Retention Analysis Modeling for the Acquisition Workforce

Tom Ahn & Amilcar A. Menichini

Motivation

- How can we utilize personnel policy to more efficiently reshape AWF?
- How can we prevent the "bathtub" in the first place?

Overall DAW - Civilian Retirement Eligibility Distribution - End-FY08 vs End-FY15

Plan of Attack

- 1. <u>Look back at attrition patterns using Cox proportional hazard model.</u>
- 2. Create Dynamic Programming Model based on insights from survivor model.
- 3. <u>Project forward and simulate AWF evolution in response to optimal hiring/firing/compensation decisions.</u>

Variables	Mean (Std. Dev) [Min/Max]		
Female	0.632		
White	0.776		
African-American	0.222		
Hispanic	0.045		
Asian	0.081		
Native American / Native Alaskan	0.011		
Has Identified Disability	0.202		
Prior Military Service	0.619		
Has Bachelor's Degree	0.547		
Has Post-graduate Degree	0.332		
Gained Additional Education in AWF	0.441		
Career Length in AWF (in months)	143.6 (103.8) [1 / 309]		
Age at Entry	33.0 (8.2) [15 / 65]		
Age at Exit	48.2 (10.55) [20 / 68]		
Position Type: Professional	0.657		
(Ever Held) Technical	0.245		
Blue-Collar	0.018		
White-Collar	0.297		
Ever Ranked Not Fully Satisfactory	0.575		
Highest Salary	95,143.67 (30,410.74) [27,397 / 189,600]		
Observations	13,590		

Table 2. Summary Statistics for the DoD Acquisition Workforce. Source: DMDC (2019).

	Mode	el 1	Mod	Model 2		el 3	Model 4	
	Coef.	Hazard	Coef.	Hazard	Coef.	Hazard	Coef.	Hazard
Female	-0.1866*	0.8298	-0.2292*	0.7952	-0.1619*	0.8505	-0.1126*	0.8935
	(0.0252)	(0.000)	(0.0259)	(0.000)	(0.0262)	(0.000)	(0.0261)	(0.000)
African-Am.	-0.0214	0.9789	-0.0250	0.9753	0.0008	1.0008	0.0573	1.0590
	(0.0291)	(0.463)	(0.0292)	(0.391)	(0.0292)	(0.978)	(0.0293)	(0.051)
Hispanic	-0.0492	0.9520	-0.0625	0.9394	-0.0247	0.9756	0.0352	1.0358
	(0.05461)	(0.368)	(0.0546)	(0.252)	(0.0547)	(0.652)	(0.0548)	(0.520)
Native Am.	-0.0414	0.9594	-0.0501	0.9511	0.0306	1.0311	-0.0090	0.9910
	(0.1178)	(0.725)	(0.1178)	(0.671)	(0.1179)	(0.795)	(0.1178)	(0.939)
Disability	-0.1331*	0.8754	-0.1312*	0.8771	-0.1154*	0.8910	-0.0723 [§]	0.9303
	(0.0327)	(0.000)	(0.0327)	(0.000)	(0.0327)	(0.000)	(0.0328)	(0.028)
Prior Military	-3.0036*	0.0496	-2.9681*	0.0508	-2.9652*	0.0516	-3.0574*	0.0470
	(0.0358)	(0.000)	(0.0361)	(0.000)	(0.0364)	(0.000)	(0.0384)	(0.000)
BA degree	-	-	-0.1069*	0.8986	-0.0050	0.9950	0.0319	1.0324
			(0.0242)	(0.000)	(0.0275)	(0.841)	(0.0267)	(0.231)
Post-BA	-	-	-0.1598*	0.8523	-0.0051	0.9949	$-0.0626^{\$}$	0.9393
			(0.0282)	(0.000)	(0.0297)	(0.863)	(0.0314)	(0.046)
Add'n Degree	-	-	-	-	-0.4513*	0.6368	-0.3025*	0.7389
					(0.0272)	(0.000)	(0.0274)	(0.000)
Professional	-	-	-	-	-	-	-1.2607*	0.2835
							(0.0295)	(0.000)
Technical	-	-	-	-	-	-	-1.0919*	0.3356
							(0.0359)	(0.000)
Deficient Rank	-	-	-	-	-	-	-1.2102*	0.2981
							(0.0328)	(0.000)
Observations	1,951,	719	1,951,719		1,951,719		1,951,719	
-ln L	63,297	.701	58,795.086		58,652.802		57,393.441	

Table 4. Cox Proportional Hazard Model Parameter and Hazard Ratio Estimates

Note: §, * denote statistical significance at the 5% and 1% levels. For coefficient estimates, standard errors are in parentheses. For Hazard ratios, P-values are in parentheses.

Dynamic Retention Model

	٦	Table 6. Initial Pa	rameter Valu
$V_t^L = W_t^c + \omega^c + \beta E_t \left[V_{t+1}^L \right] + \varepsilon_t^c = \sum_{\tau=t}^T \beta^{\tau-t} (W_{\tau}^c + \omega^c) + \varepsilon_t^c,$	(1)	Parameter	Value
$V_t^S = W_t^m + \omega^m + \beta E_t[V_{t+1}] + \varepsilon_t^m,$	(2)	W _t ^m	1
$V_t = Max[V_t^L, V_t^S]$	(3)	W_t^c	1
• W_t^m : compensation the worker earns in period t		Т	30
• W_t^c : compensation the worker earns outside the AWF in period t		в	0.95
• T : time horizon of the decision problem		ω^m	0.1
• $\beta = \frac{1}{1+r}$: discount factor. <i>r</i> is the subjective discount rate of worker		ω^{c}	0.1
 ω^c: taste parameter that captures monetary equivalent of preference for civilia ω^m: taste parameter that captures monetary equivalent of preference for AWF/ 	$\mu_{\varepsilon,m}$	0	
• $E_t[.]$: expectation operator given the information in period t		$\mu_{\varepsilon,c}$	0
• ε_t^c and ε_t^m : random shocks with zero mean		$\sigma_{\varepsilon,m}$	0.1
		$\sigma_{\varepsilon,c}$	0.1

Individual Retention Decision Simulation

Simulation of "Bathtub" Experience Distribution of AWF

Dynamic Simulation of Evolution of AWF Workforce with Zero Active Intervention

Individual Retention Decision with one-time 15% bonus at Yr. 15

Dynamic Simulation of Evolution of AWF Workforce with One-time Bonus Intervention

Dynamic Simulation of Evolution of AWF Workforce with Active Intervention

Conclusions (1)

• From Cox Proportional Hazard Model :

- Prior military experience impacts career longevity.
- Higher education level is positively correlated with career longevity.
- Workers who acquired additional education while working are likely to stay even longer.
- Implies leadership can upgrade productivity *and* retain its best people by encouraging and perhaps even subsidizing continuing education.

Conclusions (2)

• From DRM (Dynamic Programming):

- Models a worker who makes rational, time-consistent decisions about whether to stay in the workforce or leave at each point in time.
- Forecasts what workforce would look like as it matured through time.
- Demonstrates that one-time interventions cannot substantively change the shape of AWF.
- Provides step-by-step "recipe" of number of workers with how much experience to hire/terminate each year to achieve desired shape.

Next Steps

- Empirically estimate model using Rust-Nested-Fixed-Point and data from AWF to estimate model parameters.
- Run new simulations with other incentive policies.
- Incorporate "outside option" that change with strength of economy.
- Include additional decisions besides stay/leave ex. Investment in education.