
UNCLASSIFIED

May 2020

Software Speed Limits
What controls how fas t we can m od e rnize ?

David Ta te and John Ba ile y

UNCLASSIFIED

We have a need for speed

1

Everyone agre e s that
1. DoD ne e ds to fie ld ne w capab ilitie s faster
2. Future capab ilitie s will be software -enabled

 Se cDe f, De pSe cDe f, USD(A&S), De fe nse Scie nce Board ,
De fe nse Innovation Board , National De fe nse Strate gy, …

UNCLASSIFIED

UNCLASSIFIED

Software is now the limiting factor in speed

Increasingly, the time to
develop the software is on
the critical path for system
development

This has been true of
space and C4 systems for
decades; it’s now true of
nearly all systems

2

Some recent programs

So how fast can software development go?

3

We examined the factors that constrain speed of software
development – in particular, software associated with new
fielded capabilities in mission systems.

In rough order of importance, they are:

1. Required functionality
2. Architecture
3. Technology maturity
4. Resources
5. Testing strategy
6. Contract structure
7. Change management

1. Required functionality

What will the system do?

For a given set of required
capabilities (and specified

architecture), there is a “most
efficient” schedule to meet those

requirements with software.

Attempts to go faster than this
incur extra cost or cause the

project to fail.

4

Most efficient schedule

Agile development does not change this

5

Within each phase of an agile development project, the
same relationship between content and efficient schedule
still holds. Agile makes projects faster by:
1. Dropping or deferring requirements
2. Improved testing strategy (which we will return to)
3. Faster stakeholder feedback

Corollary : if the Minim um Viab le Product is com plicate d ,
ge tting to the point whe re you can s tart sp rinting m ight
take a long tim e .

(What is the MVP for a GPS g round control syste m ?)

2. Architecture

On my car, it is easier to change
the tires than the doors

That was a deliberate design
choice by the auto maker

For software to be easy to modify
in the future, similar up -front

choices are necessary

6

Photo “IKEA Car 3” © Bend Pak, retrieved from https://www.flickr.com/photos/bendpak/8233902784/ and reused under Creative Commons 2.0.

https://www.flickr.com/photos/bendpak/8233902784/

Architecture time and effort depends on future needs

7

The architecture is part of the MVP

The time and effort needed for architecture and design depend
on the answers to questions like…

• What are the cybersecurity needs of the system?
• How important is it for the system to be upgradeable?
• How fast/frequent/extensive do those upgrades need to be?
• What is the intended lifespan of the software?
• How portable/reusable does the software need to be?
• What other systems will it need to interface with? Will those

systems also be changing over time?

3. Technology maturity

Things go faster when you
already know what to do

Technology Readiness
Assessments tend to focus on
hardware -critical technologies

Critical software technologies can
also be immature – e.g., machine

learning and autonomy

8

Image source: https://www.needpix.com/photo/download/22775/diagram-assembly-parts-instructions-labeled-mechanical-
assemble-sketch-free-vector-graphics

https://www.needpix.com/photo/download/22775/diagram-assembly-parts-instructions-labeled-mechanical-assemble-sketch-free-vector-graphics

Immature hardware can also affect software

9

Once past Critical Design Review, it is easier to make major
changes in software designs than hardware designs

As a result, immature hardware technology can cause
significant additional software effort, including re -work

4. Resources

Available resources constrain the
execution of any project

For software, the vital resources
are skilled labor, development

infrastructure, and (increasingly)
sufficient data

…and of course, $$$

10

An adequate supply of the right skills is not a given

11

There is increasing evidence that the supply of cleared
software professionals is not keeping up with DoD demand

Staffing shortfalls, on -the-job training, and mismatches
between funding streams and staffing needs all drive
delays in project execution

These issues do not stop at delivery – development effort
continues for as long as the software is used, and requires
many of the same skills as initial development

5. Testing strategy

It is hard to do too much software
testing, but it is easy to do testing

wrong – or too late

Finding and correcting defects is
the largest identified driver of

cost and delay

Modern software development
practice prioritizes early testing to

avoid later debugging

12

Testing is free

13

When done right, the cost of testing is negative – the more
(and earlier) you do it, the less you spend on development

Agile development assumes a culture of continuous
stringent testing from Day One

DoD programs, who have to pay for testing out of pocket,
do not always share this philosophy

6. Contract structure

If you buy a car that can only
be serviced by the dealer
who sold it to you, you can
expect to pay a lot (and wait a
lot) for maintenance

The same is true for software

14

Image “Tesla car PNG” from website http://pngimg.com/download/62082 , reused under Creative Commons 4.0.

http://pngimg.com/download/62082

Contractors will not give up monopolies for free

15

DoD would prefer that all software be modular, reusable,
and fully open to enhancement or replacement by
competing third -party vendors

Contractors would prefer to have a monopoly on future
upgrades, which can be significantly more lucrative than
the original development contract

DoD struggles to craft contract terms and incentives that
permit both DoD and contractors to be satisfied

7. Change management

In theory, the acquisition process is
supposed to go like this:
1. Characterize the future fight

and define mission needs.
2. Identify capability gaps and

identify alternative ways to
mitigate them.

3. Analyze the alternatives and
select a preferred alternative.

4. Set threshold requirements.
5. Develop and field a system

that meets those requirements.
6. Maintain that system.

16

The days of static procurement are long gone

17

We don’t buy the thing we said we were going to buy

The thing we are buying changes constantly

Sometimes it’s a service, not a thing (e.g., space launch)

We don’t consistently distinguish between new programs
versus new products within existing programs

Our planning and oversight aren’t made for this

18

They assume a static design and known quantity

Honesty about future upgrade plans is punished

Improved capability is punished (e.g., Nunn -McCurdy)

Agile development provides a politically acceptable
excuse to openly do what we’ve already been doing, but
faster and more efficiently – if the requirements
stakeholders will permit it

Software takes time for valid reasons

19

How much time the software will take is determined by
what we want it to do over its life cycle and the
environment we’ll be inserting it into

To go really fast in the future, we will need to have made
certain choices in the past – including some choices that
look slow at initial development time

Architectures and data rights will be just as important as
acquisition pathways or development philosophies

We should probably be worried about the industrial base

20

	Software Speed Limits
	We have a need for speed
	Software is now the limiting factor in speed
	So how fast can software development go?
	1. Required functionality
	Agile development does not change this
	2. Architecture
	Architecture time and effort depends on future needs
	3. Technology maturity
	Immature hardware can also affect software
	4. Resources
	An adequate supply of the right skills is not a given
	5. Testing strategy
	Testing is free
	6. Contract structure
	Contractors will not give up monopolies for free
	7. Change management
	The days of static procurement are long gone
	Our planning and oversight aren’t made for this
	Software takes time for valid reasons
	Slide Number 21

