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Abstract 
System-of-Systems capability emerges from the collaboration of multiple systems, which are 
acquired from independent organizations. The systems within an SoS serve two purposes: 
one is to meet their own independent objectives, and the second is to contribute some 
capability to the SoS from which all constituents can benefit. In recent decades, the fields of 
machine learning and data analytics have found widespread application in system design and 
acquisitions. It is unanimously understood that any organization acquiring a complex system 
employs some form of data analytics to assess a system’s independent objectives. Even 
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though the systems contribute to and benefit from the larger SoS, the data analytics and 
decision-making about the independent system is rarely shared across the SoS stakeholders. 
The objective of this work is to identify how the sharing of datasets and the corresponding 
analytics among SoS stakeholders can lead to an improved SoS capability. We propose to 
utilize machine learning techniques to predict the SoS capability by sharing pertinent datasets 
and prescribe the information links between systems to enable this sharing. This paper is an 
interim update on the work in progress towards the above research effort and focuses on 
quantifying the value of sharing information across the SoS stakeholders. 

Introduction 
System-of-Systems (SoS) are comprised of multiple heterogeneous distributed 

systems that are independently acquired and maintain their operational and managerial 
independence (Maier, 1998). Although the systems are independent, the system-of-systems 
capability depends on effective collaboration between the systems. Given this collaborative 
nature of SoS, when considering acquisition decisions, it becomes important to recognize 
the stakeholders, resources, operations, policy, and economics of not only one system but 
the entire SoS. Considering the SoS capability as a multifaceted enterprise, in this paper, 
we develop research towards an information-centric framework that helps inform early stage 
decisions on an enterprise level.  

Important context for our work comes from the ambitious goals put forth in both 
defense and commercial sectors for Digital Engineering (DE) and its related components in 
various engineering functions, such as Model-Based Systems Engineering (MBSE) for the 
SE domain. DE and MBSE pursue the use of digital models at every phase of acquisition. 
However, much of the focus right now is on the “how” of DE/MBSE and the desire to have 
models interoperate rather than the degree to which the extended enterprise (some say the 
“acquisition ecosystem”) has awareness of and belief in the various datasets that underly 
the models and the development processes that use them.  

Within this context, our goal is to identify data management and analytic deployment 
strategies that create synergies between different enterprise entities and link the 
stakeholders, resources, policy, and economics between different systems. The framework 
focuses on examining the impact that data features (e.g., survey categories, types of 
variables, ownership/privacy of data, etc.) have on the type and effectiveness of predictive 
and prescriptive analytics that can be employed and how the outcome can be shaped 
differently by examining the connectivity of data sets. This is particularly important for SoS 
acquisition where these data sets exist at the local system level but may not be shared at 
the SoS/enterprise level or vice versa. Our objective is to characterize how the sharing and 
the connectivity of data sets may lead to deployment of different predictive and prescriptive 
analytics (due to data access) and lead to better outcomes at the SoS level. We do so with a 
mapping of useful techniques from the data science/machine learning literature as well as a 
small, illustrative example. As this is a new research direction only recently underway, our 
attention is on learning which are the most important deeper research questions that should 
be pursued. 

Background and Literature Review 
Overview of Data Analytics Waves 

Predictive data analytics provides an ability to anticipate and predict outcomes by 
collecting and utilizing prior information (Joseph & Johnson, 2013; Rehman, Chang, Batool, 
& Wah, 2016; Waller & Fawcett, 2013). Although using data to guide decision-making has 
been around since the Babylonian times, where data was recorded on tablets to predict 
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harvest (Lo & Hasanhodzic, 2011), a major shift in the ability to reason over large amounts 
of data emerged in the 1940s with the advent of computer development, storage, and 
machine learning techniques. For application in complex systems, early usage of analytics 
can be traced back to the 1940s and 1950s, when data analytics models were used to 
predict outcomes for the behavior of nuclear chain reactions in the Manhattan Project and 
weather forecasting using the ENIAC computer (Lynch, 2008). 

Prescriptive data analytics, on the other hand, aims to provide an ability to 
generate/prescribe the best courses of action based on given information which may be 
obtained from a predictive data analytic outcome. Starting around World War II, the need to 
optimize courses of actions stimulated the development of the operations research field 
(INFORMS, n.d.) which in the proceeding decades led to “Analytics 1.0” for introducing data-
based decision-making in organizations. As the capabilities of computing and machine 
learning evolved to handle structured and unstructured large data sets (also known as Big 
Data), Analytics 2.0 became the new paradigm across most large enterprises such as 
Google and Amazon (Davenport, 2013). Today, the Big Data landscape is shaped by the 
volume, variety, velocity, and veracity of data (known as the big four Vs of data science), 
and organizations’ ability to include this “Analytics 3.0” in the decision-making process has 
become fundamental to its success and profitability. It will not be a generalization to state 
that most successful organizations employ some form of Analytics 3.0 for business and 
product development.  

For SoS acquisition and capability development, deployment of Analytics 3.0 
provides a unique challenge where the individual organizations contributing the constituent 
systems individually employ a suite of predictive and prescriptive analytics tools (the 
Literature Review of Machine Learning Techniques and Applications in the DoDprovides 
details on predictive machine learning techniques as applied primarily in the DoD application 
space). However, these analytics and the underlying data sets are rarely shared across the 
SoS stakeholders. Given that the SoS capability emerges from the collaboration of 
otherwise independent systems and considering the ever-increasing need of interoperability 
between systems for transitioning towards DE and MBSE, there is an imperative to connect 
the data sets across SoS for holistic Analytic 3.0 capability deployment. In previous work 
(summarized in Integrating Predictive and Prescriptive Analytics for Acquisition), we have 
established the significance of connecting data sets across an enterprise, and our objectives 
with this work in progress is to develop this capability for SoS acquisition.  
Literature Review of Machine Learning Techniques and Applications in the DoD 

To get a sense of how predictive analytics and machine learning models are used in 
the literature, we examine the most popular algorithms and their application. The main goal 
of statistical evaluation of data is to explain relationships between variables and use them to 
make predictive and prescriptive recommendations. Relationships between the response 
variable (output/target) and the independent variables (inputs/features/predictors) can be 
modeled using both supervised and unsupervised learning techniques. Supervised learning 
algorithms use predictors and a target variable to learn a function that maps the predictors 
to the target. It consists of regression and classification models depending on if the 
response variable is quantitative or categorical respectively. Unsupervised learning 
algorithms model the underlying structure of a data set with a set of predictors and no 
response variable (“Supervised Learning vs Unsupervised Learning,” 2018). 

The simplest of the supervised learning models is linear regression. This type of 
algorithm is used to examine the linear relationship between one or more categorical and/or 
quantitative predictors and a continuous response variable. Linear regression uses an 
optimization method called “Ordinary Least Squares” (OLS), which minimizes the sum of 
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squared error between the observed and predicted values to estimate the model 
parameters. Moore and White III (2005) combine a multivariate linear and logistic regression 
model to identify the root causes of procurement cost growth in engineering and 
manufacturing development in the DoD procurement process. They use a binary variable 
representing if a program will have cost growth in procurement dollars and a continuous 
variable of the percentage of procurement cost growth for the logistic regression and 
multivariate linear regression model, respectively. Moore and White III’s two step-process 
involves the prediction of the amount of cost growth a program will have using the 
multivariate regression model results in which those programs are identified based on how 
likely a program will have procurement cost growth using the results from the logistic 
regression in the initial step. 

Linear regression is not without its disadvantages: the OLS model becomes more 
complex when more variables are added to the model, introducing multicollinearity and 
overfitting. Modifications of the linear regression model, ridge and lasso, are used to 
address this. The parameter estimates are obtained similarly to the linear regression model 
with the difference being the addition of a penalization term to the loss function. Ridge 
regression adds the sum of squared magnitude of the coefficients (L2 norm), while lasso 
adds the sum of absolute value of magnitude (L1 norm). Both models include a tuning 
parameter, λ, in the penalization term to control the amount of shrinkage to the coefficients. 
The larger (smaller) the tuning parameter, the model runs the risk of under (over) fitting. If 
λ=0, the loss function is equivalent to OLS used in linear regression. Ridge regression is 
best used when the multivariate linear regression model suffers from multicollinearity, while 
lasso is best used as a variable reduction or feature selection technique as it shrinks 
unnecessary coefficients to zero. To address the multicollinearity issue in defense spending, 
Huang and Mintz (1990) use ridge regression to model the relationship between military 
expenditures and economic growth. Wang and Yang (2016) used lasso regression as a 
variable reduction technique to select variables most relevant to supply and demand of 
airline tickets.  

Binary logistic regression is a classification algorithm that models the relationship 
between a dichotomous response variable, usually denoted as “success” or “failure,” and a 
set of categorical and/or quantitative predictors. This model commonly uses a logit link 
function where the purpose is to transform the linear combination of the predictor variables, 
which can take on any value from the real line, and convert the values between zero and 
one, transforming them on a probabilistic scale (MacKenzie et al., 2017). The logit link 
function is defined as modeling the log odds of the “success” of the outcome variable as a 
linear combination of the input variables. In a univariate logistic regression model, the odds 
increase multiplicatively by the exponential of the coefficient per every unit increase in the 
predictor variable. Apte, Rendon, and Dixon (2016) explore how the DoD can use 
information on contractor performance to identify variables that drive the success in service 
acquisition by using logistic regression and other big data techniques. Success or failure of 
a contract was used as the response variable, and the authors found that type of contract, 
awarded dollar value, workload (actions) by filled billets, and percentage of 1102 billets filled 
by the contracting office had the largest impact on a contract’s success. An additional 
workload of 10 actions per billet is more likely to have a failed contract by 13%, and cost 
plus award fee (CPAF) and cost plus fixed fee (CPFF) contracts are more likely to fail than 
firm fixed price (FPP) contracts (Apte et al., 2016). 

Support Vector Machines (SVM) is a classification technique that plots each data 
point in an N-dimensional space where the goal is to identify a linearly separable hyperplane 
that maximizes the distance (margin) between the data points of a dichotomous response 
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variable. This algorithm uses only the set of data points, called support vectors, closest to 
the margin to classify the data. If the data is linearly inseparable, a kernel function is used to 
map the non-linear data into a high dimensional space to become linearly separable 
(Berwick, n.d.). Wei, Wu, Ma, and Li (2019) use SVMs to estimate the state of charge of 
lithium-ion batteries for unmanned aerial vehicles (UAVs). 

Artificial Neural Networks (ANN) is one of the most powerful machine learning 
algorithms. A neural network consists of a set of inputs (input layer), interconnected nodes, 
and an output layer. Data from each node in the input layer is passed to a node in the 
hidden layer (interconnected nodes) that calculates a weighted sum (Hardetsy, 2017). The 
hidden layer uses an activation function (e.g., sigmoid function) to determine if the weighted 
sum of the inputs is passed to the next hidden layer based on if the weighted sum is greater 
than a threshold/bias until the data reaches the output layer. ANNs are best used when 
relationships are not constricted to linearity or normality assumptions, when relationships 
between the variables are difficult to model using traditional approaches, and to discover 
patterns in the data (Burger, n.d.). Brotherton and Johnson (2001) use a neural network to 
detect anomalies or unexpected faulty conditions in engine operations of advanced military 
aircraft.  

K-Nearest Neighbors (KNN) is used to classify a data point based on the known 
class of its neighbors. To classify an observation in the test set, the distance between the 
observation and all the data points in the training set must be calculated using a distance 
metric (e.g., Euclidean distance) to identify the k-nearest points. Classification of a data 
point is assigned to one of the categories that appears the most among an observation’s k-
closest points if the response is categorical. If the response is quantitative, KNN becomes a 
regression problem, and the assigned output value for an observation is calculated using the 
arithmetic mean of its k-nearest points. Xiao, Cai, and Chen (2006) use KNN and SVMs to 
classify types of military vehicles based on the acoustic and seismic signals generated. 

K-means is a clustering algorithm that is used to identify K homogenous clusters in 
the data such that the points in each cluster are similar to each other. The algorithm 
estimates initial values of centroids (the average of the data points in a cluster) as a first 
step, and then iteratively assigns each data point to the closest centroid based on a distance 
metric and takes the mean of all the data points in the cluster to calculate a new centroid. 
The iteration of the algorithm stops when cluster centroids are stabilized. K-means ensures 
that data points are homogenous within and heterogeneous between clusters. The final 
result is the assignment of each data point to a single cluster. Zainol et al. (2018) use K-
means to uncover text patterns in military peacekeeping documents. 

Naive Bayes Classifier is a probabilistic model that uses Bayes’theorem with the 
assumption that each pair of input variables is conditionally independent given a value of the 
response variable where the classification rule is defined as 𝑃𝑃(𝑌𝑌|𝑋𝑋1, … ,𝑋𝑋𝑛𝑛) ∝
𝑃𝑃(𝑌𝑌)∏ 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑌𝑌)𝑛𝑛

𝑖𝑖=1  (Naive Bayes, n.d.). The classifier selects the class of the response 
variable with the highest conditional probability as the target outcome. Freeman (2013) 
combines multinomial Naive Bayes and multivariate classification to identify DoD acquisition 
programs with elevated levels of cost risk. 

Decision tree analysis is a supervised learning technique that can be used for both 
regression and classification to visually display decisions as a tree-like diagram represented 
as homogeneous partitions of the data that lead to a target outcome. The structure has a 
root node, internal nodes, which represent a split on a predictor variable, and leaf nodes, 
which represent a target outcome. Every decision tree can be represented using binary 
decisions at each internal node (Gales, 2013). Decision trees are most commonly built using 
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a top-down approach, which is an iterative and recursive process that selects the best 
predictor variable for splitting the data into disjoint subgroups based on a splitting criterion 
(e.g., Information gain, Gini gain) applied to each descendant node (Hand, Mannila, & 
Smyth, 2001). Apte et al. (2016) also used a decision tree to analyze success or failure of a 
contract. From top-down, the decision tree first split on awarded dollar value of contract, 
workload (actions) by filled billets, then finally percentage of filled billets. 

A summary of the previously mentioned ML techniques and their application to the 
DoD related problem is provided in Table 1.  
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Table 1. Summary of ML methodologies 
Method Key Features Assumptions DoD 

Reference 
Supervised Learning 

Linear 
Regression 

Fits quantitative/categorical predictors 
and continuous response to 
regression line using OLS  

Linear parameters, constant error 
variance, independent error terms, 
errors are normally distributed, 
random sample of observations, no 
multi-collinearity 

Moore and 
White III 
(2005) 

Ridge 
Regression 

Modification of linear regression that 
uses L2 norm when multi-collinearity 
assumption in linear regression is 
broken 

Standardization of predictors, linear 
parameters, constant error variance, 
independent errors ("Regression 
Analysis Software | NCSS Software," 
n.d.)  

Huang and 
Mintz 
(1990) 

Lasso 
Regression 

Used as a variable reduction or 
feature selection technique that 
shrinks some predictor coefficients to 
exactly zero to reduce overfitting from 
the linear regression model 

Model has sparsity, irrepresentable 
conditions (Zhao & Yu, 2006) 

Wang and 
Yang 
(2016) 

Binary 
Logistic 
Regression 

Models the log odds (using logit link) 
of a categorical binary outcome 
variable as a linear combination of 
quantitative/categorical predictors 

Independent observations and 
errors, binomial distribution of 
response variable, linearity between 
logit of response and predictors 
("Summary Points for Logistic 
Regression," n.d.) 

Apte et al. 
(2016) 

Support 
Vector 
Machine 

Uses a linearly separable hyperplane 
to classify data into two classes 

Independent and identically 
distributed observations, margin is 
as large as possible, support vectors 
are most useful data points  

Wei et al. 
(2019) 

Artificial 
Neural 
Networks 

Model consisting of interconnected 
nodes that receive inputs and return 
outputs based on an activation 
function 

Independence of inputs Brotherton 
and 
Johnson 
(2001) 

K-Nearest 
Neighbors 

Used to classify data points based on 
class that appears the most among 
neighboring points (classification) or 
average of classes (regression) 

Similar inputs have similar outputs 
(Weinberger, 2018)  

Xiao et al. 
(2006) 

Naive Bayes 
Classifier 

Uses Bayes theorem to calculate 
probabilities of a class response and 
selects the class with highest 
probability as the output 

Predictors are conditionally 
independent of each other given the 
response 

Freeman 
(2013) 

Decision 
Tree 

Algorithm that recursively and 
iteratively partitions the data into 
homogeneous subsets to identify a 
target outcome 

Entire training set is at root node, 
quantitative predictors must be 
discretized 

Apte et al. 
(2016) 

Unsupervised Learning 
K-means Use to identify homogeneous clusters 

in a data set 
Cluster sizes are similar and 
spherical in form 

Zainol et al. 
(2018) 

The objectives of the literature review are two-fold: first is to identify the various ML 
methods which can be applied to SoS acquisition problems and map their input, output, and 
data requirements, and second is to assess how these methods are applied for different 
DoD problems. An emerging thread in the literature review is isolated application of these 
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methods where the outcomes along with the data sets are rarely shared across the different 
hierarchical levels of an organization and SoS. Moore and White III (2005) use the 
combination of multiple algorithms on a single data set at a local system to identify programs 
with increased cost growth. The objectives for our research differ in that we aim to analyze 
how multiple systems run their own individual predictive analytics at the local level and how 
to best share different data sets across SoS hierarchy to prescribe the SoS capability. 
Integrating Predictive and Prescriptive Analytics for Acquisition 

In previous work, we have used a conceptual problem to demonstrate the impact that 
even small, intuitive changes in how data is collected and shared can result in different 
predictive and prescriptive analytic implementations and lead to a different outcome for SoS 
decision-making (Davendralingam, Maheshwari, Raz, & DeLaurentis, 2018). Let us take a 
simple and conceptual example of an enterprise where the objective is to maximize profit by 
selling a product for which multiple independent entities such as the dealer/distributors of 
the product, the corporate headquarters, and market research organization must work 
together. Each of these entities have their own independent objectives for which they use 
data analytics for decision-making. Consider a scenario where the Market Research Team 
performs a market study to understand the consumer’s opinion on the product design. Now, 
this information can be used to support the future product design at the Corporate HQ by 
providing insights on what aspects of the design are the most crucial for the consumer. With 
the better understanding of the information flow, the same set of collected data can also 
provide insights to the Dealer/Distributor on what features of the current product design 
dictate the demand and, thus, lead to higher profits. In this simplified example, this link of 
information flow might seem trivial, but when looking at real-world system-of-systems, 
identifying this important link remains a challenge. In this research, we are pursuing 
development of a framework that will facilitate identification of such links and quantify how 
the SoS level capability could evolve by sharing data sets across the systems.  

 
Figure 1. Conceptual problem to identify impact of data-set connectivity  

System-of-Systems Acquisition Conceptual Problem Formulation 
Introduction to Definition, Acquisition, and Implementation Framework 

We build our approach from a conceptual model of SoS that provides a lexicon and 
taxonomy for representing the various SoS constructs and utilize it to examine data needs 
and their respective connectivity (Davendralingam et al., 2018). The framework is 
envisioned to assist in orchestration of analytics and data architecture components across 
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an organization for improved enterprise level performance. The framework is comprised of 
three phases: Definition, Abstraction, and Implementation. The purpose of the Definition 
phase is to holistically identify the stakeholders, resources, policy, and economics at 
different hierarchal levels within an SoS. The Abstraction phase, then, develops 
representation of the artifacts identified in the Definition phase and recognizes the networks, 
and hence, interconnection of stakeholders, resources, policy, and economics. This is where 
the opportunity lies to identify what new connections between the artifacts could be 
established. Finally, in the Implementation phase, the solution to the SoS problem as 
defined and abstracted is investigated. Here, the focus is on identifying the right solution 
methods which are tailored to the SoS problem.  
SoS Acquisition Problem Formulation 

Consider, for example, a system-of-systems capability as illustrated in Figure 2. The 
Definition phase identifies elements comprising the system-of-systems at different hierarchy 
levels, while the abstraction phase identifies the links between these elements. In this case, 
sub-systems 𝛼𝛼1 and 𝛼𝛼2 form the system 𝛽𝛽1, whereas 𝛼𝛼3 relates to the system, 𝛽𝛽2. At the 
higher level, 𝛽𝛽1, and 𝛽𝛽2form the system-of-systems, 𝛾𝛾1. Now, each of the sub-system 
suppliers, system manager, and SoS managers have independent goals of employing data 
analytics to improve their figures of merit. At the sub-system level, the supplier 1 and 
supplier 2 may not foresee a need for data set connectivity between 𝛼𝛼1 and 𝛼𝛼2. However, 
the potential need for such connectivity becomes evident only at the 𝛽𝛽1 system. Since 
supplier 1, supplier 2, and sys 1 manager all become part of the same system, identifying 
the right information pathways and connecting data sets for predictive and prescriptive 
analytics becomes necessary. Similarly, the same logical formulation can be applied to the 
SoS-level which may demand connectivity of data sets between system 𝛽𝛽1 and system 𝛽𝛽2, 
and subsequently imply connectivity between supplier 1, supplier 2, and supplier 3. 
However, it may not be pragmatic to achieve a full connectivity between all constituent 
systems and elements of the SoS. Therefore, identifying which datasets need to be 
connected by characterizing how their connectivity impacts the SoS and the figures of merit 
becomes a pertinent question.  

 
Figure 2. SoS conceptual example 
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The complexity and scale of this problem for any real-world implementation prohibits 
an analytical solution. In this research, we address this problem by first formulating the SoS 
capability measure based on acquiring multiple systems within the DoD application domain 
and demonstrate how the SoS capability evolves due to sharing preferences between sub-
hierarchical systems while maintaining the independent system objectives. Second, we aim 
to investigate deployment of machine learning techniques (reviewed in the Literature Review 
section) to predict and prescribe the connectivity of data sets across the different 
hierarchical levels. Since this paper is an interim update on the ongoing research work, our 
focus here is on demonstration of SoS acquisition problem formulation, whereas the latter 
objective of identifying ML techniques will be discussed in a future update.  
SoS Acquisition Implementation in Defense Using Decision Support Framework 

The Decision Support Framework (DSF) is a tool that includes various SoS analytical 
tools. The primary function of the DSF is to perform quantitative Analysis of Alternatives 
(AoA) by generating portfolios of systems that provide both the SoS capabilities of interest 
and the necessary logistical support for the systems included in the portfolio. This capability 
is accomplished by integrating a Robust Portfolio Optimization (RPO; Davendralingam & 
DeLaurentis, 2015) analysis tool for SoS which evaluates not only system- and SoS-level 
capabilities but also the constraints imposed by interactions between systems (i.e., via 
support capability requirements). The DSF also performs quantitative and qualitative 
analysis of each architecture by generating analysis of disruptions via Systems Operational 
Dependency Analysis (SODA; Guariniello & DeLaurentis, 2017), network representation of 
the systems and their dependencies through biographs, and cascading matrices that show 
how systems contribute to SoS capabilities. These methods will be described in more detail 
in the following sections. 

A synthetic problem was created to run simulations using the DSF software and 
interface with other existing System-of-Systems (SoS) analytical tools. The synthetic 
problem is an Amphibious Warfare Scenario, which was chosen since it is a multi-domain 
problem involving air, ground, naval, and space systems. The systems in Amphibious 
Warfare interact to provide logistical support and system-level capabilities to achieve certain 
SoS-level capabilities. A case study was developed for the synthetic problem that 
specifically defined systems from a World War II Amphibious Warfare Scenario. Use of 
World War II systems and context was chosen since many measures of system capabilities 
from this time period are public knowledge, which allowed the research team to create a 
case study with adequate detail. The Mission System Library (MSL) is the key means to 
pass user inputs into the DSF. The MSL is created in an Excel workbook, where a series of 
eight sheets provide specific information on the problem:  

1. Main Sheet: System names, support capabilities (i.e., internal logistic 
requirement), system capabilities, and capability uncertainties 

2. SoS Capabilities: SoS capability names and sets of indices of the system 
capabilities that contribute to each SoS capability 

3. Compatibility Constraints: matrices containing information on compatibility 
between systems, specification of maximum amount of specific systems 
allowed in a portfolio 

4. Must Have Systems: to indicate any mandatory systems in a portfolio 
5. Conditional Must Have Systems: establishing system interdependencies for 

operations 
Each of these sheets can be read automatically by the DSF software to run the SoS 

analysis tools and create the outputs. The user is expected to create their own Mission 
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System Library for their specific problem. An example problem was created for the 
Amphibious Warfare Scenario to evaluate the portfolios generated under different scenarios 
and user-input parameters (case scenario and experiments are discussed in detail in the 
section entitled Problem Description and Setup in Decision Support Framework).  

In this paper, we are not using all the tools included in the DSF, but we are focusing 
on those that provide results suitable for the objectives of this research on SoS and ML 
tools. The tool that we used to generate different portfolios based on various scenarios and 
input parameters is the Robust Portfolio Optimization (RPO). This is a methodology to 
maximize the expected performance of SoS and keep within acceptable levels of 
developmental risk and cost, while at the same time deal with uncertain information. 
Implementation of RPO for a certain SoS design problem yields a set of Pareto optimal 
portfolios of cost versus SoS performance, corresponding to a user-defined risk aversion 
factor. The optimization is based on a mixed integer programming technique, and all the 
interdependency between component systems are depicted as constraints.  

In the DSF, RPO has been improved with an additional layer that includes not only 
support capabilities and systems capabilities, but also multiple SoS capabilities that can be 
included in a weighted function for multi-objective optimization. Initial quantitative 
architecture analysis of alternatives is performed in the DSF using the RPO method. RPO 
generates optimized portfolios of systems, and it creates Pareto graphs to display results for 
SoS-level performance versus portfolio cost. Other tools can be added for further 
quantitative evaluation. 

The DSF runs the RPO tool using as input the system information from the MSL. The 
user can modify the parameters of the analysis in the DSF Main GUI. Based on the scenario 
loaded from the opening screen, the GUI will display the user’s list of SoS capabilities that 
can be selected for optimization, as well as a list of support capabilities, from which the user 
can select whether uncertainty needs to be considered or not. These options implement 
concepts of Mission-Based design, where even the same set of available systems will 
generate different portfolios based on different mission requirements. On the right side of 
the GUI, the user can define levels of risk aversion and levels of available budget, which are 
used later for generating Pareto frontiers. Other inputs include the importance weights for 
the selected SoS capabilities and the option to set the requirement to include modular 
systems. 

Simulation and Results 
Problem Description and Setup in Decision Support Framework 

Considering a realistic setting, where multiple officers/designers/managers are 
involved, in a multi-objective SoS acquisition problem, a common occurrence is differences 
in interpretation of the mission requirements either due to lack of communication or 
judgement. This study investigates how such dissimilarities in the definition of the mission 
requirements of one contributing individual from another affects the final SoS performance 
and cost.  

In the previously discussed Amphibious Warfare case study, multiple systems were 
defined in each domain, including air, ground, naval, and space, as well as human systems 
(e.g., operators). In the MSL, 26 systems were defined, though only an excerpt is provided 
in Figure 3 and Figure 4, and then evaluated for their support and system capabilities. Five 
support capabilities were defined for this case study: Transport Range (measured by range 
in miles), Transport Capacity (measured by capacity in pounds), Refuel (measured by fuel 
capacity in pounds), Communication Relay (measured using a constructed rating), and 
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Operator (measured by number of operators). Each system might have one or more support 
input requirements, which must be fulfilled by a system that has a matching support output 
capability. Therefore, two sets of columns were defined in the MSL for support capabilities: 
Support Input Requirement and Support Output Capability. Some systems might be only 
“support systems” if they only provide support output but do not provide system capabilities. 
Though the quantified SoS capabilities are evaluated using only the system capabilities, the 
Robust Portfolio Optimization tool is able to consider the support inputs and outputs by 
creating constraints that must be satisfied for any portfolio, making these interdependencies 
still critical to the architecture results. 

 
Figure 3. List of available systems and support requirements 
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Figure 4. List of the same systems shown in Figure 3. Orange columns are the 

provided system capabilities; green column is cost; blue column indicates 
modularity; grey columns are uncertainties. 

Next, all desired SoS Capabilities and the indices of the system capabilities that 
contribute to the SoS capability are defined. Each SoS capability is computed using a 
normalized sum of individual system capabilities in their respective domain. For this 
experiment, the focus will be on three SoS capabilities related to an amphibious warfare 
scenario—Air Superiority, Naval Superiority, and Reconnaissance (shown in Table 2). DSF 
is also equipped to handle several more SoS capabilities in an effort to extend its usability to 
a larger spectrum of acquisition problems going forward to leverage the use of machine 
learning techniques. 

Table 2. SoS Capabilities for Amphibious Warfare case study, with system 
capability contributions 

No. SoS-Capability System-Capability Indices 
1 Air Superiority 1-6 19-27 46 47 52 53 

 

2 Naval Superiority 13-18 37-45 50-53 
    

3 Reconnaissance 46-53 
      

A main feature of the DSF, and the one that is used to investigate our problem 
statement, is the ability to assign weights to the SoS capability based on the preference for 
the mission requirement. For example, an acquisition manager who believes that the final 
portfolio of systems needs to be oriented more towards Air Superiority capability over the 
others would assign weights accordingly (example: Air Superiority = 0.8, Naval Superiority = 
0.1, and Reconnaissance = 0.1). This then leads to the issue of conflicting objectives among 
the team of acquisition managers or SoS designers. In order to learn the impact of different 
acquisition strategies (characterized by manager expectations concerning the relative 
importance of SoS capabilities) on final portfolios, we run 30 cases of varying weights 
among the team of acquisition managers to understand the variance in portfolios, 
performance, and cost of the SoS. Figure 5 shows the weight distribution for each of the 
SoS capabilities. 
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Cases Air Superiority Naval Superiority Reconnaissance
1 0.8 0.1 0.1
2 0.7 0.2 0.1
3 0.7 0.1 0.2
4 0.6 0.2 0.2
5 0.6 0.3 0.1
6 0.6 0.1 0.3
7 0.5 0.1 0.4
8 0.5 0.2 0.3
9 0.5 0.3 0.2

10 0.5 0.4 0.1
11 0.4 0.5 0.1
12 0.4 0.4 0.2
13 0.4 0.3 0.3
14 0.4 0.2 0.4
15 0.4 0.1 0.5
16 0.3 0.6 0.1
17 0.3 0.5 0.2
18 0.3 0.4 0.3
19 0.3 0.3 0.4
20 0.3 0.2 0.5
21 0.3 0.1 0.6
22 0.2 0.7 0.1
23 0.2 0.6 0.2
24 0.2 0.5 0.3
25 0.2 0.4 0.4
26 0.2 0.3 0.5
27 0.2 0.2 0.6
28 0.2 0.1 0.7
29 0.1 0.1 0.8
30 0.1 0.8 0.1

Weights
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Figure 6. Test runs with variation in weight distribution 

Running the DSF and using RPO, we collected the resulting SoS portfolios for all 
these cases. In each case, we obtain multiple portfolios that are feasible within given budget 
limits. From our runs, a total of four feasible instances for each case was produced, and 
these were used to form a pareto frontier to better understand the relation between SoS 
capability preferences, performance, and cost. 

SoS capability 0 0.0624 0.0691 0.0737 0.0737
Cost $0.00 $ 145.24M $ 297.24M $ 597.24M $ 679.24M
P-51 Mustang 0 1 1 1 1
B-17 Flying 
Fortress 0 1 1 1 1

C-47 0 0 0 0 0
B-52H 
Stratofortress 0 0 0 0 0

B-2 Spirit 0 0 0 0 0
Infantry 
Platoon 0 1 1 1 1

M114 155mm 
Howitzer 0 0 0 0 0

M-4 Sherman 0 1 1 1 1

M8 Greyhound 0 1 1 1 1

Jeep Willis 0 1 1 1 1
"Deuce and a 
half" (supply 
truck)

0 0 0 0 0

Advanced 
Targeting Pod 0 1 1 1 1

TARDEC 
Chassis 0 0 0 0 0

TARDEC Anti 
Air Module 0 0 0 0 0

TARDEC 
Artillery 
Module

0 0 0 0 0

TARDEC 
Personal 
Module

0 0 0 0 0

Bofors 40 mm 
gun (L60) 0 0 0 0 0

Refuel Depot 0 1 1 1 1
Resupply 
Depot 0 0 0 0 0

Allen M. 
Sumner 
Destroyer

0 0 1 1 1

Higgins Boat 
(LCVP) 0 1 1 1 1

Landing Ship, 
Tank (LST) 0 1 1 1 1

Battleship 0 1 1 1 1
Ultrahigh 
Frequency 
Follow-on 
(UFO) 
Communicatio
n Satellite

0 0 0 0 1

Wideband 
Global 
Satellite 
Communicatio
n Satellite 
(WGS)

0 0 0 1 0

General 
Personnel 0 1 1 1 1
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Results and Analysis 
For each case, the DSF produces portfolios containing data about the various 

possible architectures and their associated SoS performance index and cost. A portfolio is a 
feasible combination of systems, which includes some that provide the required capabilities 
and others that provide the needed support. Figure 6 is one example (case 1) for a portfolio 
generated for a test case. Each column is a Pareto-optimal portfolio for a given budget limit. 
Zeros mean that the corresponding architecture does not utilize the system in question. 
Ones indicate systems that are part of the architecture. Looking into this data will give the 
user insight on how these suggested architectures differ amongst themselves and how they 
compare with other cases.  

In this example, it is observable that when the architectures switch to a combination 
that includes one or more different systems, better performing yet expensive, the SoS 
capability improves. This possibility of various permutations of system architectures make a 
portfolio-based study more relevant and accurate for SoS acquisition problems. 

The data from the portfolios generated in the 30 scenarios are then used to identify 
the space of solutions for all the cases individually. To do so, Portfolio Performance 
Frontiers where the SoS Performance Index is mapped with its corresponding costs are 
plotted. Figure 7 is a representation of this for two cases (Case 1 and Case 17 as 
examples).   

 
Figure 7. Architectures in a single scenario 
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Figure 8. Test runs with variation in weight distribution 

First, each of these portfolio performance frontiers identify the best possible solution 
(architecture) for a given cost. Every distinguishable point on the frontier is a feasible 
architecture (one column from Figure 6). With increase in budget, as expected, better 
performing systems are acquired to form the SoS architecture. This results in better 
performing SoS architectures within the same scenario. Second, upon closely inspecting 
and comparing the two pareto frontiers, it is evident that while the shape/form of the two is 
similar, the data points are not the same. This indicates that different weight preferences for 
the SoS capability produce portfolios that provide different performances. This is clearly 
visible when multiple pareto frontiers from various cases in the experiment are plotted in the 
same graph, as shown in Figure 8. We can notice that any uncertainty in SoS capability 
preferences (while setting up the acquisition problem) affects the resulting performance of 
the SoS portfolios. For example, Case 1 had a weight of 0.8 (out of 1) and Case 29 had 0.1 
for Air Superiority and, as stated, the SoS performance index for their respective portfolios 
are inversely related to the value of the assigned weights, leading to two portfolios with a 
sizeable difference in their performance index. Another influencing factor in any acquisition 
problem is the restrictive nature of the proposed budget (i.e., cost). By using RPO, the 
accountability of cost-based comparisons are visible, too, such as in instances where the 
performance index of a portfolio for one case (case 26) is higher than the other (case 22) for 
a specified cost value. However, with an increase in cost to a higher value, the previous 
trend does not hold true. 
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Figure 9. Variation in pareto frontiers across the cases 

Conclusion and Future Work  
Machine learning and data analytic techniques are increasingly being employed for 

decision-making regarding system acquisition and capability development which eventually 
become part of a larger SoS. These independent systems are both consumers and 
producers of the SoS capability which is shaped by the collaboration between systems. 
However, due to operational and managerial independence of these systems, the machine 
learning and data analytic techniques are often applied in isolation from the SoS. The 
literature survey of various machine learning applications in the DoD domain indicate a 
siloed treatment where only a few cases exhibit exchange of datasets and outcomes 
between different machine learning methods, let alone across systems and SoS. In the 
research, we aim to investigate how the SoS capability evolves from the individual system 
preferences and how we can leverage the datasets employed for siloed system-level 
decision-making for the SoS-level decision making. Our example results in this paper clearly 
establish the significance of sharing these datasets by demonstrating that differing 
preferences of SoS stakeholders—modeled as weights of independent capabilities provided 
by individual systems—lead to different sets of systems (i.e., portfolios) being selected in the 
SoS for a given budget.  

As we continue the development of this research, a major challenge that we aim to 
address is identification of which datasets need to be connected across the SoS, since fully 
connected data enterprise is unlikely to be pragmatic in the real world. In ongoing 
developments, we are focused on investigating machine learning techniques that can 
predict the SoS capability based on having access to decision-making loops at the system 
level and prescribe a path forward for generating information flows between systems in the 
SoS. 
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