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Abstract 
The acquisition of artificial intelligence (AI) systems is a relatively new challenge for the U.S. 
Department of Defense (DoD). Given the potential for high-risk failures of AI system 
acquisitions, it is critical for the acquisition community to examine new analytical and 
decision-making approaches to managing the acquisition of these systems in addition to the 
existing approaches (i.e., Earned Value Management, or EVM). Also, many of these systems 
reside in small start-up or relatively immature system development companies, further 
clouding the acquisition process due to their unique business processes when compared to 
the large defense contractors. This can lead to limited access to data, information, and 
processes that are required in the standard DoD acquisition approach (i.e., the 5000 series). 
The well-known recurring problems in acquiring information technology automation within the 
DoD will likely be exacerbated in acquiring complex and risky AI systems. Therefore, more 
robust, agile, and analytically driven acquisition methodologies will be required to help avoid 
costly disasters in acquiring these kinds of systems. This research identifies, reviews, and 
proposes advanced quantitative, analytically based methods within the integrated risk 
management (IRM) and knowledge value added (KVA) methodologies to complement the 
current EVM approach. 

Introduction 
Acquisitions of artificial intelligence (AI) systems is a relatively new challenge for the 

Department of Defense (DoD). Given the high risk of failure for such system acquisitions, it 
is critical that the acquisition community examines potential new approaches to help 
manage the AI acquisition life cycle. The well-known recurring problem in acquiring 
information technology within the DoD will likely be exacerbated in acquiring these complex 
and risky systems. The identification, review, and recommendation for use of new 
acquisition methodologies, to supplement or replace existing methodologies, should help 
avoid costly disasters in AI system acquisitions.  

AI has been in use in various commercial and governmental domains to address a 
variety of decision support problems. However, existing DoD acquisition frameworks may 
not be adequate to address the unique nature of AI systems life-cycle investments. AI 
systems are qualitatively different than standard automation systems that focus on routine, 
repeatable tasks. To develop acquisition frameworks for AI systems, it is first necessary to 
examine how AI systems will be used to support, or supplant, decision-makers. The purpose 
of this research project is to provide a set of quantitative and analytically based decision-
making methodologies for acquiring AI systems that address the inadequacies of the current 
investment acquisition life-cycle framework. 
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Research and Problem Statement 
The current problem at the DoD is that the complexity and speed of decision-making 

is increasing exponentially with the advent of intelligent systems that support or actually 
make decisions in time-critical, high-impact problem spaces. The current process 
management and control tools that a program manager (PM) might use to support 
acquisitions do not provide adequate warning of or sufficient information about the root 
causes of fiscal budgetary overruns and time schedule delays. This is a problem because 
PMs are, as a result, unable to respond to issues in a timely manner, delaying the delivery 
of promised capabilities to the services. Additionally, the money and resources spent in 
excess of the original budget could be used in other acquisition programs.  
Research Objective 

The purpose of this study is to better understand the possible causes of and 
solutions to the AI acquisition problem. This study will examine the strengths and 
weaknesses of several performance and project management methodologies. These 
methodologies, Earned Value Management (EVM), Knowledge Value Added (KVA), and 
Integrated Risk Management (IRM), are used to strategically and tactically plan, monitor in 
real time, measure, and preemptively forecast the value and progress of AI acquisitions. A 
review of these recommended project analysis and control methodologies will offer insights 
into the strengths and weaknesses each approach could offer acquisition professionals 
within the general phases of the Defense Acquisition System. This research could offer 
potential solutions to improve early warnings of cost and schedule overruns, and value 
opportunities foregone in the acquisition process. As such, this research focuses on the 
review of these methodologies and their applications to the acquisition process as they 
pertain to AI systems.  

The primary objective of the proposed research is to provide a set of 
recommendations for acquiring organically developed AI systems. This will be accomplished 
by performing a comparison and contrast analysis of the proposed methodologies. The 
result will demonstrate when and how each method can be applied to improve the 
acquisitions life cycle for AI systems, as well as to provide additional insights and examples 
of how some of these methods can be applied for any system acquisition.  

Literature Survey 
This section starts with a discussion of the Defense Acquisition System and the 

system acquisition life-cycle methodologies that might support the acquisition process. Each 
methodology is then described, providing a basic understanding of its purpose as well as 
how the method can be applied to the acquisition life cycle. This review provides a basic 
understanding of these methods, whereas the next section covers each methodology in 
more detail. 
Defense Acquisition System 

The DoD oversees the acquisition of new systems through the Defense Acquisition 
System, which manages national investment in technologies, programs, and product 
support for the United States Armed Forces (DoD, 2003). Its primary objective is “to acquire 
quality products that satisfy user needs with measurable improvements to mission capability 
and operational support, in a timely manner, and at a fair and reasonable price” (DoD, 
2003). Within the DoD Decision Support System there are three separate but interrelated 
processes: JCIDS, PPBE, and the Defense Acquisition System (DoD, 2017b). This research 
focuses on program management, versus contract management, within the Defense 
Acquisition System. 
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Acquisition programs are divided into different ACATs based on the type of program 
and the dollar amount that is spent or is projected to be spent within the program (DoD, 
2015a). Figure 1 shows the various cost-based designations and categories within the 
Defense Acquisition System. All dollar amounts for ACAT classifications are calculated in 
Fiscal Year (FY) 2014 dollars (DoD, 2015a). ACAT1 designates major defense acquisition 
programs with an estimated research, development, and test and evaluation expenditure 
(RDT&E) of more than $480 million, or more than $2.79 billion for the total procurement 
(DoD, 2015a). An ACATA designation is for major automated information systems that will 
exceed $520 million in total life-cycle cost, $165 million in the total program cost, or $40 
million for any single year of a program (DoD, 2015a). ACATII programs do not meet the 
criteria for ACATI and will spend more than $835 million in the total procurement (DoD, 
2015a) or more than $185 million in RDT&E. Finally, ACATIII programs are those not 
meeting the criteria for ACATI or ACATII designation (DoD, 2015a). The various 
designations allow for decentralized control of a program as each category has different 
reporting requirements and designated decision-makers (DoD, 2017). 

 
Figure 1. Acquisition Categories  

(DoD, 2017) 
There are five phases within the Defense Acquisition System: 

1. Materiel Solution Analysis (MSA)  
2. Technology Maturation and Risk Reduction (TMRR) 
3. Engineering and Manufacturing Development (EMD)  
4. Production and Deployment (PD)  
5. Operations and Support (OS)  

Requirements for new or improved capabilities, delivered through JCIDS, drive the 
acquisition process (DoD, 2015a). Figure 2 illustrates the relationship between the 
acquisition and capabilities requirement processes and their interaction in the various 
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acquisition phases. This study assumes the capabilities requested from the JCIDS process 
are accurate and necessary. 

 
Figure 2. Interaction of Capabilities Requirement and Acquisition Process  

(DoD, 2015a) 
Once an Initial Capabilities Document (ICD) has been validated, the Materiel 

Development Decision initiates the MSA phase (DoD, 2015a). This decision begins the 
acquisition process, although an acquisition program is not officially created until milestone 
B at the completion of the phase (DoD, 2015a). The purpose of the MSA phase is to choose 
the most promising potential solution for the acquisition process that will fill the needs of the 
ICD and to establish Key Performance Parameters (KPPs) and Key System Attributes 
(KSAs) for the system (DoD, 2015a). To accomplish this, an Analysis of Alternatives (AoA) 
is conducted to determine the suitability of potential acquisitions based on “measures of 
effectiveness; key trades between cost and capability; total life-cycle cost, including 
sustainment; schedule; concept of operations; and overall risk” (DoD, 2015a, p. 17). The PM 
is selected, and the Program Office established during this time (DoD, 2015a). Once the 
necessary analysis is concluded, the decision authority—usually the Defense Acquisition 
Executive, head of the DoD component, or Component Acquisition Executive unless 
otherwise delegated—determines whether the program will continue to the next phase 
based on the justification for the chosen solution, how affordable and feasible the solution is, 
how adequate the cost, schedule, and technical risk mitigation plan is, and how effective the 
acquisition strategy will be (DoD, 2015a). This decision is known as Milestone A (DoD, 
2015a). The MSA phase takes a broad look at the potential solutions to a stated need and, 
as such, may be an appropriate place to consider strategic methodologies like KVA or IRM. 

After approval at Milestone A, the program enters the TMRR phase to reduce the risk 
associated with the technology, engineering, life-cycle cost, and integration of the program 
to begin the EMD phase (DoD, 2015a). Design and requirement trades occur at this point 
that are based on the budget, schedule, and likelihood of completion (DoD, 2015a). Guided 
by the acquisition strategy approved at Milestone A, contractors develop preliminary 
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designs, including competitive prototypes if feasible within the program, to demonstrate the 
feasibility of their proposed solutions to the Program Office (DoD, 2015a).  

Technology Readiness Levels (TRLs) serve as benchmarks that indicate the level of 
risk associated with a solution reaching maturation per the schedule (DoD, 2015a). 
Technology Readiness Assessments (TRAs) are a systemic, metric-based method to 
evaluate the maturity and risk associated with the critical technology in an acquisition 
program (DoD, 2011). A TRA will assign a TRL for each critical technology in a program, 
ranging from 1 to 9 from the lowest to highest readiness level (DoD, 2011). Additional 
methods to assess the likelihood a program will remain on schedule and on budget may be 
beneficial at this stage, such as IRM. The Development Request for Proposals (RFP) 
Release Decision Point authorizes the release of an RFP with firm and clearly stated 
program requirements for contractors to submit their bids (DoD, 2015a). The Preliminary 
Design Review occurs prior to the completion of the TMRR phase unless waived by the 
milestone decision authority (DoD, 2015a). Milestone B approves a program to enter the 
EMD phase and awards a contract while establishing the Acquisition Program Baseline 
(APB) (DoD, 2015a). The APB describes the approved program, specifically the cost and 
schedule for the life of the program, and is a formal commitment to the milestone decision 
authority (DoD, 2015a).  

EMD begins once Milestone B is approved. During EMD, the materiel solution is 
developed, built, and tested to verify all requirements have been met prior to production 
(DoD, 2015a). Hardware and software designs are completed, and prototypes are built to 
identify any deficiencies in the design, which will be discovered during developmental and 
operational testing (DoD, 2015a). DoD acquisitions programs with a contract value greater 
than $20 million are required by federal regulation to use EVM to track and report the 
progress of the program, which begins during this phase (DoD, 2019a). Once a stable 
design that meets the specified requirements has been verified, the manufacturing or 
software sustainment processes and production capability must be properly demonstrated 
(DoD, 2015a). Milestone C confirms these requirements are satisfied and approves entry 
into the PD phase (DoD, 2015a). 

The objective of the PD phase is to deliver a product that fulfills the requirements 
specified in the earlier stages (DoD, 2015a). Initial operational deployment and testing 
occurs with Low Rate Initial Production (LRIP) for manufactured systems or limited 
deployment for more software-intensive programs where the system undergoes Operational 
Testing and Evaluation to verify stated requirements were met (DoD, 2015a). Once satisfied 
with the fielded systems, full-rate production begins and the product is deployed to 
operational units (DoD, 2015a). Design changes are limited at this point, although some 
changes may still occur based on noted deficiencies (Housel, Mun, Carlton, & Jones, 2019). 
Contracts typically revert to a fixed price strategy during this phase, reducing the PM’s focus 
on cost and schedule variance (Housel et al., 2019). 

OS is designed to maintain support for the product and sustain its performance 
throughout its life cycle, ending with the disposal of the system (DoD, 2015a). OS overlaps 
with the PD phase since operational units are using the product while production continues, 
beginning after the production or deployment decision (DoD, 2015a). PMs will sustain the 
system using the Life Cycle Sustainment Plan (LCSP) developed during the acquisition 
process, providing the necessary resources and support to keep the system operational 
(DoD, 2015a). Sustainment and support may include technological upgrades, changes due 
to operational needs, process improvements, and other activities that may require updates 
to the LCSP (DoD, 2015a).  
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There are six different models, four standard and two hybrid, that PMs use to create 
their program structure, depending on the type of system being acquired (DoD, 2015a). 
These standard models are templates for hardware-intensive programs, software-intensive 
programs that are defense unique, incrementally deployed software-intensive programs, and 
accelerated acquisition programs (DoD, 2015a). As shown in Figure 3, the hybrid models 
mix the incremental nature of software development within a hardware-centric program. In 
this model, software development is organized via a series of testable software builds that 
will culminate with the fully required capability before reaching the Initial Operating 
Capability (DoD, 2015a). The incremental builds are synchronized with hardware testing 
requirements for prototypes and other developmental requirements (DoD, 2015a). Other 
models, with the exception of the accelerated program, use the same basic framework 
within the five phases. 

 
Figure 3. Hardware-Dominant Hybrid Program  

(DoD, 2015a) 
AI and IT systems are increasingly prevalent throughout the DoD along with their 

connection to weapon systems, facilities, and Command, Control, Communications, 
Computers, Intelligence, Surveillance, and Reconnaissance (C4ISR; DoD, 2015b). With the 
integration comes an increased security risk from adversaries, elevating the importance of 
effective cybersecurity capabilities and practices (DoD, 2015b). The DoD manages 
cybersecurity policy through the Risk Management Framework (RMF) by applying security 
controls founded on risk assessments throughout the life cycle of a system (DoD, 2015b). 
RMF applies to “all DoD IT that receive, process, store, display, or transmit DoD information” 
(DoD, 2014, p. 2). Cybersecurity within RMF is more than simply information security, 
including items such as stable and secure engineering designs; training and awareness for 
all users, maintainers, and operators of a program; and the response, recovery, and 
restoration of a system following an internal or external failure or attack (DoD, 2015b). The 
RMF occurs throughout the acquisition process, and Figure 4 illustrates the six steps of its 
process.  

Artificial Intelligence 
Artificial intelligence (AI) does not refer to a specific thing. It is a broad nomenclature 

for a collection of related inorganic computer science methods used to simulate intelligence. 
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The term AI typically conjures up the nebulous concept of machine learning, which, in 
reality, is a subset of AI where a computer system is programmed to identify and categorize 
external real-world stimuli. The DoD’s AI strategy defines AI as “the ability of machines to 
perform tasks that normally require human intelligence—for example, recognizing patterns, 
learning from experience, drawing conclusions, making predictions, or taking action—
whether digitally or as the smart software behind autonomous physical systems” (DoD, 
2019). This capability of enhanced automation is of great interest to the DoD as potential 
future near-peer adversaries, such as Russia and China, are investing heavily in this field for 
military purposes (DoD, 2019).  

Given the large AI field of study, the current research study focuses on the AI 
processes that are deemed most appropriate for procurement, which may include 
applications of Machine Learning (ML), Natural Language Processing (NLP), and Robotic 
Process Automation (RPA). Figure 5 shows that AI itself is a combination of AI sciences, 
such as ML and NLP, and while RPA benefits from AI application, RPA does not simulate 
human intelligence, but rather, it just mimics capabilities. 

 
Figure 4. Risk Management Framework Process  

(DoD, 2014) 
  

A Brief History of AI 
Formally founded in 1956, the science of AI was created to determine if inorganic 

machines could perform human-level intelligent functions (Denning, 2019). It went through 
several hype cycles, due primarily to sensationalizing of what it might be able to do, with 
frequent disappointments. Significant enthusiasm for AI reemerged at the same time that 
Big Data computing power became more accessible to researchers and companies, which, 
in turn, could apply the science to multiple tangible applications (Haenlein & Kaplan, 2019). 
Currently, examples of commercially viable applications of AI exist in manufacturing robots, 
smart assistants, proactive healthcare management, disease mapping, automated financial 
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investing, virtual travel booking agents, social media monitoring, conversational marketing 
bots, NLP tools, and contract management (Daley, 2019). 

 
Figure 5. AI Terms and Relationships  

(Sievo, 2019) 

 
Figure 6. The Timeline of Interest in AI During Different Phases of its 

Development  
(Denning, 2019) 

Machine Learning 
Intelligence is the capacity to process a certain type of information, allowing a 

processor to solve problems that are of consequence (Gardner, 1993). Multiple types of 
intelligence have been proposed by psychologists beyond the classic understanding of a 
person’s intelligence quotient (IQ), which can sometimes only measure how well someone 
takes an IQ test instead of one’s innate abilities. Howard Gardner proposed a theory of 
multiple intelligence, which suggests that the traditional psychometric views of intelligence 
are too narrow and should include more categories where certain processors, people in this 
instance, are stronger than others at making sense of different stimuli. These categories of 
intelligence include visual-spatial, linguistic-verbal, interpersonal, intrapersonal, logical-
mathematical, musical, body-kinesthetic, and naturalistic (Gardner, 1993). An argument 
against this proposition would be that these categories merely represent learned and 
disciplined behaviors that someone developed in their life as a result of personality and 
circumstances. Regardless, both concepts of intelligence (classic and multiple) play well into 
what steps are taken to make a machine with artificial intelligence.  
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A computer is capable of performing calculations based on the data provided and 
ultimately returns a result. It can be programed and coded to follow certain steps or 
algorithms repeatedly, and even to alter its findings based on its own previously calculated 
results through some error correction algorithms. A combination of these two steps is the 
basic concept of machine learning. A computer system is first fed data structured in a way 
that the algorithm is programmed to recognize, derive patterns from the data, and make 
assumptions about any unstructured data provided subsequently (Greenfield, 2019). Figure 
7 shows how this works in an x-ray learning algorithm. 

 
Figure 7. AI Training Algorithm  

(Greenfield, 2019) 
The image shows the steps an AI algorithm goes through in order to make a 

recommendation to a physician on where a missing body part should be. It takes in 
structured data and develops its understanding of what “right” looks like. When given 
unstructured data, it compares the image against previously trained models and identifies 
the abnormality with a recommendation on where to apply a fix, such as a prosthetic. 

Supervised Learning 
An algorithm is taught the patterns using past data and then detects them 

automatically in new data. Supervision comes in the form of correct answers that humans 
provide to train the algorithm to seek out patterns in data. This is commonly used within 
procurement areas such as spend classifications (Sievo, 2019). 

Unsupervised Learning 
The algorithm is programmed to detect new and interesting patterns in completely 

new data. Without supervision, the algorithm is not expected to surface specific correct 
answers; instead it looks for logical patterns within raw data. This is rarely used within critical 
procurement functions (Sievo, 2019). 

Reinforcement Learning  
The algorithm decides how to act in certain situations, and the behavior is rewarded 

or punished depending on the consequences. This is largely theoretical in the procurement 
context (Sievo, 2019). 

Deep Learning  
An advanced class of machine learning inspired by the human brain where artificial 

neural networks progressively improve their ability to perform a task. This is an emerging 
opportunity in procurement functions (Sievo, 2019). 
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Human–Machine Partnership 
DARPA believes AI integration is critical as a human–machine symbiosis because 

sensor, information, and communication systems generate data at rates beyond which 
humans can assimilate, understand, and act on (DARPA, 2019). As was the case in the 
industrial revolution, machines are better at certain activities and using machines for those 
activities frees humans to become productive in other areas. Humans and machines excel in 
separate areas of processing. Consider these comparisons between computers and 
humans: calculate versus decide; compare versus make judgments; apply logic versus 
empathize; unaffected by tedious monotony versus having preferences; deals with large 
data versus intuitional focus on what is most important (Darken, 2019). And while AI 
performs well in some tasks, it works better with a human partner. Without proper controls, 
AI is a gullible learning system and can be vulnerable to being deceived by bad actors. 
Some studies show that AI can be fooled in a way that humans would not be due to human 
intuition. Other research has been able to fool a self-driving car into thinking a benignly 
tampered with stop sign was a speed limit sign (see Figure 8), which would undoubtedly 
lead to collisions if the car were left unsupervised (Eykholt et al., 2018).  

Many people are familiar with current intelligent machine partnerships that they, 
unknowingly, may experience on a daily basis. As discussed with its other applications, 
Google is the most popular search engine on the Internet because it provides better 
satisfaction to users than its competitors (Shaw, 2019). Google is so common as the 
preferred search engine that when someone talks about searching for something online, 
they refer to it as “Googling.” This is a good example of people interacting naturally with an 
AI system that uses Bidirectional Encoder Representations (BERT; Nayak, 2019). This is a 
technique that teaches a machine to not answer the user’s question based on individual 
words but rather, on their meaning in the context of the question. For example, when asking 
what time it is right before lunch, the user is not asking for the actual time, but is really 
asking when they can eat; the outright answer would give the actual time, whereby the asker 
will deduce eating time, which was the underlying meaning of the question. So-called self-
driving vehicles provide another example of human interaction with intelligent machines. For 
the most part, the user sits in a supervisory role while the car takes over one of the most 
dangerous events in that person’s life and autonomously conducts all road tasks to drive 
(Darken, 2019).  

If contractors relied on an AI system to make all of the decisions for them, they would 
be susceptible to purposive misdirection by enemies introducing adversarial information for 
either competitive advantages or disruptions. Fraudsters can learn how to exploit computer 
algorithms, but only humans can judge the actions that result. What AI software can do, 
however, is easily extract data and clarify the content of contracts. It can quickly pull and 
organize the renewal dates and renegotiation terms from any number of contracts. It can let 
companies review contracts more rapidly, organize and locate large amounts of contract 
data more easily, decrease the potential for contract disputes and antagonistic contract 
negotiations, and increase the volume of contracts companies are able to negotiate and 
execute (Rich, 2018). 
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Figure 8. AI System Interpreting a Stop Sign  

(Eykholt et al., 2018) 
Cloud-Based AI 

To understand how AI can be propagated throughout a system and update 
regulations and learn from multiple human teachers instantly, we look at the concept of 
cloud computing. The speed of relevance is a popular term in discussing DoD technology 
adoption. In the 2018 DoD Cloud Strategy, the term cloud refers to an offsite physical IT 
infrastructure. This external infrastructure communicates with a user’s computer through the 
Internet to access data servers that store information and run operating systems, such as 
Microsoft Windows, which are centrally maintained. This means that every user has the 
same software computing power and access to the most up-to-date software at all times and 
is not limited by their organization’s IT professional talent or budget for new software. 
Organizations can get as much, or as little, access to what they need for projects and are 
unaffected by times of surging need or times of idleness, which currently add excess cost to 
DoD systems (Shanahan, 2018). The objective for DoD is to have AI-augmented rapid 
decision-making, in an environment where data is secure and visible for enhanced 
operational efficiency.  

Data stored in an enterprise DoD cloud will be highly available, well-
governed, and secure. Data will be the fuel that powers those advanced 
technologies, such as ML and AI. This critical decision-making data will be 
made available through modem cloud networking, access control, and cross 
domain solutions to those who require access. Common data standards will 
be a key part of the Department’s methodology for tagging, storing, 
accessing, and processing information. Ensuring an enterprise cloud 
environment will increase the transparency of this data, and drive the velocity 
of data analysis, processing, and decision making. Leveraging advances in 
commercial cloud security technologies will ensure the Department’s 
information is protected at the appropriate level. (Shanahan, 2018, pp. 5–6) 

Private Sector AI Application to Contracting 
To compare solutions to the DoD acquisition problem, we examine similar 

circumstances in the U.S. private sector. Lawgeex is an example of a company that is 
applying the AI integration process in the private industry procurement world. It 
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demonstrated that its AI software could outperform U.S. trained lawyers on an example 
contract aspect, the Non-Disclosure Agreement (NDA), with an average accuracy of 94% as 
compared to 85% for humans (Lawgeex, 2018). The study was conducted to respond to a 
common business problem in large companies that rely on contracts to engage with 
partners, suppliers, and vendors having an 83% dissatisfaction rate with their organization’s 
contracting processes (Lawgeex, 2018). Another example is Icertis, a company that services 
large and commonly familiar companies such as 3M, Johnson & Johnson, and Microsoft, to 
list a few (Icertis, 2019). Icertis provides its customers with a cloud-based AI platform that 
learns from contracts provided by the client, along with control measures, to create and 
assist in contract setup; contract operations; governance, risk, and compliance; and 
reporting (Icertis, 2019).  

What makes this possible now, instead of when it was first theorized decades ago, is 
that industry is more accustomed to storing professional documents on a digitally accessible 
storage platform, whether local hard drives or the cloud (Betts & Jaep, 2017). Currently, the 
major hurdles that prevent a fully automated contract review and analysis process are 
nontechnical, such as the collection of contract performance data; publication of private 
contracts and their corresponding performance data; and changes in ethical constraints on 
computer usage in legal practice (Betts & Jaep, 2017). The authors of these obstacles also 
offer possible policy solutions to address them: start using contract management software 
that will be a forcing function to create data in an AI teachable format; expand copyright 
protection for vendors to protect their intellectual property; and create new rules to help 
mitigate AI risks to enable its ability to work (Betts & Jaep, 2017).  

Methodologies 
Earned Value Management 

EVM offers numerous advantages to PMs using the methodology to track the 
progress of a project. When properly implemented, it provides an early warning of potential 
issues within a program and a forecast of the total cost and schedule requirements (Fleming 
& Koppelman, 2010). Research has shown that the CPI (cost performance index) stabilizes 
within a 10% range after a project reaches the 20% completion point (Christensen, 1998). 
The 20% stabilization point holds true across various contract types, programs, and services 
(Fleming & Koppelman, 2010). This early indication provides PMs a reliable prediction of the 
project’s final costs (Fleming & Koppelman, 2010). The low range of the cost overrun is the 
current cost plus the remaining scheduled cost (Fleming & Koppelman, 2010). The high end 
of the costs is the budgeted cost divided by the CPI, which is a more accurate estimate 
unless extenuating circumstances caused the overrun (Fleming & Koppelman, 2010). SPI 
(schedule performance index) also provides an indication of future cost increases. An 
unfavorable SPI indicates spending will grow larger than initially planned to reduce the 
schedule variance (Christensen, 1998).  

Each component has a cost and schedule associated with its completion that feed 
into the overall completion of the project. Since the baselines are established prior to work 
beginning on any subcomponents, management can create well in advance a detailed 
timeline with the expected cost necessary to achieve the tasks. Having such a thorough plan 
allows the PM to focus on the areas that are reporting discrepancies in their CPI and SPI, 
without the benefits of a quantitative value metric, rather than concentrating on all areas of 
the project. They can interact when there are issues with a component, trusting the aspects 
of a project that are on schedule and on budget to remain performing well, that is, producing 
an acceptable level of value. Instead of actively controlling all parts of the project, they can 
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spend their limited time correcting issues with portions that have unfavorable SV and CV. 
The key metrics allow PMs to manage by exception. 

Using a WBS to assign, track, and complete tasks facilitates the accurate and timely 
reporting of a project’s cost and schedule performance, but not its value to cost 
performance. The use of the existing common EVM approach facilitates communication 
between the PM and the contractor with regard to cost and schedule. Since the individual 
components of a project are broken down into small subsections that must be completed, 
management can more easily communicate with contractors concerning discrepancies with 
subcomponents. This breakdown allows a PM to assign resources and facilitates 
subsequent tracking of a system’s cost and schedule progress without creating additional 
reporting requirements. Given that reporting on the status of a program through EVM is 
required by law, managing with the same system reduces administrative requirements 
(Christensen, 1998). Managing from one methodology while reporting from a different 
system is a more difficult and costly way to conduct business (Christensen, 1998). EVM 
gives managers a single system to track cost, completion, and project schedule 
performance, centralizing the control system while allowing lower level managers to oversee 
their sections with the same limited metrics. 

Simplicity is a key attribute of the EVM methodology. The process is broken down 
into three main variables: money, time, and work completed. The key metrics managers use 
to assess a project are simple ratios derived from these cost and schedule parameters. 
Determining the performance of the project is as easy as determining how much money has 
been spent to complete the current amount of work at a given time. The methodology readily 
scales from the overall project to individual components without changing reporting 
requirements; managers simply compile the component reports into an aggregate report. 
However, in AI programs, it can be more difficult to determine if the work is completed 
satisfactorily (i.e., did it produce expected value?) and in accordance with the stated 
requirements, as seen in the JTRS acquisition. 

One of the most important attributes of EVM is the combination of schedule and cost 
performance. Traditional cost management approaches reflect a project’s funding 
performance and not the true cost of the program (Fleming & Koppelman, 2010). Flexible 
budgets also give management the option to vary the budget for work based on the actual 
valued output level (Christensen, 1998). EVM differs from a flexible budget by including the 
time dimension in its calculations. It puts the schedule variance into a cost dollar amount, 
quantifying delays. The amount of money spent completing a project is important, but it does 
not show the complete picture. If an initiative is on or under budget yet is delivered seven 
years later than promised, it did not perform well despite the potential cost savings. Cost 
monetizing the scheduled time gives the PM the ability to determine how much a delay will 
cost, providing greater flexibility within management decisions. However, this approach does 
not guarantee that value has been provided at an acceptable returns level. 

EVM has proven to be an effective management system in traditional manufacturing 
processes. However, in FY2008, the U.S. federal IT portfolio contained 346 major IT 
programs worth approximately $27 billion that received a rating of “unacceptable” or are on 
the “Management Watch List” (Kwak & Anbari, 2012). This suggests there is significant 
room for improvement within the current AI acquisition process. AI projects are not 
developed in the same manner as projects that do not process variable information. When 
building a warehouse, a contractor uses the architect’s blueprints to determine exactly how 
many bolts will be needed for each beam and how long it will take to install each item. 
Combining each subprocess, which consist of known cost/schedule parameters, the 
manager can establish a baseline with a high degree of accuracy. However, when a 
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program involves writing code, the process is more complicated due to the relative creativity 
of the programmers to generate elegant code. Keeping with EVM principles, the desired 
outputs for a highly structured program are known before work begins and the plan to 
accomplish those steps can be created and mapped out prior to construction of the code. 
However, the time required to write, test, debug, and retest the computer code can vary 
significantly between projects and individuals, leading to significant variability. Using the 
EVM system that measures the overall progress of a program based on the completion of 
subcomponents compared to a baseline established well before work began is not an 
accurate assessment for projects such as AI programs that do not progress linearly, but 
rather, progress iteratively with highly variable production processes.  

The requirements in large AI projects are often not well defined, leading to cost and 
schedule overruns. For instance, JTRS (joint tactical radio system) used LOCs (lines of 
communication) to create the baseline. However, LOC can vary drastically from one 
programmer to another or between programming languages. While there are industry 
standards for estimating the number of LOCs, there is still variance between each individual 
creating a software program. In a traditional manufacturing application of EVM, a WBS 
containing the task “turn on the light” would have schematics and plans associated with the 
task so that any qualified worker could complete the work. In an AI program, turning on the 
light via a software program could be completed in any number of ways and still meet the 
specifications. This simplistic example illustrates issues that will develop when using EVM to 
manage a more complicated IT-based project, such as creating a software defined 
waveform. 

One of the core principles of EVM is maintaining the baseline of a program 
throughout the life of the project, allowing for consistent and accurate measurement of a 
project’s cost/schedule progress. Adding requirements or changing the specifications of 
certain components can alter the trajectory of a program entirely. While any program will 
need to make adjustments when scope creep occurs, EVM is particularly ill-suited to make 
these modifications midstream for AI-type projects. If new requirements are added to a 
program or existing requirements changed after the baseline is established, especially after 
work commences, the baseline is no longer useful as a point of comparison. More often than 
not, there will be additional costs and longer timelines required to fulfill the new 
specifications. This will change the ACWP while leaving the BCWS the same. As the actual 
costs increase and schedule expands compared to the baseline, the main performance 
metrics (CV, CPI, SV, and SPI) are negatively impacted, even if the newly added 
requirements add value or are completed on time and on budget. EVM does not function 
well in projects with changing scope or requirements.  

When developing JTRS, much of the software had never been written or created, 
calling on developers to estimate the cost and schedule for the various components. To 
account for the possibility it may not be completed in time, the engineer or PM may add one 
additional week to something originally thought to take three weeks, accounting for some 
risk of the unknown. Should overruns occur in other areas, PMs often remove this risk factor 
from their calculations to improve their performance compared to the baseline. This 
omission eliminates much of the risk mitigation the program originally established, eventually 
leading to further discrepancies to the original CV and SV estimates. However, when 
creating a complex product based on the assumption of future technological advancements, 
as in JTRS, there is a high degree of risk. Presuming all tasks will be completed on schedule 
without additional schedule risk mitigation is a misguided assumption to make after previous 
components of the project have already fallen behind schedule.  
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EVM functions well as a tool to monitor the cost and schedule of programs 
developed in waterfall or parallel design methods. In alternative design methodologies, such 
as agile or iterative designs, EVM does not provide the same level of flexibility to project 
managers. EVM does not require a particular development approach and can be used in 
any system that uses a baseline plan specifying schedule and cost (DoD, 2018). 
Techniques such as agile EVM and scrum attempt to use a more iterative approach typical 
of the software development process but are still using the same EVM concepts with tasks 
broken into various work packages. By assigning a budget and timeline to specific features 
within an AI initiative, PMs may use EVM to oversee progress. As each feature is 
completed, value is earned and the EVM metrics are updated. However, within the specific 
features and components of a program, EVM is not as useful. As previously mentioned, the 
specifics of writing computer code are not as cut and dry as a typical well-structured physical 
product project. If two capabilities written in parallel both work individually, it is still possible 
there will be issues when combining the features in the final project output. To reduce this 
risk, PMs feel forced to add time in their schedule. This can be done by scheduling multiple 
increments that are planned, designed, coded, tested, and demonstrated (DoD, 2018). 
While this is a viable way to use EVM in agile design, it is not as accurate or precise as an 
EVM program in a brick-and-mortar, physical product type project. 

As discussed above, the metrics within EVM are simple to understand and use to 
make management decisions regarding cost and schedule. However, for the metrics to be 
accurate, the cost and schedule must be accurate to a great level of detail. WBSs for 
multibillion-dollar programs often cover all items from the strategic overview down to small 
tasks within the project. Creating such a detailed list of requirements for each component 
within a system is both timely and costly. While the result may be a simple schedule with 
easily discernible metrics, the initial setup process to establish the baseline can be 
immense. 
Knowledge Value Added (KVA) 

KVA is an objective, quantifiable method to measure the value produced by a system 
and the subprocesses within the system. The value measurements of each process are ratio 
scale numbers, allowing analysts to compare them with the values from other subprocesses 
to determine their relative effectiveness. KVA converts the outputs of all processes into 
common value units allowing a standard productivity performance ratio, that is, output/input 
across all processes. PMs can determine the value generated from the human component 
against the value added by IT processes. Because of the scales, PMs can use these 
measurements to develop useful ratios in their analysis of the program’s performance. 
Productivity ratios include return on knowledge (ROK), where the output of a process is 
divided by the process cost required to produce the output, and return on investment (ROI), 
which is the monetized output minus cost divided by cost. The ROKs and ROIs, which are 
always 100% correlated, give managers information about the amount of value a process 
generates compared to the amount of money spent to create the value. Unlike any other 
methodology, KVA assigns these figures to both the process and subprocesses rather than 
only the firm as a whole (as is done in standard generally accepted accounting practice). 

Conducting an analysis of a program using KVA will give a PM a clearer picture of 
the value of the operational components of the program. While organizations likely have 
cost/schedule metrics used to determine the performance of a project or operation, ROK will 
give them additional value-based information to improve their management decisions. PMs 
can determine the relative value of the components that comprise the program. Knowing a 
particular job or subprocess gives the same output value as a different process but at a 
different cost may provide context for understanding the variations in the performance of the 
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overall system. This, in turn, gives experienced managers the information needed to allocate 
resources to specific components of a program that need improvement or should be utilized 
more frequently, resulting in greater value added.  

While a KVA analysis can provide information that will change the course of a 
program or project, it does not require significant changes to organizational structure or 
reporting processes to do so. The evaluation can be conducted during normal operating 
conditions without introducing complicated new metrics into the system. The learning time, 
process description, or the binary query method are all based on information that should be 
available within the organization. A small amount of hands-on measurement may be 
required to verify the accuracy of the given data. As such, the analysis can be done quicker 
than the other methodologies, giving PMs access to actionable information more rapidly. 

KVA will give analysts a quantifiable, ratio-scale number for the value of the 
subprocesses. However, it does this only with processes that consist of known a priori 
outputs. The intangible items, such as creativity and imagination, that occur within the 
human brain cannot be quantified with this method, or any other method for that matter. In 
fact, no current system is able to accurately quantify these types of intangibles within a 
process because there is no algorithm for creativity. These factors are not common to the 
average user and as such, cannot be defined via any of the KVA methods—learning time, 
binary query, or process description—because the creativity process cannot be learned or 
described. However, this was only possible after the system was completed and described. 
KVA will assign the value of the process but it cannot predict the value of potential outputs, 
only those that are specified a priori. 

Although KVA will provide ratio-scale numbers to aid in evaluating processes within a 
program, the ratios are often only valid for comparisons within the same analysis. 
Benchmarking the raw numbers with other organizations or with different divisions in the 
same organization will provide a usable comparative performance assessment depending 
on the techniques used when determining the ROK. Regardless of the language of 
description for outputs, the resulting ROK and ROI measures will be comparable just as they 
are among industries that produce different products or services. Because these 
descriptions of outputs are in common units, they can be treated as constants across all 
processes. The final results of any properly conducted analysis will return comparable ROK 
and ROI estimates, which is the ultimate goal of KVA. 
Integrated Risk Management 

All organizations depend heavily on project planning tools to forecast when various 
projects will complete. Completing projects within specified times and budgets and a given 
value is critical to facilitate smooth organizational operations. In our high-technology 
environment, many things can impact schedule. Technical capabilities can often fall short of 
expectations. Requirements may be insufficient in many cases and need further definition. 
Tests can bring surprising results––good or bad. A whole host of other reasons can lead to 
cost increases, schedule slips, and value variability. On rare occasions, we may run into 
good fortune and the schedule can be accelerated without harm to the productivity of the 
project outcome.  

Project schedules are inherently uncertain, and change is normal. Therefore, we 
should expect changes and find the best way to deal with them. So why do projects always 
take longer than anticipated? One reason is inaccurate schedule estimating. The following 
discussion presents a description on shortcomings in the traditional methods of schedule 
estimation and how simulation and advanced analytics can be applied to address these 
shortcomings. 
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It is important to first understand the Integrated Risk Management (IRM) process and 
how the techniques involved are related in a risk analysis and risk management context. 
This framework comprises eight distinct phases of a successful and comprehensive risk 
analysis implementation, going from a qualitative management screening process to 
creating clear and concise reports for management. The process was developed by the 
author (Dr. Mun) based on previous successful implementations of risk analysis, forecasting, 
real options, valuation, and optimization projects both in the consulting arena and in 
industry-specific problems. These phases can be performed either in isolation or together in 
sequence for a more robust integrated analysis.  

We can segregate the process into the following eight simple steps (Mun, 2016): 
1. Qualitative Management Screening 
2. Forecast Predictive Modeling 
3. Base Case Static Model 
4. Monte Carlo Risk Simulation 
5. Real Options Problem Framing 
6. Real Options Valuation and Modeling 
7. Portfolio and Resource Optimization 
8. Reporting, Presentation, and Update Analysis 

Comparison of Key Attributes 
Choosing a methodology should depend on the nature of the project under 

consideration, specifically, the commitment needed from the organization, the organization’s 
desire to align strategic goals with the project, the predictive capability of the methodology, 
the flexibility required, and the time available. While others in the organization need to 
understand the concepts to comprehend status reports, EVM only needs the management 
team to track the cost and schedule of the project compared to the baseline as there is no 
goal alignment with the organization. While the CPI and SPI can help estimate the final cost 
and schedule, there is no true predictive ability associated with EVM since the assumption is 
that the schedule will proceed according to the baseline, regardless of previous 
performance. Adherence to the baseline is essential in EVM, and changing requirements 
can drastically alter a baseline, reducing the effectiveness of the methodology. Setting up, 
monitoring, and reporting the cost/schedule performance of each work package within the 
WBS can be a time-consuming and expensive task. KVA needs only the KVA analyst and 
the process owner, as the subject matter expert, to determine the value of a process’s 
output, supporting the need to align the project with an organization’s productivity goals. 
Using this analysis, they can model the current baseline as-is process ROK and compare it 
with the proposed to-be process model ROK, thus offering a simple prediction of the 
improvement between the models. Since KVA can be used with any language of description 
to define the process outputs, analysts can choose whichever method is most beneficial for 
the particular system in question, providing flexibility. This analysis can be completed 
quickly, potentially providing a rough-cut assessment within a few days. IRM requires the 
organizational leadership, portfolio and project managers, and the analyst to determine how 
a project fits within an organization’s portfolio, the present value (PV) of the project, and 
potential real options. By analyzing and simulating various scenarios, IRM provides a 
prediction of a project’s likely performance, which allows managers to build in flexibility via 
real options at the appropriate locations within the project. Assuming the data necessary for 
the analysis is available, the process can be completed in a relatively quick manner.  
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Methodologies in AI Acquisition 
As previously discussed, the methodologies all have strengths and weaknesses, 

making them more suitable in certain applications than others. The biggest challenge in 
using EVM when acquiring AI is the iterative nature of software development. EVM needs 
clearly stated, detailed requirements for intermediate steps to be most effective. While the 
outputs of software programs are defined well, the steps required to build the software are 
not, leading to issues when developing cost and schedule estimates. If the software is not 
complex or consists of known processes, EVM can sufficiently monitor the progress. 
Integrating software and hardware is also complicated with EVM since there are numerous 
pieces of the program that must be combined to meet the goals, resulting in additional 
debugging and recoding. EVM is more efficient when used to manage the physical creation 
of systems or infrastructure. It can monitor the cost/schedule progress of software work 
packages but is not as useful at estimating the value of those programs until the 
requirements have been delivered. KVA can provide an objective, ratio-scale measure of 
value and cost for each core process and its subprocesses within any IS system. Using the 
two measurements, managers can then analyze productivity ratios information, such as 
ROK and ROI, to determine the efficiency of a process compared to the resources used to 
achieve the output. This can help the manager decide how to use resources to update 
systems or estimate the future value of a system being acquired. Combining the KVA results 
with IRM allows managers to iterate the value of system real options analysis through 
simulation and other techniques. IRM can also quantify risks and forecast performance 
probabilities for measures of the potential success for programs and components of 
programs using historical data. It is a tool to assist with the investment strategy, making it 
useful when acquiring all types of AI. However, it is not designed to help manage the actual 
acquisition of an AI program or to determine how to meet its detailed requirements. 
Summary 

Examining the benefits and challenges of the proposed methodologies demonstrates 
the scope, capabilities, and limitations of various AI systems. It also helps inform in which 
areas and phases of the Defense Acquisition System life cycle it may be appropriate to 
include the methodologies or components of the methodologies within the system. The next 
section provides recommendations based on these findings.  

Conclusion 
The main question of this research was, simply, how can certain advanced analytical 

decision-making methodologies be used in the acquisition life cycle to complement existing 
methods to ensure a successful acquisition of AI technologies? 

As discussed, EVM remains the only program management methodology required by 
the U.S. government for all DoD acquisition programs with a contract value exceeding $20 
million. Regardless of this requirement, EVM is a methodology that provides a structured 
approach to the acquisition of IT via program management processes that can help ensure 
an acquisition program stays on schedule and within budgeted cost estimates. However, 
there are significant limitations when using EVM for AI acquisitions, the major weakness 
being that it was not designed for managing AI acquisitions that follow a very iterative 
pathway. Organic AI acquisitions require a given level of flexibility to deal with the unknowns 
that arise during the development process. In addition, EVM does not provide a common 
unit of value metric to enable standard productivity metrics, such as ROI. When value is 
inferred by how consistent a program is with original baseline cost and schedule estimates, 
the performance of the program may be sacrificed in terms of the quality of the outputs 
when planned program activities become iterative, as in the development of many AI 
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programs. If an AI acquisition program is trending toward cost and schedule overruns, but 
the resulting value added of the modifications to the original requirements provides 
disproportionate increases in value, EVM is not designed to recognize this increase in value.  

To remedy these shortcomings of EVM in AI acquisitions, the methodology should be 
combined with KVA and IRM, which can be useful during the requirements phase of EVM by 
ensuring that a given AI acquisition is aligned with organizational strategy and that a 
baseline process model has been developed for establishing current performance before 
acquisition of the supporting AI. A future process model that estimates the value added of 
the incorporation of the AI can also set expectations that can be measured against the 
baseline model after the AI has been acquired. IRM can be used to forecast the value of 
strategic real options flexibility that an acquired AI may provide so that leadership can select 
the options that best fit their desired goals for the AI in defense core processes.  

Because it provides an objective, quantifiable measure of value in common units, 
KVA should also be used in AI acquisitions to allow decision-makers to better understand 
and compare different strategic options based on their value and the cost. Obtaining a return 
on investment of AI systems can only be done when using KVA to determine the value 
embedded in the system. This information provides insight to PMs as well as a more 
complete perspective regarding the performance of both the current and the to-be systems. 

Likewise, using IRM is recommended when acquiring AI through the Defense 
Acquisition System. Applying dynamic and stochastic uncertainty and risk-based modeling 
techniques to predict likely and probabilistic outcomes can improve the risk estimates 
associated with the components and subcomponents of a program, in terms of their 
potential cost overruns, value variabilities, and schedule delays. Analyzing various real 
options within the context of the models’ outputs will help PMs make the most advantageous 
choices when determining a program’s future. 

PMs should use EVM only in the EMD phase, as is currently done. That said, EVM 
will work best in hardware manufacturing solutions with technology that is fully mature prior 
to the program starting. Since many AI acquisition programs consist of advancing the 
current technology and developing new software solutions to meet requirements, EVM is not 
perfectly suited for AI development. Nevertheless, PMs can use various agile EVM 
techniques to complete projects on cost/schedule/value baselines provided the appropriate 
steps are taken when establishing the baseline. Requirements must be broken into small, 
easily definable tasks with suitable risk and uncertainty factors accounted for within the 
schedule. Other methodologies should be used with EVM to ensure these factors are based 
on defendable metrics rather than simply guessing how much additional time, money, and 
value may be necessary to complete complex tasks. 

During the MSA phase, KVA will help determine the value of the different options 
considered in the analysis of alternatives (AoA) process. KVA can objectively measure the 
value of the current, as-is system and the potential to-be systems under consideration. 
Using other factors such as cost, value, complexity, timeline, and so forth, the PM can then 
select an appropriate alternative. As the chosen solutions mature during the TMRR phase, 
an updated KVA analysis will reassess initial estimates and provide a projected ROI for the 
AI solution prior to entering the EMD phase. In the OS phase, KVA will help decision-makers 
establish how a program is performing and use that information to make any adjustments or 
corrections that may be needed. KVA has limited prediction capabilities, so it should be 
used in conjunction with other methodologies, particularly IRM, to obtain the most benefit. 

IRM techniques should be implemented during most of the acquisition phases. 
Ideally, portfolio management decisions were made during the requirements development 
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process, although they should also be considered during MSA. Financial and value analysis 
derived from KVA, as well as simulation of possible outcomes should occur during the MSA, 
TMRR, and EMD phases. The results of these simulations should be fed into the EVM 
baselines to account for risk across the program. Real options should be developed during 
the TMRR phase prior to awarding contracts, and the real options should be executed 
during the EMD and PD phases as appropriate. 
Limitations and Future Research 

This research examined whether the various methodologies—EVM, KVA, and IRM—
could be used within the Defense Acquisition System to improve the acquisition of AI. Future 
research should examine how these methodologies may interact with or improve other 
components of the acquisition system. This includes the JCIDS and PPBE components as 
individual processes and the interaction of JCIDS, PPBE, and the Defense Acquisition 
System as a whole. Certain methodologies, specifically IRM, may be more beneficial when 
used throughout the entire acquisition process instead of within a portion of the system. 
Additionally, future research could examine how these different methods may be used in the 
acquisition of products outside the AI or IT realm. 

The research conducted looked at AI as a whole and not specific types of AI. Future 
studies should examine if acquisition methods, strategies, and methodologies should 
change based on the category of AI being acquired. This is of specific interest when 
considering artificial intelligence and its subsets. Machine learning, intelligence with a 
specific focus or field of expertise, and general or universal intelligence would likely have 
different methods used in the acquisition process based on their complexity, complicated 
nature, undeveloped technology, and level of risk.  

The applicability of these methodologies within commercial acquisition of AI is 
another area of potential research. This research focused exclusively on the application of 
the respective techniques within the DoD acquisition process. However, commercial entities 
also struggle when acquiring complex or complicated AI and IT systems, particularly when 
the systems operate at the enterprise level. Further research may indicate if these same 
methodologies could provide value to decision-makers in the private sector during the 
creation, adoption, or customization of commercial AI. 

Finally, this research only examined the most promising methodologies out of 
numerous different possibilities. Future research could examine other program management 
tools, management philosophies, analytic tools, or other methodologies and their benefit 
when acquiring AI. While the examined methodologies were chosen because they would 
likely benefit the process and support improvements in EVM, other systems may be more 
appropriate in certain phases or may offer additional benefits not seen in this research. 
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