analysis plot illustrating the problem is 
Figure 7. Ranges of homogeneous texture vectors contain similar low mode counts and 
moderately high entropy values, suggesting that our similarity measure is primarily attributed 
to regions of compressed data rather than similarity in code. The few similarity matches in 
other regions suggest that there is actually little similarity between these two files. 

 
Figure 7. False-positive similarity between two files caused by homogeneous 

compressed data. 
Examining Similarity Using the Texture-Vector Browser GUI Tool 

Our Texture-Vector Browser GUI tool can examine trends in file similarity based on 
file creation times and file-similarity measures. Figure 9 shows an example. The horizontal 
axis is the file modification time. This can be the time the file was created if it was never 
modified, or the time it was modified by update or by contamination with a virus. The vertical 
axis is the measure of similarity between the file the user selects and the other files in the 
view, which if the Stay in group mode is selected, will be files within its family. 
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Files higher up on the vertical axis are more similar to the selected file than files 
lower down on the vertical axis, where the similarity measure, as described in the section 
Calculating Similarity Measures Between Files, is the value on the vertical axis. By clicking 
on a node, the focus of the view changes to show the similarities between the file associated 
with the clicked node and other files. By clicking on an edge, the view shows the similarity 
graph involving the two files associated with the edge. 

Using the node listing capability in the Texture-Vector Browser GUI and by sorting 
the list by file group and modification time, we find and select the file in the ccalert_dll file 
group with the latest timestamp, as shown in Figure 8. 

 
Figure 8. Sorted Node Listing with Node 326 Selected 

In our dataset, this file is named AE10-1158_Program_Files_Norton_AntiVirus_Engi 
ne_18.5.0.125_ccalert.dll.tmp, indicating that it is on drive AE10-1158 from United Arab 
Emirates. It is indexed in our similarity graph dataset as node 326 (in green). 

The file naming convention is explained in the section Preparing the Dataset of 
Executable Files. The graph in Figure 9 shows node 326 and its similar neighbors and 
similar edges, where the similarity measure, described in the section Calculating Similarity 
Measures Between Files, is 1.0 or more. The horizontal axis is the file modification time and 
the vertical axis is the relative similarity between file (node) 326 and the other files. In this 
graph, we see two clusters of similarity. 
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Figure 9. Files (nodes) and similarity measures (edges) associated with file node 

326 showing modification times and similarity to node 326. 
Figure 10 shows the analysis of the edge that connects nodes 326 and 312, 

corresponding to Program Files/Norton AntiVirus Engine 18.5.0.125_ccalert.dll on drive 
AE10-1158 and Program Files Norton AntiVirus Engine 17.0.136_ccAlert.dll on drive AE10-
1160. This display was obtained using the GUI by clicking on the edge shown in Figure 9 
that connects these two files. The texture vector patterns appear very similar and the 
similarity histogram spikes with a similarity count of nearly 370 near file offset 0, a large 
number, indicating that these two files are similar. We can click on any of the yellow dots in 
the GUI to select the file corresponding to it to compare other files against it. 
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Figure 10. A detailed comparison of files 312 and 326 showing a high degree of 

similarity. 
Composition Analysis 
By looking at the five bands in the texture-vector diagram, we can make inferences 

about the regions of executable code files being compared, in particular the locations of 
header, code, and data sections. For Figure 10, for the first two textures, covering the first 
1,000 bytes, the standard deviation, mean, mode, and entropy values are lower than the 
values in other regions, while the mode count is higher. We infer that this represents a 
header, and the transition in the texture represents a transition to another type of content. 
The region from approximately byte 1,000 to byte 160,000 contains relatively medium 
values of the standard deviation, mean, and entropy; mode values that are either very high 
or very low; and consistently low mode counts. We infer that this is the code section. The 
third region, from approximately byte 160,000 through to the end at byte 219,512, usually 
has a low mode value, while values in the other four statistics vary but consistently with the 
two files. We infer that this is a region of data mostly unchanged between version. We also 
infer that the additional 10 KB added in the newer version was new code. 
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Progressive Time Similarity 
Software files tend to be most similar to the previous version. Figure 11 shows an 

example for the nvrshu_dlll file family. Here, the file with the latest timestamp, WINDOWS 
system32 nvrshu.dll from the MY01-023 drive from Malaysia, is selected. We see sporadic 
measures of similarity between 10 and 30 for files before year 2005, but for files after 2005, 
we see a gradual increase in similarity over time from about 40 to 61. 

 
Figure 11. Similarity increases as versions approach the latest version. 
Version Analysis 
With these diagrams, we can study on the origin and evolution of versions of files. 

Although an original file should have the earliest file creation time, file creation times can be 
modified inadvertently or maliciously. Another clue is that the original file often has the least 
amount of code. Node 326 in Figure 9, file Program Files/Common Files/Symantex/Shared 
ccAlert.dll.tmp from drive PA002-049 from Panama is likely the original file in its group 
because its file modification time is earliest and its similarity to latest files decreases over 
time. 

A newer version of code that introduces new features is likely to contain more code 
than the version before it. A newer version that is only a bug fix will be similar in size to the 
version before it and will have similar texture-vector patterns as in Figure 10. 

Files released at approximately the same time may be targeted for different 
operating system platforms or different feature sets. For example, 13 files in the webclnt_dll 
file family were released over two days, 2006-01-03 and 2006-01-04. This is too clustered to 
be in response to new functionality or bug fixes. These files could be a response to a virus 
because some of their file sizes are the same and their texture-vector patterns appear 
identical. However, bear in mind our sample is incomplete and important versions of 
software may be missing. 
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Examining Similarity Using Gephi 
Although the Texture-Vector Browser GUI tool was specifically designed for 

examining network graphs created from the dataset of similarity-graph files, graph analytics 
can also be done with popular open-source tools such as the Gephi graph-visualization tool. 

Conclusions and Future Work 
Conclusions 

This thesis proposed applying a vector of transforms to executable code to create 
texture-vector data and then using analytics to identify similarities between executable files. 
We tested a sample of executable code files with our methods. Our experiments showed 
files within file families had greater average similarity than files across file families. We found 
that the visual patterns in the texture vectors were effective in identifying similar regions in 
two files as well as sections that may be compressed. 
Future Work 

This work used texture vectors calculated from a section size of 500 bytes. A large 
section size might reveal similarity across a larger section of data, equivalent to applying a 
low-pass filter to texture-vector values. A section size that is a power of two or is aligned to 
the size of fixed-size data might naturally align better with the section boundaries from which 
texture-vectors are calculated. 

Texture vectors may be useful for classifying file types or detecting types of data 
embedded within a file. Further work in this direction might consist of defining data patterns 
that map to particular data types. The open-source tool Gephi offers many capabilities such 
as filtering and neighbor analytics that can be used to augment the similarity analytics 
provided by our tool. 
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