
Acquisition Research Program:
Creating Synergy for Informed Change

SYM-AM-20-037

Proceedings
of the

Seventeenth Annual
Acquisition Research Symposium

Acquisition Research:
Creating Synergy for Informed Change

May 13–14, 2020

Published: March 31, 2020

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Acquisition Research Program:
Creating Synergy for Informed Change

The research presented in this report was supported by the Acquisition Research
Program of the Graduate School of Defense Management at the Naval Postgraduate
School.

To request defense acquisition research, to become a research sponsor, or to print
additional copies of reports, please contact any of the staff listed on the Acquisition
Research Program website (www.acquisitionresearch.net).

about:blank

Acquisition Research Program:
Creating Synergy for Informed Change - 1 -

Using Texture Vector Analysis to Measure Computer and
Device File Similarity

Bruce Allen—is a Faculty Associate at the Naval Postgraduate School, where he performs research
and supports students in various topics relating to computer science. His specialties include data
analytics, robotics, cyber security, digital forensics, and GUI design. [bdallen@nps.edu]

Abstract
Executable programs run on computers and digital devices. These programs are pre-installed
by the device vendor or are downloaded or copied from a storage media. It is useful to study
file similarity between executable files to verify valid updates, identify potential copyright
infringement, identify malware, and detect other abuse of purchased software.

An alternative to relying on simplistic methods of file comparison, such as comparing their
hash codes to see if they are identical, is to identify the “texture” of files and then assess its
similarity between files. To test this idea, we experimented with a sample of 23 Windows
executable file families and 1,386 files. We identified points of similarity between files by
comparing sections of data in their standard deviations, means, modes, mode counts, and
entropies. When vectors were sufficiently similar, we calculated the offsets (shifts) between
the sections to get them to align. Using analysis on these shifts, we can measure file
similarity efficiently. By plotting similarity vs. time, we can track the progression of similarity
between files.

Introduction
Software of unknown pedigree abounds. This is partly due to software being

distributed as executable code or a “binary,” and evaluating the contents of a binary is
technically challenging.

Numerous updates to a binary can occur over the useful life of the executable to
address new software requirements, fix software defects, or port the software to a different
computing platform. Each of these requires recompilation and results in a new binary.

Executable code can be analyzed using reverse-engineering tools that recover
information about the binary’s structure, function, and behavior. Some tools recognize data
regions inside the code, while more advanced tools analyze the machine instructions to
make inferences about the code’s function. Because of the differences in instruction set
architectures (ISAs), tools use models of ISAs. However, reverse engineering of a binary
can be resource-intensive and can be stymied by deliberate anti-reversing techniques used
to protect the binary file.

Executable code is vulnerable to malware. By replacing machine instructions with
malicious ones, executable code can be transformed into malware. Malware can divert
execution of code to perform one or more malicious tasks. Detection of malware contained
in adversarial malware binaries is technically challenging, even with the use of artificial-
intelligence techniques such as deep learning (Kolosnjaji et al., 2018).

We introduce here an approach based on texture vectors to allow executables to be
compared against each other without requiring reverse engineering of the binaries. Our
approach can be used as a first step to determine whether reverse engineering is needed.

Acquisition Research Program:
Creating Synergy for Informed Change - 2 -

Background
Contents of an Executable File

A binary contains more than just executable code. It includes fixed data, reserved
space, and links to executable code that is external to the file (Josse, Bachaalany, Gazet, &
Dang, 2014). Similarities in fixed data and fixed links are easiest to find because they can be
matched directly. Reserved space usually consists of bytes with zero values, and is found in
many places in a typical executable file. It can complicate similarity measurements since
there can be many false matches with zero bytes.

The portion of an executable file that contains the actual executable code consists of
machine instructions and their associated operands. When executable code is modified,
many machine instructions remain the same but usually their locations shift. Then the
memory addresses encoded in their operands may change to compensate for this shift
unless the code uses addressing relative to a register. However, register arguments
encoded in operands may also shift.
Identifying File Similarity

Numerous approaches exist for identifying similarities between files. They can be
used on text files, binary files, images, video, and audio. A few apply to files containing
executable code. Some of these executable-analysis tools visualize software evolution in
source code using version-control information or source-code file analysis (Arbuckle, 2008).
A three-dimensional graph can show where code accesses the operating system or other
information about code flow, and it can also graph how these numbers change over the
evolution of a software product. The Code Time Machine tool does this to show the
evolution of code metrics for a given file (Aghajani, Mocci, Bavota, & Lanza, 2017). It shows
values along a timeline for the number of lines of code, number of methods, and cyclomatic
complexity (i.e., the number of paths the code can take given the possible conditions written
into the code). A three-dimensional graph of files and file relations between versions relates
files. Circles represent releases, squares represent files, and edges represent associations
(Koike & Chu, 1997). Other tools that graph code evolution are CVSScan (Voinea, Telea, &
Van Wijk, 2005) and EPOSee (Burch, Diehl, & Weigerber, 2005).

There are many types of files. Three important ones are:

• Text: Text typically consists of words arranged in sentences. It may also be
fragmented because of formatting, as in a formatted PDF file, or may be in
short phrases in data tables or in the data section of executable code. We
can measure text similarity by comparing words.

• Arbitrary bytes: What may appear as arbitrary bytes may be numeric data,
compressed data, or executable codes. Numeric data often has low entropy
because many of the bytes tend to be zero. Compressed data has high
entropy because unused byte patterns in the data are removed.

• Audio and video: Audio and video data consists of bytes arranged in
sequences. Bytes can be compared by aligning the sequences.

There are many algorithms for identifying similarities in data. Some work better than
others given the type of data being compared. Methods used in comparing files are:

• Comparing byte sequences: Comparing content of text files to identify
similarity is a common operation. One approach tries to find the longest
common subsequences, where text that does not match is identified as new
or deleted content (Bergroth & Hakonen, 2000). Algorithms for efficient string

Acquisition Research Program:
Creating Synergy for Informed Change - 3 -

matching include Knuth-Morris-Pratt (Wikipedia, 2020), which allows
searching without backtracking when a near match is found and Boyer-Moore
(Cole, 2018), which skips alignments when searching for specific text.
Although intended for text, both algorithms may be used with executable
code. Another popular algorithm for text files is implemented in the “diff” utility
developed for the Linux operating system (Shotts, 2019).

• Comparing executable bytes: Comparing bytes in files is similar to
comparing text in files. However, bytes of files containing executable code
are unlikely to match on operands and thus only the operators should be
compared. For Intel architectures, operands are usually spaced at 4-byte or
8-byte intervals. Because of this, Cabezas and Mooij (n.d.) says that “binary
file analysis by both binary diffing and cryptographic hash signatures
comparison is a very limited approach to identify source code being re-used”
and suggests metadata analysis. Regardless, for Intel architectures, it is
useful to compare at every fourth or eighth byte because this will often align
runs of comparisons with operators.

• Comparing histograms: We can identify common sequences of N bytes (N-
grams) between files and contiguous sequences of bytes of a given length
and compute a histogram of them. In Jang and Brumley (2009), 5-grams are
used, and a Bloom filter is used as an efficient data structure for storing N-
gram patterns that are found. Overall file similarity can be measured with the
Jaccard index, the count of N-grams in common divided by number of distinct
N-grams in both files. To take frequencies of the N-grams into account in
measuring similarity, the cosine similarity or the Kullback-Leibler divergence
can be used (Rowe, 2018).

• Transforming values before comparison: It may work better to measure
similarity on transforms of the data values. This is commonly done for audio
and video data; perceptual hashing provides a similar hash output if features
are similar (Hadmi, Puech, Said, & Ouahman, 2012). For images, we can
transform the image to frequency space, or apply convolutions to it to
enhance features. For signals, we can apply the Fourier transform to obtain
frequencies.

• Comparing metadata: Initial comparisons of files can use their descriptive
data to decide if they are sufficiently related to be worth further analysis. For
example, if we know two executable files are built to run on a Microsoft
Windows system using the same Intel instruction-set architecture, they are
worth comparing. We can also compare metadata about sections and data
structures within the files (Cabezas & Mooij, n.d.). Metadata includes:

o File types and subtypes.
o Data compression parameters. Cloning is indicated if the compressed

size is significantly smaller than the combined size of its parts
(Cabezas & Mooij, n.d.)

o Mentions of precompiled libraries.
o Hashcodes on the files.

• Comparing decompiled data: Executable files can be decompiled into text,
and we can compare this text. Disassemblers and decompilers can do this,
though they are not perfect. Disassemblers turn the bytes of executable code
into corresponding machine code mnemonics and symbolic names,

Acquisition Research Program:
Creating Synergy for Informed Change - 4 -

addresses, and offsets. Decompilers go further by turning bytes into source
code.

Identifying similarities specifically between versions of source code can be
accomplished in several ways:

• Object-oriented analysis: Software objects in source-code versions can be
visually compared using a difference graph (Seemann & Von Gudenberg,
1998). A graph of each version can be created where nodes are classes and
node attributes are class methods and variables. Edges connect nodes
where attributes of one node reference attributes of another. Then a class
relation diagram is constructed that highlights differences in class relations in
two software versions.

• Software-diagram analysis: Software diagrams created during design may
be compared if available (Rho & Wu, 1988).

• Version control analysis: Many products used by the software industry
manage source code versioning with a repository (Swierstra & Lh, 2014).
Then there is often documentation of the differences between versions.

Calculating File Similarity
In this section, we present our texture-vector approach. We perform three layers of

calculations to make inferences about similarity and how and where files are similar. Our
steps are as follows:

1. Calculate texture-vector datasets from the two files to be compared.
2. Compare texture-vector datasets to identify similarity offsets and produce a

similarity offset histogram.
3. Calculate statistics from the heights of the similarity offset histogram to

produce a single similarity measure for the comparison of the two files.
This process is illustrated in Figure 1.

Figure 1. Inference Process

Calculating Texture-Vector Data
Texture vectors are calculated from the byte values of contiguous sections of binary

data. Although many transform algorithms are possible, we are specifically interested in
transforms that can both represent some unique characteristic of the data and possess a
value that can be meaningfully compared to other values to measure similarity.

Sections measured as similar by many transforms have stronger similarities than
others. We tested the following transforms for calculating texture vectors on the integer
values of the bytes:

• Standard deviation: The standard deviation of the byte values in a section of
binary data. Two sections with a similar amount of deviation may be similar.

Acquisition Research Program:
Creating Synergy for Informed Change - 5 -

• Mean: The average byte value in the section. When executable code
changes, operators may remain the same and help maintain the same mean.

• Mode: The most frequent byte value in the section. Often this value was zero
in our data. This value is nonmetric and can only be used in computing
similarity distances in the sense that it is identical or not.

• Mode Count: The count of occurrence of the most frequent byte value in the
section.

• Entropy: The Shannon entropy of the byte values in the section. Two
sections may be similar if the amount of randomness in each section is
similar.

Calculating Texture-Vector Distance
Two texture vectors are defined as similar when the first texture-vector is within a

threshold of closeness to the second texture vector by the weighted square of the L2
(Euclidean) distance metric (Defant, 2011). The similarity can be thought of as 1/d2 where
d is distance, calculated as: d = w1(dv1)2 + w2(dv2)2 + w3(dv3)2 + w4(dv4)2 + w5(dv5)2

where dv is the difference at a given vector element and w is the weight for a given vector
element. For example, if texture-vector 1 has values [100, 30, 220, 50, 80], texture-vector 2
has values [101, 32,225, 51, 80], and weights [w1, w2, w3, w4, w5] are [0.25, 0.25, 0.0,
0.25, then the L2 distance d2 is

0.25 ∗ 12 + 0.25 ∗ 22 + 0.0 ∗ 52 + 0.25 ∗ 12 + 0.25 ∗ 02 = 0.25 + 1.0 + 0 + 0.25 + 0 = 1.5.

A threshold of similarity was used for our graphics. For instance, if the acceptance
threshold is 1.0, these vectors are not similar because 1.5 $ 1.0. We set weight values by
experiment, as explained in the section Tuning Rejection Thresholds. A good threshold
identifies numerous correct similarities between the sections of data from which the texture
vectors were calculated while excluding non-similarities.
Calculating Similarity Offsets Between Sections

We calculate similarity offsets by comparing all the texture vectors in one file against
all the texture vectors in another file and counting the offsets between the files where the
texture vector distance is within the threshold of closeness. When there are many offsets
with the same value, this gives high confidence in those byte matches.

We implemented a display to show consistently strong offsets between two files. The
display draws lines connecting similar texture vectors. The pattern and quantity of similarity
lines indicates the nature and degree of file similarity. Figure 2 shows an example of two
very similar versions of executable code, where the texture vector pattern of each file is
shown across the top and bottom, and the lines between them indicate points of similarity.
The files are both roughly 220 KB in length.

Acquisition Research Program:
Creating Synergy for Informed Change - 6 -

Figure 2. Texture patterns of two very similar executable files and lines

connecting them indicating points of similarity.
Calculating Similar-Section Offset Histograms

We calculate a similarity offset histogram from the set of offsets identified when
searching for sufficiently similar texture vectors. There can be many thousands of offset
values where similar-section matches can occur. To quantify this distribution of offsets, we
create a similarity offset histogram and distribute calculated offset values across
approximately 400 buckets, which sufficiently categorizes offsets in a viewable form.
Consistent offset values are found as peaks on the histogram of offset values and represent
likely meaningful similarities.

We calculate the measure of similarity between two files from the heights in the
similarity offset histogram to provide a numeric measure of similarity between files. A large
spread in heights suggests similarity at specific offsets, indicating similarity, while minimal
spread in heights suggests a random distribution of similarity offsets, likely a result of false
positives.
Calculating Similarity Measures Between Files

We calculate the measure of similarity between two files from the magnitude of the
standard deviation of the heights of the compensated histogram as described in the section
Calculating Similar-Section Offset Histograms. An example of calculated similarity measure,
along with the texture vectors, similarity offsets, and similar-section offset histograms, is
shown in Figure 3. The top part describes the files being compared, the weights used in
calculating the texture-vector distance, and statistics about the view, including the calculated
similarity measure of 334.3535. The middle part shows the two texture-vector patterns,
which visually appear identical, along with the center region saturated black with similarity
lines. The bottom part shows the similarity histograms, where the similar-section offset
histograms have spikes and low points. We conclude that these two files are nearly identical
in the section Results.

Acquisition Research Program:
Creating Synergy for Informed Change - 7 -

Figure 3. Example of high value of high similarity in file family iexplore exe.

Tracking Versions of Executable Code
We can also graph a network of relationships between different versions of the same

executable. By using the file modification time for the horizontal axis and the calculated
similarity measure described in the section Calculating Similarity Measures Between Files
as the vertical axis, we can show the relationships between versions. Files that have a
larger similarity measure to the selected file are plotted higher on the vertical axis. Files
whose similarity measure is below a user-selectable measure are not plotted. By adjusting
the similarity threshold using the SD slider in the Texture-Vector Browser GUI tool, we can
remove files with minimal similarity to reveal clusters of files that match with greater
similarity. Using this graph, we can make inferences; for example, releases with a similar
modification time may be a result of bug fixes or security updates; releases with a smaller
similarity measure may have more functional differences or may have added malware. An
example of this graph is shown in Figure 9.

Preparing the Dataset of Executable Files
The dataset we studied consisted of executable files, texture-vector files, and

similarity-graph files. The initial set of files was a sample of executable .exe and .dll files

Acquisition Research Program:
Creating Synergy for Informed Change - 8 -

extracted from the Real Data Corpus (Garfinkel, Farrell, Roussev, & Dinolt, 2009). The Real
Data Corpus consists of “images” (copies) of used disk drives and other devices obtained
from non-U.S. countries. The files were extracted using the icat extraction tool from The
Sleuth Kit forensics tool, https://forensicswiki.org/wiki/The_Sleuth_Kit. Rowe (2018) picked
23 representative families of executables defined by a file name for each. Since many of the
files were faulty, he used a software wrapper that loaded files for each distinct file contents
(as indicated by its hash code) until the wrapper found a non-faulty copy. Names were
changed from the original ones to distinguish files with the same names and different
contents. The initial set consisted of 1,386 files. Of these, 162 were excluded because their
size was greater than 1 MB and 55 were excluded because their size was less than 1 KB.
Of the remaining 1,169 files, 35 were excluded because they were identical based on their
MD5 cryptographic hash, leaving 1,134 files in our dataset. Figure 4 shows the distribution
of file sizes. Note that since all files are from various countries and no files are from the
United States, our collection may exclude important versions of software.

Figure 4. Histogram of file sizes for our dataset.

The distribution of files by file modification time is shown in Figure 5.

https://forensicswiki.org/wiki/The_Sleuth_Kit

Acquisition Research Program:
Creating Synergy for Informed Change - 9 -

Figure 5. Histogram of file modification times for our dataset.

Statistics on the 23 file families that we studied are shown in Table 1. This includes
source-code family tabulate_drive_data_py, which allows us to compare some versioned
source-code files too.

Table 1. Files by File Family
File Family File

count
Min file

size
Max file

size
Mean file

size
Standard
deviation

of file
size

a0003775 dll 14 1591 853504 258271.
6

318135.
5 bthserv dll 37 1067 92160 31455.4 19509.8

ccalert dll 23 189560 267880 225524.
2

21199.8
cdfview dll 244 1178 409600 144513.

2
39662.1

dunzip32 dll 34 11091 149040 114370.
9

26991.3
hotfix exe 33 53248 112912 94098.4 13263.9
iexplore exe 216 3506 903168 461304.

5
277712.
7 mobsync exe 80 8192 970752 156818.

5
141438.
6 msrdc dll 6 159232 194048 174933.

3
15696.5

nvrshu dll 32 151552 262144 240128.
0

33724.4
pacman exe 2 165594 241693 203643.

5
53810.1

policytool exe 104 1224 787508 54764.8 84605.1
powerpnt exe 19 2310 676112 366290.

8
236454.
6 rtinstaller32 exe 4 135168 158312 146740.

0
9843.3

safrslv dll 29 1582 65536 41681.3 12648.2
tabulate drive data

23 18647 47544 34090.3 7213.7

typeaheadfind dll 2 35920 39856 37888.0 2783.2
udlaunch exe 4 118784 118784 118784.

0
0.0

Acquisition Research Program:
Creating Synergy for Informed Change - 10 -

vsplugin dll 8 65606 118801 88180.2 15049.3
webclnt dll 80 1261 611328 96930.6 92513.1
winprint dll 7 12048 44544 29627.4 13120.4
wmplayer exe 120 2864 520192 142871.

3
101072.
6 xrxwiadr dll 13 8192 311296 123327.

4
75040.4

Preparing the Texture-Vector Files

We created the texture-vector .tv files with the sbatch_calc_tv.bash program, which
is part of the Texture-Vector Generator toolset. Due to the computational burden, we
calculated texture vectors on the Naval Postgraduate School (NPS) Hamming
supercomputer using sbatch parallel processing. We then copied these .tv files to the
Texture-Vector Similarity repository, renaming them to their MD5 cryptographic hash value,
for access by the Texture-Vector Similarity GUI tool.
Tuning Rejection Thresholds

Similarity is indicated when the square of the L2 distance measure is less than an
acceptance threshold, as described in the section Calculating Texture-Vector Distance. We
performed our tuning with two arbitrarily selected larger files in the ccalert_dll file family. We
began with a default weight of 0.5 for the standard deviation, mean, mode count, and
entropy transforms and, after some experimentation, we selected a distance rejection
threshold of 5.0 because it resulted in reasonable similarity offsets without an oversaturation
of matches. We selected a default weight of 0.0 for the mode because mode values do not
quantifiably compare with each other, though an alternative could be to set distances
between modes to 0 for identical values and 1 for nonidentical values.

We examined our tuning of weight values by setting all weight values to 0.0 and
then, one weight at a time, examined the saturation of matched offsets as we adjusted the
weight for each texture contribution from 0.0 to 1.0. For each weight adjustment, we
observed that the quantity of similarity offsets identified would vary as we changed the
weight and also that there was a visually understandable quantity of similarity at weight 0.5.
Given this, we accepted our weight and rejection threshold values as our default values.
These defaults are shown in Table 2.

Table 2. Texture-Vector Threshold Settings Default
Setting Type Value
Standard
Deviation Weight 0.5

Mean Weight 0.5

Mode Weight 0.0

Mode Count Weight 0.5

Entropy Weight 0.5

Rejection
threshold

Threshold 5.0

Acquisition Research Program:
Creating Synergy for Informed Change - 11 -

Preparing the Similarity-graph Files
We created the similarity-graph files by running the sbatch_ddiff_tv.bash program,

which is part of the Texture-Vector Similarity toolset. We calculated the similarity metrics on
the NPS Hamming supercomputer using sbatch parallel processing with a job queue size of
700, resulting in a graph of 1,134 nodes and 463,486 edges from which we can create a
similarity matrix across all file families. We compared files across file families in order to
measure similarity between known dissimilar files. There are 642,411 possible edges, but
we dropped 178,925 of them because they had less than two similarity matches. This
processing took about 15 hours. Runtime of each file pair varied because file sizes varied.

Node data consists of the node index, filename, file family, file size, file-modification
time, and file MD5 hashcode. Edge data consists of the edge’s source and target file node
indexes along with the standard deviation, mean, maximum, and sum similarity metrics
described in the section Calculating Similarity Measures Between Files.

Results
To evaluate the ability of our tools to identify similarities between executable files, we

examined the 642,411 texture-vector similarity measures calculated for each pair of files for
the 1,134 files. Of the 642,411 possible comparisons, 463,486 of them produced nonzero
similarity values. Similarity measure values varied from zero to about 300. The distribution of
these 463,486 similarity values across all files in our dataset is shown in Figure 6. Due to
the uneven distribution of these values, a similarity threshold cannot be calculated using a
normal Gaussian distribution. Most similarity measure values were less than 10, which is
where the curve becomes level. This suggests that actual similarity between two files may
be indicated when their similarity measure is greater than 10.

Figure 6. Histogram of similarity matches across all files in our dataset.

Acquisition Research Program:
Creating Synergy for Informed Change - 12 -

Evaluating Similarities
To establish a baseline of what the similarity measure values are for similar files, we

calculated the mean similarity measures within and across file families. We tested whether
the similarity measure between files of the same file family was higher than the similarity
measure between files in different file families. The confusion matrix for file similarity across
all file families in our dataset is in Table 3. Rows and columns represent file families using
the numbers in the second column. The mean similarity measures between files within file
families is typically greater than the mean similarity between files in other file families,
showing that our approach for identifying file similarity is useful.

Table 3. Mean file similarity between file families.

T bl 4 F

No. 1 2 3 4 5 6 7 8 9 10 11 12
a0003775 dll 1 4.5 1.2 5.4 2.1 3.8 3.0 3.6 2.8 2.2 3.3 5.1 2.3
bthserv dll 2 1.2 3.7 1.2 0.7 0.7 0.7 0.5 0.7 0.6 0.3 0.9 0.6
ccalert dll 3 5.4 1.2 11.4 2.5 3.9 3.2 2.2 2.9 3.6 4.3 4.8 2.2
cdfview dll 4 2.1 0.7 2.5 10.0 1.3 1.1 1.6 2.2 1.8 0.9 1.7 0.8
dunzip32 dll 5 3.8 0.7 3.9 1.3 5.1 2.3 4.0 2.1 2.0 3.4 3.6 1.6
hotfix exe 6 3.0 0.7 3.2 1.1 2.3 8.5 1.3 2.0 1.4 3.8 3.1 1.6
iexplore exe 7 3.6 0.5 2.2 1.6 4.0 1.3 130.2 9.3 1.6 2.4 1.5 7.5
mobsync exe 8 2.8 0.7 2.9 2.2 2.1 2.0 9.3 6.1 1.5 2.3 2.7 1.6
msrdc dll 9 2.2 0.6 3.6 1.8 2.0 1.4 1.6 1.5 4.5 1.4 2.0 0.9
nvrshu dll 10 3.3 0.3 4.3 0.9 3.4 3.8 2.4 2.3 1.4 32.9 6.2 2.1
pacman exe 11 5.1 0.9 4.8 1.7 3.6 3.1 1.5 2.7 2.0 6.2 1.5 2.2
policytool exe 12 2.3 0.6 2.2 0.8 1.6 1.6 7.5 1.6 0.9 2.1 2.2 2.6
powerpnt exe 13 3.5 0.4 2.2 1.1 3.1 1.5 41.2 5.8 1.4 2.6 2.2 4.6
rtinstaller32 exe 14 3.4 0.9 4.1 2.0 3.6 2.0 1.6 2.3 2.2 2.3 2.8 1.2
safrslv dll 15 1.9 0.9 2.2 1.1 1.2 1.6 1.1 1.1 0.7 2.0 2.0 1.0
tabulate drive data py 16 0.1 0.1 0.1 0.1 0.1 0.1 0.2 0.1 - 0.1 - 0.3
typeaheadfind dll 17 0.9 0.6 1.3 0.7 0.4 0.3 0.4 0.5 0.7 0.1 0.7 0.5
udlaunch exe 18 2.9 0.4 3.3 1.1 2.5 - 1.3 1.7 1.8 3.3 3.0 -
vsplugin dll 19 3.0 0.6 3.4 1.0 2.0 2.5 4.0 1.8 1.2 3.2 3.0 1.6
webclnt dll 20 3.3 1.0 3.6 1.1 2.3 1.3 1.8 1.8 1.5 2.2 2.8 1.0
winprint dll 21 0.8 0.5 0.9 0.4 0.6 0.5 0.4 0.5 0.5 0.4 0.6 0.6
wmplayer exe 22 3.1 0.4 3.1 0.9 2.4 2.0 21.7 3.6 1.3 3.0 2.8 2.4
xrxwiadr dll 23 11.5 0.8 12.1 2.5 9.2 4.1 3.2 4.6 3.3 12.9 13.0 3.8

Family No. 13 14 15 16 17 18 19 20 21 22 23
a0003775 dll 1 3.5 3.4 1.9 0.1 0.9 2.9 3.0 3.3 0.8 3.1 11.5
bthserv dll 2 0.4 0.9 0.9 0.1 0.6 0.4 0.6 1.0 0.5 0.4 0.8
ccalert dll 3 2.2 4.1 2.2 0.1 1.3 3.3 3.4 3.6 0.9 3.1 12.1
cdfview dll 4 1.1 2.0 1.1 0.1 0.7 1.1 1.0 1.1 0.4 0.9 2.5
dunzip32 dll 5 3.1 3.6 1.2 0.1 0.4 2.5 2.0 2.3 0.6 2.4 9.2
hotfix exe 6 1.5 2.0 1.6 0.1 0.3 - 2.5 1.3 0.5 2.0 4.1
iexplore exe 7 41.2 1.6 1.1 0.2 0.4 1.3 4.0 1.8 0.4 21.7 3.2
mobsync exe 8 5.8 2.3 1.1 0.1 0.5 1.7 1.8 1.8 0.5 3.6 4.6
msrdc dll 9 1.4 2.2 0.7 - 0.7 1.8 1.2 1.5 0.5 1.3 3.3
nvrshu dll 10 2.6 2.3 2.0 0.1 0.1 3.3 3.2 2.2 0.4 3.0 12.9
pacman exe 11 2.2 2.8 2.0 - 0.7 3.0 3.0 2.8 0.6 2.8 13.0
policytool exe 12 4.6 1.2 1.0 0.3 0.5 - 1.6 1.0 0.6 2.4 3.8
powerpnt exe 13 76.0 1.5 1.0 0.2 0.2 1.5 2.8 1.7 0.3 12.6 8.2
rtinstaller32 exe 14 1.5 13.4 1.1 0.1 0.4 3.1 1.9 2.0 0.6 1.7 6.3
safrslv dll 15 1.0 1.1 3.3 0.1 0.8 - 1.4 1.2 0.6 1.1 2.6
tabulate drive data py 16 0.2 0.1 0.1 2.8 0.1 - 0.2 0.2 - 0.1 0.3
typeaheadfind dll 17 0.2 0.4 0.8 0.1 2.3 0.2 0.5 0.8 0.4 0.2 0.6
udlaunch exe 18 1.5 3.1 - - 0.2 - 2.1 0.9 0.5 2.2 3.6
vsplugin dll 19 2.8 1.9 1.4 0.2 0.5 2.1 3.2 1.7 0.5 2.7 3.5
webclnt dll 20 1.7 2.0 1.2 0.2 0.8 0.9 1.7 3.8 0.7 1.5 5.0
winprint dll 21 0.3 0.6 0.6 - 0.4 0.5 0.5 0.7 1.1 0.4 0.6
wmplayer exe 22 12.6 1.7 1.1 0.1 0.2 2.2 2.7 1.5 0.4 9.1 5.7
xrxwiadr dll 23 8.2 6.3 2.6 0.3 0.6 3.6 3.5 5.0 0.6 5.7 15.9

Acquisition Research Program:
Creating Synergy for Informed Change - 13 -

Although the greatest average similarity for a given file family is usually within that
file family, there are exceptions, as between file families a0003775_dll and xrxwiadr_dll.
This inconsistency could be due to the differences in file size or to other attributes within the
files in these two file groups. An example similarity analysis plot illustrating the problem is
Figure 7. Ranges of homogeneous texture vectors contain similar low mode counts and
moderately high entropy values, suggesting that our similarity measure is primarily attributed
to regions of compressed data rather than similarity in code. The few similarity matches in
other regions suggest that there is actually little similarity between these two files.

Figure 7. False-positive similarity between two files caused by homogeneous

compressed data.
Examining Similarity Using the Texture-Vector Browser GUI Tool

Our Texture-Vector Browser GUI tool can examine trends in file similarity based on
file creation times and file-similarity measures. Figure 9 shows an example. The horizontal
axis is the file modification time. This can be the time the file was created if it was never
modified, or the time it was modified by update or by contamination with a virus. The vertical
axis is the measure of similarity between the file the user selects and the other files in the
view, which if the Stay in group mode is selected, will be files within its family.

Acquisition Research Program:
Creating Synergy for Informed Change - 14 -

Files higher up on the vertical axis are more similar to the selected file than files
lower down on the vertical axis, where the similarity measure, as described in the section
Calculating Similarity Measures Between Files, is the value on the vertical axis. By clicking
on a node, the focus of the view changes to show the similarities between the file associated
with the clicked node and other files. By clicking on an edge, the view shows the similarity
graph involving the two files associated with the edge.

Using the node listing capability in the Texture-Vector Browser GUI and by sorting
the list by file group and modification time, we find and select the file in the ccalert_dll file
group with the latest timestamp, as shown in Figure 8.

Figure 8. Sorted Node Listing with Node 326 Selected

In our dataset, this file is named AE10-1158_Program_Files_Norton_AntiVirus_Engi
ne_18.5.0.125_ccalert.dll.tmp, indicating that it is on drive AE10-1158 from United Arab
Emirates. It is indexed in our similarity graph dataset as node 326 (in green).

The file naming convention is explained in the section Preparing the Dataset of
Executable Files. The graph in Figure 9 shows node 326 and its similar neighbors and
similar edges, where the similarity measure, described in the section Calculating Similarity
Measures Between Files, is 1.0 or more. The horizontal axis is the file modification time and
the vertical axis is the relative similarity between file (node) 326 and the other files. In this
graph, we see two clusters of similarity.

Acquisition Research Program:
Creating Synergy for Informed Change - 15 -

Figure 9. Files (nodes) and similarity measures (edges) associated with file node

326 showing modification times and similarity to node 326.
Figure 10 shows the analysis of the edge that connects nodes 326 and 312,

corresponding to Program Files/Norton AntiVirus Engine 18.5.0.125_ccalert.dll on drive
AE10-1158 and Program Files Norton AntiVirus Engine 17.0.136_ccAlert.dll on drive AE10-
1160. This display was obtained using the GUI by clicking on the edge shown in Figure 9
that connects these two files. The texture vector patterns appear very similar and the
similarity histogram spikes with a similarity count of nearly 370 near file offset 0, a large
number, indicating that these two files are similar. We can click on any of the yellow dots in
the GUI to select the file corresponding to it to compare other files against it.

Acquisition Research Program:
Creating Synergy for Informed Change - 16 -

Figure 10. A detailed comparison of files 312 and 326 showing a high degree of

similarity.
Composition Analysis
By looking at the five bands in the texture-vector diagram, we can make inferences

about the regions of executable code files being compared, in particular the locations of
header, code, and data sections. For Figure 10, for the first two textures, covering the first
1,000 bytes, the standard deviation, mean, mode, and entropy values are lower than the
values in other regions, while the mode count is higher. We infer that this represents a
header, and the transition in the texture represents a transition to another type of content.
The region from approximately byte 1,000 to byte 160,000 contains relatively medium
values of the standard deviation, mean, and entropy; mode values that are either very high
or very low; and consistently low mode counts. We infer that this is the code section. The
third region, from approximately byte 160,000 through to the end at byte 219,512, usually
has a low mode value, while values in the other four statistics vary but consistently with the
two files. We infer that this is a region of data mostly unchanged between version. We also
infer that the additional 10 KB added in the newer version was new code.

Acquisition Research Program:
Creating Synergy for Informed Change - 17 -

Progressive Time Similarity
Software files tend to be most similar to the previous version. Figure 11 shows an

example for the nvrshu_dlll file family. Here, the file with the latest timestamp, WINDOWS
system32 nvrshu.dll from the MY01-023 drive from Malaysia, is selected. We see sporadic
measures of similarity between 10 and 30 for files before year 2005, but for files after 2005,
we see a gradual increase in similarity over time from about 40 to 61.

Figure 11. Similarity increases as versions approach the latest version.
Version Analysis
With these diagrams, we can study on the origin and evolution of versions of files.

Although an original file should have the earliest file creation time, file creation times can be
modified inadvertently or maliciously. Another clue is that the original file often has the least
amount of code. Node 326 in Figure 9, file Program Files/Common Files/Symantex/Shared
ccAlert.dll.tmp from drive PA002-049 from Panama is likely the original file in its group
because its file modification time is earliest and its similarity to latest files decreases over
time.

A newer version of code that introduces new features is likely to contain more code
than the version before it. A newer version that is only a bug fix will be similar in size to the
version before it and will have similar texture-vector patterns as in Figure 10.

Files released at approximately the same time may be targeted for different
operating system platforms or different feature sets. For example, 13 files in the webclnt_dll
file family were released over two days, 2006-01-03 and 2006-01-04. This is too clustered to
be in response to new functionality or bug fixes. These files could be a response to a virus
because some of their file sizes are the same and their texture-vector patterns appear
identical. However, bear in mind our sample is incomplete and important versions of
software may be missing.

Acquisition Research Program:
Creating Synergy for Informed Change - 18 -

Examining Similarity Using Gephi
Although the Texture-Vector Browser GUI tool was specifically designed for

examining network graphs created from the dataset of similarity-graph files, graph analytics
can also be done with popular open-source tools such as the Gephi graph-visualization tool.

Conclusions and Future Work
Conclusions

This thesis proposed applying a vector of transforms to executable code to create
texture-vector data and then using analytics to identify similarities between executable files.
We tested a sample of executable code files with our methods. Our experiments showed
files within file families had greater average similarity than files across file families. We found
that the visual patterns in the texture vectors were effective in identifying similar regions in
two files as well as sections that may be compressed.
Future Work

This work used texture vectors calculated from a section size of 500 bytes. A large
section size might reveal similarity across a larger section of data, equivalent to applying a
low-pass filter to texture-vector values. A section size that is a power of two or is aligned to
the size of fixed-size data might naturally align better with the section boundaries from which
texture-vectors are calculated.

Texture vectors may be useful for classifying file types or detecting types of data
embedded within a file. Further work in this direction might consist of defining data patterns
that map to particular data types. The open-source tool Gephi offers many capabilities such
as filtering and neighbor analytics that can be used to augment the similarity analytics
provided by our tool.

References
Aghajani, E., Mocci, A., Bavota, G., & Lanza, M. (2017). The code time machine. In 2017

IEEE 25th International Conference on Program Comprehension (ICPC).
Arbuckle, T. (2008). Visually summarising software change. In 12th International

Conference Information Visualization.
Bergroth, T. R. L., & Hakonen, H. (2000). A survey of longest common subsequence

algorithms. In Proceedings of the International Symposium on String Processing and
Information Retrieval (SPIRE ’00) (pp. 39–48).

Burch, M., Diehl, S., & Weigerber, P. (2005). Visual data mining in software archives. In
SoftVis ’05 Proceedings of the 2005 ACM Symposium on Software Visualization (pp.
37–46).

Cabezas, D., & Mooij, B. (n.d.). Detecting source code re-use through a binary analysis
hybrid approach. Retrieved from
https://www.forensicmag.com/article/2013/02/detecting-source-code-re-use-through-
binary-analysis-hybrid-approach

Cole, R. (2018). Tight bounds on the complexity of the Boyer-Moore pattern matching
algorithm. London, England: Forgotten Books.

Defant, A. (2011). Classical summation in commutative and noncommutative lp-spaces.
New York, NY: Springer.

Garfinkel, S., Farrell, P., Roussev, V., & Dinolt, G. (2009, August). Bringing science to digital
forensics with standardized forensic corpora. Digital Investigation, 6, S2–S11.

https://www.forensicmag.com/article/2013/02/detecting-source-code-re-use-through-binary-analysis-hybrid-approach
https://www.forensicmag.com/article/2013/02/detecting-source-code-re-use-through-binary-analysis-hybrid-approach

Acquisition Research Program:
Creating Synergy for Informed Change - 19 -

Hadmi, A., Puech, W., Said, B. A. E., & Ouahman, A. A. (2012). Perceptual image hashing.
In University of Montpellier II (CNRS UMR 5506-LIRMM). France.

Jang, J., & Brumley, D. (2009). Bitshred: Fast, scalable code reuse detection in binary code
(CMU-CyLab-10-006).
Josse, S., Bachaalany, E., Gazet, A., & Dang, B. (2014). Practical reverse engineering: x86,

x64, ARM, Windows Kernel, reversing tools, and obfuscation. Indianapolis, IN: Wiley.
Koike, H., & Chu, H.-C. (1997). Vrcs: Integrating version control and module management

using interactive three-dimensional graphics. In Graduate School of Information
Systems University of Elect ro-Communications Chofu, Tokyo 182, Japan.

Kolosnjaji, B., Demontis, A., Biggio, B., Maiorca, D., Giacinto, G., Eckert, C., & Roli, F.
(2018, December). Adversarial malware binaries: Evading deep learning for malware
detection in executables. In Proceedings of the 26th European Signal Processing
Conference. Rome, Italy.

Rho, J., & Wu, C. (1988, December). An efficient version model of software diagrams. In
Proceedings 1998 Asia Pacific Software Engineering Conference (Cat. No.98EX240).
Taipei, Taiwan.

Rowe, N. C. (2018). Associating drives based on their artifact and metadata distributions. In
Proceedings of the 10th International EAI Conference (ICDF2C 2018). New Orleans,
LA.

Seemann, J., & Von Gudenberg, J. W. (1998, March). Visualization of differences between
versions of object-oriented software. In Proceedings of the Second Euromicro
Conference on Software Maintenance and Reengineering. Florence, Italy.

Shotts, W. (2019). The Linux Command Line. San Francisco, CA: No Starch Press.
Swierstra, W., & Lh, A. (2014). The semantics of version control. In Onward! 2014:

Proceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (pp. 43−54). New York, NY.

Voinea, L., Telea, A., & Van Wijk, J. J. (2005). Cvsscan: Visualization of code evolution. In
SoftVis ’05 Proceedings of the 2005 ACM Symposium on Software Visualization (pp.
47–56).

Wikipedia. (2020, February 4). Knuth-Morris-Pratt algorithm. Retrieved from
https://en.wikipedia.org/wiki/Knuth-Morris-Pratt_algorithm

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Using Texture Vector Analysis to Measure Computer and Device File Similarity

