

^`nrfpfqflk=obpb^o`e=moldo^j=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

bu`bomq=colj=qeb==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

bfdeqe=^kkr^i=^`nrfpfqflk==

obpb^o`e=pvjmlpfrj==

tbakbpa^v=pbppflkp==

slirjb=f=

Disclaimer: The views represented in this report are those of the authors and do not reflect the official policy position
of the Navy, the Department of Defense, or the Federal Government.

Approved for public release; distribution unlimited.

Prepared for the Naval Postgraduate School, Monterey, California 93943

NPS-AM-11-C8P02R02-023

An Architecture-Centric Approach for Acquiring Software-Reliant
Systems

Lawrence Jones and John Bergey, Software Engineering Institute

Published: 30 April 2011

^`nrfpfqflk=obpb^o`e=moldo^j=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor, please
contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our website
www.acquisitionresearch.net

=
=
===========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb====== - i -

=

Preface & Acknowledgements

During his internship with the Graduate School of Business & Public Policy in June
2010, U.S. Air Force Academy Cadet Chase Lane surveyed the activities of the Naval
Postgraduate School’s Acquisition Research Program in its first seven years. The sheer
volume of research products—almost 600 published papers (e.g., technical reports, journal
articles, theses)—indicates the extent to which the depth and breadth of acquisition
research has increased during these years. Over 300 authors contributed to these works,
which means that the pool of those who have had significant intellectual engagement with
acquisition issues has increased substantially. The broad range of research topics includes
acquisition reform, defense industry, fielding, contracting, interoperability, organizational
behavior, risk management, cost estimating, and many others. Approaches range from
conceptual and exploratory studies to develop propositions about various aspects of
acquisition, to applied and statistical analyses to test specific hypotheses. Methodologies
include case studies, modeling, surveys, and experiments. On the whole, such findings
make us both grateful for the ARP’s progress to date, and hopeful that this progress in
research will lead to substantive improvements in the DoD’s acquisition outcomes.

As pragmatists, we of course recognize that such change can only occur to the
extent that the potential knowledge wrapped up in these products is put to use and tested to
determine its value. We take seriously the pernicious effects of the so-called “theory–
practice” gap, which would separate the acquisition scholar from the acquisition practitioner,
and relegate the scholar’s work to mere academic “shelfware.” Some design features of our
program that we believe help avoid these effects include the following: connecting
researchers with practitioners on specific projects; requiring researchers to brief sponsors on
project findings as a condition of funding award; “pushing” potentially high-impact research
reports (e.g., via overnight shipping) to selected practitioners and policy-makers; and most
notably, sponsoring this symposium, which we craft intentionally as an opportunity for
fruitful, lasting connections between scholars and practitioners.

A former Defense Acquisition Executive, responding to a comment that academic
research was not generally useful in acquisition practice, opined, “That’s not their [the
academics’] problem—it’s ours [the practitioners’]. They can only perform research; it’s up
to us to use it.” While we certainly agree with this sentiment, we also recognize that any
research, however theoretical, must point to some termination in action; academics have a
responsibility to make their work intelligible to practitioners. Thus we continue to seek
projects that both comport with solid standards of scholarship, and address relevant
acquisition issues. These years of experience have shown us the difficulty in attempting to
balance these two objectives, but we are convinced that the attempt is absolutely essential if
any real improvement is to be realized.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the Acquisition
Research Program:

• Office of the Under Secretary of Defense (Acquisition, Technology & Logistics)

• Program Executive Officer SHIPS

• Commander, Naval Sea Systems Command

• Army Contracting Command, U.S. Army Materiel Command

• Program Manager, Airborne, Maritime and Fixed Station Joint Tactical Radio System

=
=
===========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb====== - ii -

=

• Program Executive Officer Integrated Warfare Systems

• Office of the Assistant Secretary of the Air Force (Acquisition)

• Office of the Assistant Secretary of the Army (Acquisition, Logistics, & Technology)

• Deputy Assistant Secretary of the Navy (Acquisition & Logistics Management)

• Director, Strategic Systems Programs Office

• Deputy Director, Acquisition Career Management, US Army

• Defense Business Systems Acquisition Executive, Business Transformation Agency

• Office of Procurement and Assistance Management Headquarters, Department of
Energy

We also thank the Naval Postgraduate School Foundation and acknowledge its
generous contributions in support of this Symposium.

James B. Greene, Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

=
=
=^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 7 - =
=

=

Panel 2 – Advancing Open Architecture Acquisition

 Wednesday, May 11, 2011

11:15 a.m. –
12:45 p.m.

Chair: Christopher Deegan, Executive Director, Program Executive Office for
Integrated Warfare Systems

Delivering Savings with Open Architecture and Product Lines

Brian Womble, USN, and William Schmidt, Mike Arendt, and Tim Fain,
IBM

An Architecture-Centric Approach for Acquiring Software-Reliant Systems

Lawrence Jones and John Bergey, Software Engineering Institute

Advances in the Acquisition of Secure Systems Based on Open
Architectures

Walt Scacchi and Thomas Alspaugh, Institute for Software Research

Christopher Deegan—Executive Director, Program Executive Officer, Integrated Warfare Systems
(PEO IWS). Mr. Deegan directs the development, acquisition, and fleet support of 150 combat
weapon system programs managed by 350 military and civilian personnel with annual appropriations
of over $5 billion.

Mr. Deegan holds a Bachelor of Science degree in Industrial Engineering from Penn State
University, University Park, Pennsylvania and a Master of Science degree in Engineering from The
Catholic University of America, Washington, DC. He is a graduate of the Program Managers
Course, Defense Systems Management College, Fort Belvoir, VA. He is a Certified Acquisition
Professional and is Level III certified in three DA WIA career fields: Program Management;
Research and Systems Engineering; and Business, Cost Estimating and Financial Management.

Mr. Deegan is the only Comptroller employee to be recognized by the Association of Scientists and
Engineers as “NAVSEA Engineer of the Year” (1993). He received the Assistant Secretary of the
Navy (Research, Development and Acquisition) and NAVSEA Acquisition Excellence Awards (1996),
the David Packard Award for Governmental Excellence (1996), the Navy’s Meritorious Civilian
Service Award (1997), the Navy’s Competition and Procurement Excellence Award (2003), and a
Meritorious Unit Commendation Medal as a member of the SEA WOLF Program Office (2006). Mr.
Deegan was awarded the Presidential Rank of Meritorious Executive in October 2007.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 32 -
=

=

An Architecture-Centric Approach for Acquiring Software-
Reliant Systems
Lawrence Jones—Dr. Jones is a Senior Member of the Technical Staff within the Research,
Technology, and Systems Solutions Program (RTSS) and leads the Product Line Practice Initiative at
the Software Engineering Institute (SEI) of Carnegie Mellon University. Prior to joining the SEI, he
served a career in the U.S. Air Force and is the former Chair of the Computer Science Department at
the Air Force Academy. His PhD in computer science is from Vanderbilt University. He is a senior
member of the IEEE and ACM, a Fellow of ABET and the CSAB, and a member of the ABET Board
of Directors Executive Committee. [lgj@sei.cmu.edu]

John Bergey—Mr. Bergey joined the SEI in 1993 as a Visiting Scientist and became a member of
the technical staff in 1995. Currently, Mr. Bergey is a member of the Research, Technology, and
Systems Solutions Program (RTSS) and is active in the Architecture Centric Engineering and Product
Line Practice initiatives. His role in these initiatives is to proactively assist DoD programs in applying
SEI technologies (e.g., product line practices, the ATAM, and the QAW) to improve their acquisition
practices and reduce software acquisition risk. Before coming to the SEI, Mr. Bergey was a Software
Division Manager with the U.S. Naval Air Development Center. [jkb@sei.cmu.edu]

Abstract
Because software plays a critical role in nearly every complex Department of
Defense acquisition, there is increased emphasis on reducing acquisition risk for
software-reliant systems. An architecture-centric acquisition approach has proven to
be effective. In this paper, we present the basics of architecture-centric engineering.
Then we give a structure for incorporating these practices into the acquisition life
cycle, illustrated by an example. We overview how these practices are being
implemented in current programs. We conclude by demonstrating how a program
can use this approach in synergy with current system engineering practices to
achieve an appropriate emphasis on software in a system acquisition.

Introduction
Software plays an increasingly critical role in Department of Defense (DoD)

acquisitions and is often cited as the reason for frequent cost overruns, schedule slippages,
and quality problems. As a result, there is increased emphasis on finding effective ways to
reduce risk when acquiring software-reliant systems. While there is no “silver bullet,” an
architecture-centric acquisition approach has proven to be an effective way of reducing
acquisition risk (Nord, Bergey, Blanchette, & Klein, 2009).

Informally, the software architecture is the blueprint describing the software structure
of a system. Moreover, the architecture is the key enabler to achieving the all-important
system quality attributes such as modifiability, response time, security, reliability, availability,
interoperability, and usability (i.e., the system’s non-functional requirements).

An architecture-centric approach involves the following:

 determining the architecturally-significant quality attribute requirements and
describing them in a meaningful way,

 creating the architecture and documenting it,
 evaluating the architecture for suitability in supporting the required quality

attributes, and
 ensuring the system is implemented according to the architecture.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 33 -
=

=

While the design of the architecture and subsequent implementation of the system
are responsibilities of the supplier, the acquirer has a central role in determining the quality
attribute requirements that will drive the architectural design and in evaluating the suitability
of the architecture to meet mission goals of the system. The bottom line responsibility is
ensuring that the delivered system conforms to a high-quality architecture that will be
responsive to the system’s needs, both now and in the future.

This paper provides the background and context for architecture-centric engineering
practices.1 Then we present a structure to incorporate these practices into key points in the
acquisition life cycle as a means of risk reduction. Application of these practices is explored
in different phases of the DoD system acquisition life cycle. We provide examples of how
different elements of these practices are being implemented or will be piloted in current
programs. We conclude with demonstrating how a program can use this approach in
synergy with current system engineering practices to achieve an appropriate emphasis on
software in a system acquisition.

Software Architecture
The software architecture is the foundation for any software-reliant system. It

represents the earliest design decisions that are both the most difficult to get right and the
hardest to change downstream. The software architecture will allow or preclude nearly all of
the system’s quality attributes. These qualities are all largely pre-cast when the software
architecture has been established. No amount of later tuning will compensate for a poorly
constructed software architecture. Experience has shown that an unsuitable software
architecture will eventually result in some sort of disaster for a project. Disaster may mean
failure to meet performance goals, failure to interoperate as needed, or inordinate
sustainment costs, among other problems.

Informally, software architecture is the blueprint describing the software structure of a
system. Formally, “the software architecture of a computing system is the set of structures
needed to reason about the system, which comprise software components, relations among
them, and properties of both” (Clements et al., 2011).

This definition carries several implications.

 Software architecture is an abstraction of a system. This allows concentration
on the aspects that have system-wide import. Architectural views have
proven appropriate to reason about whether a system can meet its mission
goals, regardless of the system’s scale.

 Systems can and do have many structures. This is analogous to the
electrical, framing, and plumbing structures in a building. Views of the
different structures are important to understanding the complete system.

 Every software-intensive system has an architecture, by definition. Just
having an architecture is different from having an intentional architecture that
is known to everyone. Bottom line: If you don’t develop an architecture, you
will get one anyway—and you might not like what you get!

1 For some of the background information, the authors consolidated and summarized information from various
reports and presentations by our colleagues at the Software Engineering Institute (SEI). Some of this wording
has been used directly; some wording has been refined over time by the entire team. We wish to acknowledge
the contributions of Paul Clements, Mike Gagliardi, Rick Kazman, Mark Klein, and our teammates in the
Architecture Centric Engineering Initiative of the SEI.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 34 -
=

=

Proper specification of required functionality is critical, to be sure. However, if
functionality were all that mattered, any monolithic software structure would do. When we
become concerned with evolving the system throughout its life cycle, or making sure that it
responds quickly enough to the user’s input, or guarding against unauthorized access of
data, and so forth, we become concerned with structuring the system in a way to provide
these qualities and more. That’s what architecture is about.

Time and care must be invested in the software architecture because making
changes later is extremely costly and often impossible. The software architecture should
then guide the implementation. Throughout the development process, the software
architecture must play a role that is both prescriptive and descriptive. Even in an incremental
acquisition and development approach, the core system and software architectural
decisions that support the important quality attribute goals for the system must come first,
and then they can be enhanced in future increments or spirals. An architecture-centric
approach is key to the development of systems that meet both their functional and quality
goals. Figure 1 illustrates the critical role of quality attributes in an architecture-centric
software development approach.

Figure 1. The Role of Quality Attributes in Architecture-Centric Software
Development

Architecture-Centric Engineering
Architecture-centric engineering is the discipline of effectively using architecture to

guide system development.

Architecture-centric development for a software-reliant system involves

 creating the business or mission case for the system,
 understanding the requirements,
 creating or selecting the software architecture,
 documenting and communicating the software architecture,
 analyzing or evaluating the software architecture,

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 35 -
=

=

 implementing the system based on the software architecture, and
 ensuring that the implementation conforms to the software architecture.

Over the past 18 years, the Carnegie Mellon® Software Engineering Institute (SEI)
has developed and promulgated a series of architecture-centric methods supporting this
development approach. These methods are given in Error! Reference source not found..
While the design of the architecture and subsequent implementation of the system are
responsibilities of the supplier, the acquirer has the all-important oversight role for these
activities. Additionally, the acquirer has a central role in the following:

 creating the business or mission case for the system,
 determining the quality attribute requirements that will drive the architectural

design,
 evaluating the suitability of the architecture to meet mission goals of the

system, and
 ensuring that sufficient architecture documentation exists to support the

evaluation, implementation, and evolution of the system.

We will provide some background on methods to support these activities before
describing how to apply them in an acquisition.

Table 1. Architecture-Centric Engineering Activities and Some Supporting SEI
Methods

Architecture-Centric Engineering Activity
Italicized activities indicate those that are of
particular importance to acquirers.

Supporting SEI Methods2
* indicates methods that have been
extended to address systems
engineering.

creating the business or mission case for the
system

Pedigreed Attribute eLicitation Method
(PALM)

understanding the requirements Quality Attribute Workshop (QAW);
Mission Thread Workshop (MTW)*

creating and/or selecting the architecture Attribute-Driven Design (ADD) and
Architecture Expert tool (ArchE)

documenting and communicating the
architecture

Views and Beyond Approach;
Architecture and Analysis Design
Language (AADL)

analyzing or evaluating the architecture Architecture Tradeoff Analysis Method
(ATAM)*; System of Systems
Architecture Evaluation*; Cost Benefit
Analysis Method (CBAM); AADL

implementing the system based on the
architecture

ensuring that the implementation conforms to
the architecture

Architecture Reconstruction and
Mining tool (ARMIN)

2 Descriptions of these methods may be found at http://www.sei.cmu.edu/architecture/tools/.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 36 -
=

=

evolving the architecture so that it continues to
meet business and mission goals

Architecture Improvement Workshop
(AIW) and ArchE

ensuring use of effective architecture
practices

Architecture Competence Assessment

Creating the Business Case for the System

Justification for a system is part of the DoD planning, programming, and budgeting
system. From this basis, it is essential to derive a succinct description of the key business
and mission drivers to guide the architects in making design decisions and tradeoffs. While
details of how to accomplish this are beyond the scope of this paper, identification of these
drivers must come from the acquirer.

The Pedigreed Attribute eLicitation Method (PALM) is an SEI method that elicits and
captures the business goals for an organization that lies behind the development of a
software-intensive system (Clements & Bass, 2010). These business goals, often poorly
understood and poorly articulated, serve as the foundation for many of the quality attribute
and behavioral requirements for a system. Kazman and Bass (2005) categorized 190
distinct business goals from 25 architecture evaluations, including 18 government systems.
Clements and Bass (2010) updated this list and classified goals into categories . They
identified the following business goal categories:

 maintaining growth and continuity of the organization,
 meeting financial objectives,
 meeting personal objectives,
 meeting responsibility to employees,
 meeting responsibility to society,
 meeting responsibility to country,
 meeting responsibility to shareholders,
 managing market position,
 improving business processes, and
 managing quality and reputation of products.

Understanding the Requirements

Functional requirements specify what a system is supposed to do (e.g., retrieve
database information in response to a user request). There are many techniques for
specifying functional requirements, and systems analysts have been doing this for a long
time using well-developed techniques. The same can’t be said for specifying quality
requirements. Considering the example of database information retrieval: How rapidly must
information be retrieved? How secure must the transmission be? These are the quality
aspects of this functional requirement. Understanding the quality attribute requirements is
essential because these requirements largely drive the architecture.

Quality attributes are rarely captured effectively in requirements specifications (e.g.,
a system performance specification); they are often vaguely understood and weakly
articulated. Just citing the desired qualities is not enough; it is meaningless to say that the
system shall be “modifiable” or “interoperable” or “secure” without details about the context.
Yet, these sorts of imprecise, and therefore un-testable, specifications abound.

The practice of specifying quality attribute scenarios can remove this imprecision and
allows desired qualities to be specified and evaluated meaningfully. A quality attribute
scenario is a short description of an interaction between a stakeholder and a system and the

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 37 -
=

=

response from the system. A quality attribute scenario (see the example in Figure 2)
consists of six parts:

 Source of stimulus—the entity (e.g., human, computer, any actuator) that
generated the interaction with the system;

 Stimulus—what triggers the interaction with the system;
 Environment—the conditions under which the stimulus occurs (e.g., under

overload conditions or normal operations);
 Artifact—the part (or whole) of the system that is stimulated;
 Response—what the system does in response to the stimulus; and
 Response measure—the measurable response necessary for the

requirement to be tested.

Figure 2. Example of a Quality Attribute Scenario

The Quality Attribute Workshop (QAW) is an SEI method to elicit and articulate
detailed quality attribute requirements for a system (Barbacci, 2003). The QAW is a
facilitated method that engages diverse stakeholders early in the life cycle to elicit, collect,
and organize software quality attribute requirements in the form of scenarios before the
architecture is created. Appendix A describes the specific steps for conducting a QAW.

The results of the QAW should be followed by an analysis and planning activity to
determine further steps such as continuing the elaboration of quality attribute requirements.
For example, some of these quality attributes will be high priority and will have architectural
significance. These attributes should be fed into the design process along with functional
requirements and any technical and business constraints.

Analyzing or Evaluating the Architecture

It is nearly always cost-effective to evaluate software quality as early as possible in
the life cycle; problems that are found early are easier and cheaper to correct. Architecture
evaluations are a type of quality evaluation that can be conducted early in the life cycle
(indeed, throughout the life cycle) and both quantitative and qualitative benefits have been

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 38 -
=

=

reported (Clements, Kazman, & Klein, 2002). The net result is improved architectures
providing the basis for better systems.

Architecture analysis techniques may be classified as questioning techniques or
measuring techniques. Questioning techniques include scenario-based analysis, or if the
domain is more mature, questionnaires or checklists. Measuring techniques rely on
quantitative measures of some sort, such as coupling and cohesion of the modules, or the
depth of an inheritance hierarchy. Simulations or prototypes can also be used to measure
qualities. A comprehensive evaluation strategy might use both types of techniques. Relative
to questioning techniques, measuring techniques have the advantage of providing
quantitative information but have the drawback of requiring investment in developing some
working artifact to measure. Thus, questioning techniques are more amenable to early life
cycle use.

The SEI’s Architecture Tradeoff Analysis Method® (ATAM®)3 is a scenario-based
questioning technique for analyzing and evaluating software architectures. It not only can be
used to evaluate architectural decisions against specific quality attributes; it also allows
engineering tradeoffs to be made among possibly conflicting system quality goals. In this
way, the ATAM evaluation can detect areas of potential risk in meeting quality goals within
the architecture of a complex software-reliant system. It has also proven useful at various
points in the life cycle, including post-deployment support. Clements et al. (2002) provide
details and examples of the ATAM and other software architecture evaluation methods.

The ATAM has several advantages. It can be done early, quickly, and inexpensively.
The method involves project decision makers, other stakeholders (including managers,
developers, maintainers, testers, re-users, end users, and customers), and a software
architecture evaluation team. These groups collaborate to determine the critical quality
attributes of the system and effectively evaluate the consequences of architectural decisions
in light of specified quality attributes and business goals. The method helps to ensure that
the right questions are asked to uncover the following:

 risks—software architecture decisions that might create future problems in
some quality attribute;

 non-risks—software architecture decisions that appear to be good and should
be documented;

 sensitivity points—properties of one or more components (and/or component
relationships) that are critical for achieving a particular quality attribute
response (That is, a slight change in a property can make a significant
difference in a quality attribute.); and

 tradeoffs—decisions affecting more than one quality attribute.

This information can be aggregated into risk themes—statements of risk patterns
(i.e., higher level, cross-cutting risks) that “percolate up” and resonate more with
stakeholders because they point out systemic causes of risk that relate more directly to the
ability of the architecture to meet mission goals.

The steps of the ATAM are provided in Appendix B.

3 Architecture Tradeoff Analysis Method and ATAM are registered in the U.S. Patent and Trademark Office by
Carnegie Mellon University.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 39 -
=

=

Documenting and Communicating the Architecture

Architecture is the conceptual glue that holds every phase of a project together for its
many stakeholders. Documenting the architecture is the crowning step to crafting it. If you
go to the trouble of creating a good architecture, you must describe it appropriately so that
others can find the information they need. Architecture documentation is necessary to
support the evaluation, implementation, and evolution of the system (Clements et al., 2011).

When discussing architecture representation, the related terms structure and view
are used. A view is a representation of a set of system elements and the relationships
among them. A structure is the set of elements itself, as they exist in software and hardware.

A discussion of the types of structures and views and their usefulness is beyond the
scope of this paper. Suffice it to say that non-runtime views of software are useful for

 project planning;
 allocating work assignments;
 designing for modifiability, reusability, portability, extensibility, etc.;
 facilitating incremental development; and
 a host of other critical purposes.
 Runtime views are useful to show how software will handle
 hazards, faults, and errors;
 fault tolerance/reconfigurations;
 performance;
 data (e.g., quality, timeliness, ownership, access privileges); and
 interface boundaries.

An architecture is a multidimensional construct, too involved to be seen all at once.
Recall that systems are composed of many structures. Different views allow different
stakeholders to concentrate on certain aspects of a system while de-emphasizing (or
ignoring for the moment) other aspects. Thus, views are a way to separate concerns and
manage complexity. The choice of views to document depends on the nature of the system
and the stakeholder needs. Different stakeholders will have different uses for the
architecture documentation. Documenting an architecture is then a matter of documenting
the relevant views, and then adding documentation that applies to more than one view (see
Figure 3).

Figure 3. Views-Based Architecture Documentation

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 40 -
=

=

Successful Application of Architecture Practices in the DoD

So how well do these practices work in the DoD context? A workshop involving
twelve Army programs that had conducted ATAM or QAW exercises was held to understand
the impact the ATAM evaluations and QAWs had on system quality and the practices of the
acquisition organization. These exercises were sponsored by the Assistant Secretary of the
Army for Acquisition, Logistics, and Technology (ASA[ALT]) as part of the Army Strategic
Software Improvement Program (ASSIP) (Nord et al., 2009).

The results of the workshop showed the following:

 6 of 12 reported cost less than or equal to traditional techniques.
 10 of 12 reported quality of results greater than or equal to traditional

techniques.
 10 of 12 reported that the techniques helped to understand and control cost

and schedule.
 12 of 12 reported increased understanding of system’s quality attribute

requirements, design decisions, and risks.
 12 of 12 reported that the methods were good mechanisms for

communication among stakeholders—a majority reported very substantial or
significant improvement in stakeholder communication.

 8 of 12 reported that the methods improved the architecture—of these, most
reported significant improvement in their architecturally significant artifacts.

While these are positive results, the results were not nearly as dramatic as they
could have been because the go-aheads for conducting each of these QAWs and ATAM-
based architecture evaluations were made after the respective contracts were already
awarded. We refer to this as a reactive approach because it involves ad hoc contractual
changes and the development contractors may justifiably view such engagements as being
more intrusive because they can potentially perturb cost and schedule. A proactive
approach is preferred because it avoids these problematic aspects. In a proactive approach,
architecture-centric activities are specified as an integral part of the acquisition planning
effort and are subsequently incorporated in the RFP/contract from the outset. The result is
that all bidders can appropriately understand, cost, and integrate the required architecture-
centric activities into their development approach and subsequently include them in their
technical proposals.

In addition to the quantitative results, the following quotes attest to the enthusiasm of
many participants: “The ATAM architecture evaluations resulted in improved documentation,
improved communication, reduced risk in schedule and cost, and a higher quality product to
the warfighter”; and “The importance of having had the backing of Army senior leadership
and ASSIP funding is that the beneficiaries— the Army programs—went from “Nay-Sayers”
to “Yea-Sayers.”

Architecture-Centric Acquisition
Architecture-centric acquisition involves using the architecture and architecture-

centric practices as a contractual means to reduce risk and gain early confidence that the
system being acquired will meet its mission goals. Moreover, it enables a program office to
perform its contract management and technical monitoring function with greater
effectiveness and results in the delivery of a more capable and higher quality product to the
warfighter. The underlying premise is that architecture is of enduring importance because it
is the right abstraction for planning and assigning work and for performing ongoing analyses
throughout a system’s lifetime. It provides an acquisition focus and technical monitoring lens

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 41 -
=

=

that is commensurate with an acquisition organization’s responsibilities and limited
resources.

Motivation for Architecture-Centric Acquisition

Software plays a critical role in most system acquisitions and is often the reason
programs cite for cost overruns, schedule slippages, and quality problems. As a result, there
is increased emphasis on finding effective ways for an acquisition organization to reduce risk
when acquiring software-reliant systems. An architecture-centric acquisition approach has
proven to be an effective way of reducing risk—especially software acquisition risk.

There are several motivations for adopting an architecture-centric acquisition
approach:

 Independent program assessments have shown that many development and
system performance problems are architectural in nature.

 Early identification of architectural risks saves money and time.
 Acquisition organizations need a proactive means to validate key measures

of system adequacy, such as Key Performance Parameters (KPPs), Key
System Attributes (KSAs), and Technology Readiness Levels (TRLs), earlier
in the development cycle.

 Help is needed to alleviate a significant DoD “pain point” (i.e., not treating
software engineering aspects on a par with systems engineering
considerations).

 DoD programs need proven acquisition practices to acquire systems having
robust architectures.

 The efficacy of the software architecture has a direct impact on the
warfighter.

The benefit of using an architecture-centric acquisition approach is that it provides a
program with the leverage to require a fully developed architecture that can be evaluated for
risks and give early insight into necessary design tradeoffs. Such an approach gives
maintainers, sustainers, testers, architects, verifiers—all stakeholders—a view that they
would not otherwise have and enables them to better understand how the system is being
designed. Even more importantly, they have a voice in the development of the system about
their needs and the important quality attributes. It is the architecture focus, though, from
end-to-end that enables programs to identify problems before they prove too costly and
time-consuming to fix. By being proactive and building in a continuum of architecture support
in an acquisition (e.g., specification, evaluation, improvement),acquisition professionals are
able to obtain the timely information they need to carry out their acquisition responsibilities
more effectively.

Key Elements of an Architecture-Centric Acquisition

Architecture-centric acquisition is all about reducing risk by ensuring that the
acquisition organization and the development contractor (or contractors) carry out good
architecture-centric development practices to support program goals. From the perspective
of an acquisition program, the key elements of an architecture-centric acquisition include

 determining the system’s architecturally significant requirements and
specifying them in a meaningful way;

 commissioning the development of the architecture and ensuring it is
appropriately documented;

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 42 -
=

=

 evaluating the architecture to determine its suitability to support the
architecturally significant requirements, mission and business goals, KPPs
and KSAs, and TRLs;

 leveraging other promising architecture-related practices so a program office
can perform its acquisition responsibilities more effectively.

Using architecture-centric practices throughout the acquisition life cycle of a
software-reliant system leads to

 early identification of important system qualities enabling a rigorous
specification of a system’s often-neglected non-functional requirements,

 cost savings in integration and testing,
 predictable product quality supporting the achievement of mission goals, and
 cost-effective system evolution and accommodation of future upgrades.

All these things translate to reduced acquisition risk. Moreover, an architecture-
centric focus provides an acquirer with

 an effective means to perform its contract oversight and technical monitoring
function;

 the right level of abstraction that aligns with limited program office resources
and time and effort,

 early insight into system and software design suitability,
 a risk-based means of managing a contractual development effort, and
 a product focus that complements process-focused activities.

Of all the architecture-centric practices available, architectural evaluations serve as
the lynchpin for an architecture-centric acquisition approach (Bergey, 2009).

An Example Acquisition

An architecture-centric acquisition approach involves having the government specify
in the request for proposal (RFP)/contract the particular architecture-related activities or
practices it wants included in the contract to reduce acquisition risk. Figure 4 depicts an
example of an architecture-centric acquisition. The bottom portion of the figure shows a
detailed expansion of the Engineering and Manufacturing Development phase.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 43 -
=

=

Figure 4. Example Architecture-Centric Acquisition Approach
As shown in the example, an architecture-centric approach begins in the Acquisition

Planning phase before there is a contract, a developer, or an architecture. Before a system
is released for bids, a program conducts a Quality Attribute Workshop (QAW) to bring
together all of the government stakeholders in a facilitated session. This initial QAW involves
eliciting and specifying the quality needs of the stakeholders. These needs can be prioritized
and serve as a basis for determining the requirements that will drive the architectural design.
Once a contract is awarded, another QAW is conducted with both government and
contractor stakeholders to review, elicit, and refine the quality requirements (and derived
requirements) so there is a common understanding of the system requirements.

Prior to the Preliminary Design Review (PDR), an external team (commissioned by
the government) will evaluate the development contractor’s software architecture using a
sub-set of the quality attribute scenarios from the QAWs. A prerequisite for conducting such
an evaluation is the contractual delivery of a Software Architecture Description Document
(SWARD). Since the SWARD plays such a key role in an evaluation, an Architecture
Documentation Readiness Review (ADRR) will be conducted to ensure that the
documentation is adequate to support the architecture evaluation. In the event that the
documentation is deficient in some way, there is sufficient time for the developer to correct
the deficiencies.

Ideally, the architecture evaluation team should be invited to a prototype
demonstration prior to the architecture evaluation. This will allow the team to gain additional
knowledge of the system (beyond just the documentation). The demonstration may involve a
structured walk-through, a simulation, or a working prototype on appropriate computer
resources—whatever is sufficient to demonstrate the required capabilities of the software.
This demonstration will be in accordance with a Prototype Demonstration Plan and
Procedures (PDPP) document that is specified as a contractual deliverable.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 44 -
=

=

Following the architecture evaluation, the evaluation team produces a report
describing the risks (and risk themes) corresponding to the architecture’s ability to achieve
the desired system qualities. In response, the development contractor produces a risk
mitigation plan that is a contractual deliverable. The contractor’s plan for mitigating the risks
is then presented and discussed during the PDR, which is held soon after the evaluation.

The whole of these activities constitutes an architecture-centric approach.
Determining what should be included for a particular program is best accomplished by first
conducting an acquisition planning workshop (APW) with key stakeholders, which is the first
activity depicted in the example. Once the government awards the contract, a technical
interchange meeting (TIM) is held with the winning contractor to discuss the architecture-
centric activities so government plans and expectations are fully understood.

An acquisition program can adopt such an architecture-centric acquisition approach
independent of the specific development methodology the contractor chooses to adopt (e.g.,
agile, model-based, spiral, or incremental). This is because the architecture-related activities
are specified as event-driven so they are appropriately coordinated with (and feed key
information into) the mandatory decision points that are prescribed in the DoD 5000 life
cycle management system. These mandatory decision points, which are independent of the
contractor’s specific development approach, involve such activities as a System
Requirements Review (SRR), Preliminary Design Review (PDR), Critical Design Review
(CDR), and other milestone reviews.

Moreover, the RFP will require the contractor to integrate the government-specified
architecture-related activities (e.g., a QAW or architecture evaluation) with its own
development processes. To ensure the development contractor will appropriately integrate
the processes, the RFP/contract will require the contractor to describe its approach in its
technical proposal and in a set of acquisition documents that are traditional contract
deliverables. These contract deliverables include such documents as a Program
Management Plan (PMP), Integrated Master Schedule (IMS), Risk Management Plan
(RMP), and Software Development Plan (SDP). This approach helps ensure that the
development contractor does not treat the architecture-centric activities as isolated events
but instead appropriately integrates them with its own development methodology. This, in
turn, results in the adoption of a coherent architecture-centric development approach.

Achieving Greater Synergy Between Systems and Software Engineering

One significant pain point in the DoD acquisition environment is the lack of synergy
between systems engineering and software engineering activities. Disparate teams often
perform these activities without closely communicating and coordinating their efforts during
the course of acquisition planning and implementation. With the increased emphasis on
systems engineering within the DoD acquisition community, software engineering
considerations often take a backseat to systems engineering, despite the fact that software
is a critical element in almost every DoD acquisition. The result is that there are often major
disconnects in specifying the desired system properties and in ensuring a congruent
implementation approach from both a system and software perspective. Inroads to alleviate
this situation are not likely to come about naturally, or at least they have not to date. Rather,
some kind of “forcing function” is needed to help change the existing behavior pattern that is
prevalent in the DoD acquisition environment. Acquisition organizations can leverage an
architecture-centric acquisition approach to help bring about desired changes.

As depicted in Figure 5, a suggested starting pointing is to establish a common
system context diagram for use by system and software engineers that identifies all the

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 45 -
=

=

system actors, the system interfaces, and system artifacts from a black-box perspective.
The purpose of this is to establish common terminology, a shared view, and common
understanding of the system to be acquired for use by both system and software engineers.
In conjunction with this, the program should adopt use cases to specify the functional
requirements and quality attribute scenarios to specify the non-functional requirements.

Figure 5. Promoting Synergy Between System Engineering and Software
Engineering Activities

While these steps are not revolutionary, they are a significant improvement over the
traditional DoD practice of specifying requirements in a stunted “shall” and “will” form.
Moreover, they represent a significant step forward toward improving communication and
achieving greater synergy between system and software engineering activities.

Beyond these measures, an architecture-centric acquisition approach can provide a
major forcing function to promote greater synergy between system and software engineering
on the contractor’s side of the acquisition fence. This forcing function involves specifying a
concurrent evaluation of both the system architecture and software architecture by an
external evaluation team commissioned by the government program office. This evaluation
has the effect of promoting greater communication and cooperation between the developer’s
system architect and software architect. The nature of the forcing function is that both
architects will be required to participate in the architecture evaluation and will have to be
prepared to walk the evaluation team through their respective architectures—back-to-back,
one quality attribute scenario at a time—and describe how the respective architecture can
achieve a particular quality attribute. This will serve to draw out any differing system and
software engineering assumptions or discontinuities in the system and software architectural
design. In addition, since the system and software architects are aware from the outset of
the contract that the architecture evaluation is a future event that they will be involved in, it

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 46 -
=

=

has the effect of promoting earlier communication and coordination between the architects
and their respective development teams. This is a “win-win” situation for both the
government and the development contractor.

New Architecture-Centric Acquisition Practices

The SEI’s proactive, architecture-centric approach has been tested and proved in
several DoD software acquisitions4 (SEI, 2011). To augment and improve the current
approach, the SEI is currently exploring or piloting other architecture-related activities or
practices. These promising practices include

 conducting an evaluation of two development contractors’ architectures
during a competitive down select,

 incorporating an architecture competency skills survey as part of a
competitive acquisition,

 taking remedial action in the Operations and Support (O&S) phase to
motivate a recalcitrant legacy system contractor to adopt good architecture
practices,

 incorporating a set of architecturally significant metrics and an architecture
improvement roadmap in an acquisition involving a major legacy system
upgrade,

 incorporating an architecture-centric approach as part of a product line
acquisition,

 incorporating “model-based development” as part of an architecture-centric
acquisition, and

 an architecture-driven test approach to better focus a developer’s testing
efforts and provide more bang for the buck.

One of these efforts is a pilot for an Army program, another is an Independent
Research and Development (IRAD) project, and the others are in different phases of
exploration with prospective customers of Navy and Air Force programs. We plan to report
results of these efforts at a future symposium.

Summary and Conclusions
The key things to remember about an architecture-centric acquisition approach are

the following:

 The quality and longevity of a software-intensive system are largely
determined by its architecture.

 Early identification of architectural risks saves money and time.
 There are proven practices to ensure that acquisition organizations acquire

systems with appropriate software architectures.
 There are concrete actions acquirers can take to adopt an appropriate

architecture-centric approach and apply sound architectural practices.

An architecture-centric acquisition approach enables a program office to perform its
technical oversight and technical monitoring function with greater effectiveness. The
practices

4 A number of reports related to software architecture and acquisition may be found at
http://www.sei.cmu.edu/architecture/start/publications/dodacquisitioncontext.cfm.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 47 -
=

=

 are commensurate with a program office’s responsibilities, limited resources,
time available, and key contractual events;

 provide early insight into critical requirements and design decisions that drive
the entire development effort;

 provide a proven and effective means for discovering software design risks;
 enable risks to be mitigated early and cost-effectively; and
 help avoid test and integration problems and costly rework downstream.

The bottom line is the delivery of a more capable and higher quality product to the
warfighter.

References
Barbacci, M., et al. (2003). Quality attribute workshops (QAWs) (3rd ed.; CMU/SEI-2003-TR-

016) Retrieved from http://www.sei.cmu.edu/reports/03tr016.pdf

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd ed.).
Reading, MA: Addison-Wesley.

Bergey, J. K. (2009). A proactive means for incorporating a software architecture evaluation
in a DoD system acquisition (CMU/SEI-2009-TN-0004). Retrieved from
http://www.sei.cmu.edu/reports/09tn004.pdf

Clements, P., et al. (2011). Documenting software architectures: Views and beyond (2nd
Ed). Reading, MA: Addison-Wesley.

Clements, P., & Bass, L. (2010). Relating business goals to architecturally significant
requirements for software systems (CMU/SEI-2010-TN-018). Pittsburgh, PA:
Carnegie Mellon University, Software Engineering Institute.

Clements, P., Kazman, R., & Klein, M. (2002). Evaluating software architectures: Methods
and case studies. Reading, MA: Addison-Wesley.

Kazman, R., & Bass, L. (2005). Categorizing business goals for software architectures
(CMU/SEI-2005-TR-021). Pittsburgh, PA: Carnegie Mellon University, Software
Engineering Institute.

Nord, R., Bergey, J., Blanchette, S., & Klein, M. (2009, April). Impact of army architecture
evaluations (CMU/SEI 2009-SR-007). Retrieved from
http://www.sei.cmu.edu/reports/09sr007.pdf

Software Engineering Institute (SEI). (2011). Risk mitigation through architecture evaluation.
Retrieved from http://www.sei.cmu.edu/solutions/acquisition/riskmitigation.cfm

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 48 -
=

=

Appendix A. Steps of the Quality Attribute Workshop
QAW Steps Description
1. QAW Presentation and Introductions QAW facilitators describe the motivation for the

QAW and explain each step of the method.
Next, the facilitators and stakeholders
introduce themselves ,briefly stating their
background, their role in the organization, and
their relationship to the system being built.

2. Business/Programmatic Presentation A stakeholder representing the business and/or
programmatic concerns presents the system’s
business/programmatic context, high-level
functional requirements, constraints, and
quality attribute requirements.

3. Architectural Plan Presentation A technical stakeholder presents the system
architectural plans, including (1) plans and
strategies for how key business/programmatic
requirements will be satisfied; (2) key technical
requirements, risks, and constraints—such as
mandated operating systems, hardware,
middleware, and standards—that will drive
architectural decisions; (3) existing context
diagrams, high-level system diagrams, and
other written descriptions; (4) operational and
system architectures, and architectural
frameworks, tools, and architectural life-cycle
processes being used; and (5) the prototyping
and engineering studies underway to mitigate
known risks.

4. Identification of Architectural Drivers The facilitators share their list of key
architectural drivers that include high-level
requirements, business drivers, constraints,
and quality attributes.

5. Scenario Brainstorming The facilitators ask the stakeholders to
brainstorm scenarios that are operationally
meaningful with respect to the stakeholders’
individual roles.

6. Scenario Consolidation Similar scenarios are consolidated when
reasonable.

7. Scenario Prioritization Stakeholders vote to establish the priorities of
the scenarios.

8. Scenario Refinement The high-priority scenarios are refined in more
detail. Facilitators further elaborate each one,
documenting the following: the six parts of the
scenario, the business/programmatic goals that
are affected by this scenario, the relevant
quality attributes associated with this scenario,
and the questions and issues regarding the
scenario.

=
=
==========^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb===== - 49 -
=

=

Appendix B. Steps of the Architecture Tradeoff Analysis Method
There are nine specific steps in the basic ATAM evaluation that fall into four general

types of activities: presentation, investigation and analysis, testing, and reporting.

Step Description

Presentation Activities
1. Present the
ATAM

The method is described to the assembled stakeholders (typically
customer representatives, the architect or software architecture team, user
representatives, maintainers, administrators, managers, testers,
integrators, etc.).

2. Present business
drivers

The project manager describes the business goals that are motivating the
development effort and, hence, the primary software architecture drivers
(e.g., broad availability, time to market, high security).

3. Present software
architecture

The architect describes the proposed software architecture, focusing on
how it addresses the business drivers.

Investigation and Analysis Activities
4. Identify
architectural
approaches

Architectural approaches are identified by the architect, but they are not
analyzed.

5. Generate quality
attribute utility tree

The quality attributes that comprise system “utility” (e.g., performance,
reliability, security, modifiability, etc.) are elicited. These are specified
down to the level of scenarios, annotated with stimuli and responses, and
prioritized. A scenario is a short statement describing an interaction of a
stakeholder with the system. Scenarios provide a vehicle for making vague
qualities concrete.

6. Analyze
architectural
approaches

Based upon the high-priority factors identified in Step 5, the architectural
approaches that address those factors are elicited and analyzed. For
example, an architectural approach aimed at meeting performance goals
will be subjected to a performance analysis. During this step, software
architecture risks, sensitivity points, and tradeoff points are identified.

Testing Activities
7. Brainstorm and
prioritize scenarios

Based upon the example scenarios generated in the utility tree step, a
larger set of scenarios is elicited from the entire group of stakeholders.
This set of scenarios is prioritized via a voting process involving the entire
stakeholder group.

8. Analyze
architectural
approaches

This step reiterates Step 6; but here, the highly ranked scenarios from
Step 7 are considered to be test cases for software architecture
approaches determined thus far. These test case scenarios may uncover
additional software architecture approaches, risks, sensitivity points, and
tradeoff points, which are then documented.

Reporting Activity
9. Present results Based upon the information collected during the ATAM evaluation (e.g.,

styles, scenarios, attribute-specific questions, the utility tree, risks,
sensitivity points, tradeoffs), the evaluation team presents its findings to
the assembled stakeholders and details this information, along with any
proposed mitigation strategies, in a written report.

