

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

bu`bomq=colj=qeb==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

bfdeqe=^kkr^i=^`nrfpfqflk==

obpb^o`e=pvjmlpfrj==

tbakbpa^v=pbppflkp==

slirjb=f=

Disclaimer: The views represented in this report are those of the authors and do not reflect the official policy position
of the Navy, the Department of Defense, or the Federal Government.

Approved for public release; distribution unlimited.

Prepared for the Naval Postgraduate School, Monterey, California 93943

NPS-AM-11-C8P02R03-024

Advances in the Acquisition of Secure Systems Based on Open
Architectures

Walt Scacchi and Thomas Alspaugh, Institute for Software Research
Published: 30 April 2011

^Åèìáëáíáçå=oÉëÉ~êÅÜ=éêçÖê~ã=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor, please
contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our website
www.acquisitionresearch.net

=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- i -

=

Preface & Acknowledgements

During his internship with the Graduate School of Business & Public Policy in June
2010, U.S. Air Force Academy Cadet Chase Lane surveyed the activities of the Naval
Postgraduate School’s Acquisition Research Program in its first seven years. The sheer
volume of research products—almost 600 published papers (e.g., technical reports, journal
articles, theses)—indicates the extent to which the depth and breadth of acquisition
research has increased during these years. Over 300 authors contributed to these works,
which means that the pool of those who have had significant intellectual engagement with
acquisition issues has increased substantially. The broad range of research topics includes
acquisition reform, defense industry, fielding, contracting, interoperability, organizational
behavior, risk management, cost estimating, and many others. Approaches range from
conceptual and exploratory studies to develop propositions about various aspects of
acquisition, to applied and statistical analyses to test specific hypotheses. Methodologies
include case studies, modeling, surveys, and experiments. On the whole, such findings
make us both grateful for the ARP’s progress to date, and hopeful that this progress in
research will lead to substantive improvements in the DoD’s acquisition outcomes.

As pragmatists, we of course recognize that such change can only occur to the
extent that the potential knowledge wrapped up in these products is put to use and tested to
determine its value. We take seriously the pernicious effects of the so-called “theory–
practice” gap, which would separate the acquisition scholar from the acquisition practitioner,
and relegate the scholar’s work to mere academic “shelfware.” Some design features of our
program that we believe help avoid these effects include the following: connecting
researchers with practitioners on specific projects; requiring researchers to brief sponsors on
project findings as a condition of funding award; “pushing” potentially high-impact research
reports (e.g., via overnight shipping) to selected practitioners and policy-makers; and most
notably, sponsoring this symposium, which we craft intentionally as an opportunity for
fruitful, lasting connections between scholars and practitioners.

A former Defense Acquisition Executive, responding to a comment that academic
research was not generally useful in acquisition practice, opined, “That’s not their [the
academics’] problem—it’s ours [the practitioners’]. They can only perform research; it’s up
to us to use it.” While we certainly agree with this sentiment, we also recognize that any
research, however theoretical, must point to some termination in action; academics have a
responsibility to make their work intelligible to practitioners. Thus we continue to seek
projects that both comport with solid standards of scholarship, and address relevant
acquisition issues. These years of experience have shown us the difficulty in attempting to
balance these two objectives, but we are convinced that the attempt is absolutely essential if
any real improvement is to be realized.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the Acquisition
Research Program:

• Office of the Under Secretary of Defense (Acquisition, Technology & Logistics)

• Program Executive Officer SHIPS

• Commander, Naval Sea Systems Command

• Army Contracting Command, U.S. Army Materiel Command

• Program Manager, Airborne, Maritime and Fixed Station Joint Tactical Radio System

=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- ii -

=

• Program Executive Officer Integrated Warfare Systems

• Office of the Assistant Secretary of the Air Force (Acquisition)

• Office of the Assistant Secretary of the Army (Acquisition, Logistics, & Technology)

• Deputy Assistant Secretary of the Navy (Acquisition & Logistics Management)

• Director, Strategic Systems Programs Office

• Deputy Director, Acquisition Career Management, US Army

• Defense Business Systems Acquisition Executive, Business Transformation Agency

• Office of Procurement and Assistance Management Headquarters, Department of
Energy

We also thank the Naval Postgraduate School Foundation and acknowledge its
generous contributions in support of this Symposium.

James B. Greene, Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 7 -
=

=

Panel 2 – Advancing Open Architecture Acquisition

 Wednesday, May 11, 2011

11:15 a.m. –
12:45 p.m.

Chair: Christopher Deegan, Executive Director, Program Executive Office for
Integrated Warfare Systems

Delivering Savings with Open Architecture and Product Lines

Brian Womble, USN, and William Schmidt, Mike Arendt, and Tim Fain,
IBM

An Architecture-Centric Approach for Acquiring Software-Reliant Systems

Lawrence Jones and John Bergey, Software Engineering Institute

Advances in the Acquisition of Secure Systems Based on Open
Architectures

Walt Scacchi and Thomas Alspaugh, Institute for Software Research

Christopher Deegan—Executive Director, Program Executive Officer, Integrated Warfare Systems
(PEO IWS). Mr. Deegan directs the development, acquisition, and fleet support of 150 combat
weapon system programs managed by 350 military and civilian personnel with annual appropriations
of over $5 billion.

Mr. Deegan holds a Bachelor of Science degree in Industrial Engineering from Penn State
University, University Park, Pennsylvania and a Master of Science degree in Engineering from The
Catholic University of America, Washington, DC. He is a graduate of the Program Managers
Course, Defense Systems Management College, Fort Belvoir, VA. He is a Certified Acquisition
Professional and is Level III certified in three DA WIA career fields: Program Management;
Research and Systems Engineering; and Business, Cost Estimating and Financial Management.

Mr. Deegan is the only Comptroller employee to be recognized by the Association of Scientists and
Engineers as “NAVSEA Engineer of the Year” (1993). He received the Assistant Secretary of the
Navy (Research, Development and Acquisition) and NAVSEA Acquisition Excellence Awards (1996),
the David Packard Award for Governmental Excellence (1996), the Navy’s Meritorious Civilian
Service Award (1997), the Navy’s Competition and Procurement Excellence Award (2003), and a
Meritorious Unit Commendation Medal as a member of the SEA WOLF Program Office (2006). Mr.
Deegan was awarded the Presidential Rank of Meritorious Executive in October 2007.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 50 -
=

=

Advances in the Acquisition of Secure Systems Based on Open
Architectures
Walt Scacchi—Senior Research Scientist and Research Faculty Member, Institute for Software
Research, University of California, Irvine. Dr. Scacchi received a PhD in Information and Computer
Science from UC Irvine in 1981. From 1981–1998, he was on the faculty at the University of Southern
California. In 1999, he joined the Institute for Software Research at UC Irvine. He has published more
than 150 research papers and has directed 45 externally funded research projects. In 2007, he
served as General Chair of the Third IFIP International Conference on Open Source Systems
(OSS2007), Limerick, IE. In 2010, he chaired the Workshop on the Future of Research in Free and
Open Source Software, Newport Beach, CA, for the Computing Community Consortium and the
National Science Foundation. He also serves as Co-Chair of the Software Engineering in Practice
(SEIP) Track at the 33rd International Conference on Software Engineering, May 21–28, 2011,
Honolulu, HI. [wscacchi@ics.uci.edu]

Thomas Alspaugh—Adjunct Professor, Computer Science, Georgetown University, and Visiting
Researcher, Institute for Software Research at UC Irvine. Dr. Alspaugh’s research interests are in
software engineering and software requirements. Before completing his PhD, he worked as a
software developer, team lead, and manager in industry, and as a computer scientist at the Naval
Research Laboratory on the Software Cost Reduction project, also known as the A-7E project.
[thomas.alspaugh@acm.org]

Abstract
The role of software ecosystems in the development and evolution of secure open
architecture systems has received insufficient consideration. Such systems are
composed of software components subject to different security requirements in an
architecture in which evolution can occur by evolving existing components or by
replacing them. But this may result in possible security requirements conflicts and
organizational liability for failure to fulfill security obligations. We have developed an
approach for understanding and modeling software security requirements as
“security licenses,” as well as for analyzing conflicts among groups of such licenses
in realistic system contexts and for guiding the acquisition, integration, or
development of systems with open source components in such an environment.
Consequently, this paper reports on our efforts to extend our existing approach to
specifying and analyzing software intellectual property licenses to now address
software security licenses that can be associated with secure OA systems.

Introduction
A substantial number of development organizations are adopting a strategy in which

a software-intensive system is developed with an open architecture (OA; Oreizy, 2000),
whose components may be open source software (OSS) or proprietary with open application
programming interfaces (APIs). Such systems evolve not only through the evolution of their
individual components, but also through replacement of one component by another, possibly
from a different producer or under a different license. With this approach, the organization
becomes an integrator of components largely produced elsewhere that are interconnected
through open APIs as necessary to achieve the desired result.

An OA development process results in an ecosystem in which the integrator is
influenced from one direction by the goals, interfaces, license choices, and release cycles of
the component producers, and in another direction by the needs of its consumers. As a
result, the software components are reused more widely, and the resulting OA systems can

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 51 -
=

=

achieve reuse benefits such as reduced costs, increased reliability, and potentially increased
agility in evolving to meet changing needs.

An emerging challenge is to realize the benefits of this approach when the individual
components are subject to different security requirements. This may arise due either to how
a component’s external interfaces are specified and defended, or to how system
components are interconnected and configured in ways that can or cannot defend the
composed system from security vulnerabilities and external exploits. Ideally, any software
element in a system composed from components from different producers can have its
security capabilities specified, analyzed, and implemented at system architectural design-
time, build-time, or at deployment run-time. Such capability-based security in simplest form
specifies what types, value ranges, and values of data, or control signals (e.g., program
invocations, procedure, or method calls), can be input, output, or handed off to a software
plug-in or external (helper) application, from a software component or composed system.

When designing a secure OA system, decisions and trade-offs must be made as to
what level of security is required, as well as what kinds of threats to security must be
addressed. The universe of possible security threats is continually emerging and the
cost/effort of defending against them, ongoing. Similarly, anticipating all possible security
vulnerabilities or threats is impractical (or impossible). Further, though it may be desirable
that all systems be secure, different systems need different levels of security, which may
come at ever greater cost or inconvenience to accommodate. Strategic systems may need
the greatest security possible, while other systems may require much less rigorous security
mechanisms. Thus, finding an affordable, scalable, and testable means for specifying the
security requirements of software components, or OA systems composed with components
with different security requirements, is the goal of our research.

The most basic form of security requirements that can be asserted and tested are
those associated with virtual machines. Virtual machines (VM) abstract away the actual
functional or processing capabilities of the computational systems on which they operate,
and instead provide a limited functionality computing surround (or “sandbox”). VM can
isolate a given component or system other software applications, utilities, repositories, or
external/remote control data access (input or output). The capabilities for a VM (e.g., an
explicit, pre-defined list of approved operating system commands or programs that can write
data or access a repository) can be specified as testable conditions that can be assigned to
users or programs authorized to operate within the VM. The VM technique is now widely
employed through software “hypervisors” (e.g., IBM VM/370, VMware, VirtualBox, Parallels
Desktop for Mac) that isolate software applications and operating system from the
underlying system platform or hardware. Such VMs act like “containment vessels” through
which it is possible to specify barriers to entry (and exit) of data and control via security
capabilities that restrict other programs. These capabilities thus specify what rights or
obligations may be, or may not be, available for access or update to data or control
information. Thus architectural design-time decisions pertaining to specifying the security
rights or obligations for the overall system or its components are done by specification of
VMs that contain the composed system or its components. These rights or obligations can
be specified as pre-conditions on input data or control signals, or post-conditions on output
data or control signals.

The problem of specifying the build-time and run-time security requirements of OA
systems is different from that at design-time. In determining how to specify the software
build sequence, security requirements are manifest as capabilities that may be specific to
explicitly declared versions of designated programs. For example, if an OA system specifies
a “Web browser” as one of its components at design-time, at build-time a particular Web

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 52 -
=

=

browser (Mozilla Firefox or Internet Explorer) must then be specified, as must its baseline
version (e.g., Firefox 4.0 or Internet Explorer 9.0). However, if the resulting run-time version
of the OA system must instead employ a locally available Web browser (e.g., Firefox 3.6.1
or Internet Explorer 8.0 Service Pack 2), then the OA system integrators may either need to
produce multiple run-time versions for deployment, or else build the OA system using either
(a) an earlier version of the necessary component (e.g., Firefox 3.5 or Internet Explorer 7.0)
that is “upward compatible”; (b) a stub or abstract program interface that allows for a later
designated compatible component version to be installed/used at run-time; or else, (c)
create different run-time version alternatives (i.e., variants) of the target OA systems that
may or not be “backward compatible” with the system component versions available in the
deployment run-time environment. The need to specify build-time and run-time components
by versions (and possibly timestamps of their creation or local installation) arises since
evolutionary version updates often include security patches that close known vulnerabilities
or prevent known exploits. As indicated in the Related Research section below, security
attacks often rely on system entry through known vulnerabilities that are present in earlier
versions of software components that have not been updated to newer versions that do not
have the same vulnerabilities.

As we have been able to address an analogous problem of how to specify and
analyze the intellectual property rights and obligations of the licenses of software
components, our efforts now focus on the challenge of how to specify and analyze software
components and composed system security rights and obligations using a new information
structure we call a “security license.” The actual form of such a security license is still to be
finalized, but at this point, we believe it is appropriate to begin to develop candidate forms or
types of security licenses for further research and development, especially for security
license forms that can be easily formalized, be readily applied to large-scale OA systems, as
well as be automatically analyzed or tested. This is another goal of our research here.

Next, the challenge of specifying secure software systems composed from secure or
insecure components is inevitably entwined with the software ecosystems that arise for
secure OA systems. We find that an OA software ecosystem involves organizations and
individuals producing and consuming components, and supply paths from producer to
consumer; but also

 the OA of the system(s) in question, and how best to secure it,
 the open interfaces provided by the components, and how to specify their

security requirements,
 the degree of coupling in the evolution of related components that can be

assessed in terms of how security rights and obligations may change, and
 the rights and obligations resulting from the security licenses under which

various components are released, that propagate from producers to
consumers.

An example software ecosystem producing and integrating secure software
components or secure systems is portrayed in Figure 1.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 53 -
=

=

Figure 1. An Example of a Software Ecosystem in Which Secure OA Systems Are
Developed

In order to most effectively use an OA approach in developing and evolving a
system, it is essential to consider this OA ecosystem. An OA system draws on components
from proprietary vendors and open source projects. Its architecture is made possible by the
existing general ecosystem of producers, from which the initial components are chosen. The
choice of a specific OA begins a specialized software ecosystem involving components that
meet (or can be shimmed to meet) the open interfaces used in the architecture. We do not
claim this is the best or the only way to reuse components or produce secure OA systems,
but it is an ever more widespread way. In this paper, we build on previous work on
heterogeneously-licensed systems (German & Hassan, 2009; Scacchi & Alspaugh, 2008;
Alspaugh, Asuncion, & Scacchi, 2009a) by examining how OA development affects and is
affected by software ecosystems, and the role of security licenses for components included
within OA software ecosystems.

In the remainder of this paper, we survey some related work in the next section,
define and examine characteristics of open architectures with or without secure software
elements (in the Secure Open Architecture Composition section), define and examine

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 54 -
=

=

characteristics for how secure OA systems evolve (in the OA System Evolution section),
introduce a structure for security licenses (in the Security Licenses section), outline license
architectures (in the Security License Architectures section), and sketch our approach for
license analysis (in the Security License Analysis section). We then close with a discussion
addressing how our software license and analysis scheme relates to software products lines
(the Discussion section), before stating our conclusions in the final section.

Related Work
Software systems, whether operating as standalone components, or as elements

within large system compositions, are continuously being subjected to security attacks.
These attacks seek to slip through software vulnerabilities known to the attackers, but
perhaps not by the system integrators or consumers. These attacks often seek to access,
manipulate, or remotely affect the data values or control signals that a component or
composed system processes for nefarious purposes, or seek to congest or over-saturate
networked services. Recent high profile security attacks like Stuxnet (Falliere, Murchu, &
Chien, 2011) reveal that security attacks may be very well planned and employ a bundle of
attack vectors and social engineering tactics in order for the attack to reach strategic
systems that are mostly isolated and walled off from public computer networks. The Stuxnet
attacks entered through software system interfaces at either the component, application
subsystem, or base operating system level, and their goal was to go outside or beneath their
entry context. However, all of the Stuxnet attacks on the targeted software system could be
blocked or prevented through security capabilities associated with the open software
interfaces that would (a) limit access or evolutionary update rights lacking proper
authorization, as well as (b) “sandboxing” (i.e., isolating) and holding up any evolutionary
updates (the attacks) prior to their installation and run-time deployment. Furthermore, as the
Stuxnet attack involved the use of corrupted certificates of trust from approved authorities as
false credentials that allowed evolutionary system updates to go forward, it seems clear that
additional preventions are needed that are external to, and prior to, their installation and run-
time deployment. In our case, that means we need to specify and analyze software security
requirements and evolutionary update capabilities at architectural design-time and system
integration build-time, and then reconcile those with the run-time system composition. It also
calls for the need to maintain the design-time, build-time, and run-time system compositions
in repositories remote from system installations, and in possibly redundant locations that can
be encrypted, randomized, fragmented, and dispersed (e.g., via Torrents or “onion routing”),
then cross-checked and independently verified prior to run-time deployment in a high
security system application.

As already noted, both software intellectual property licenses, and security licenses
represent a collection of rights and obligations for what can or cannot be done with a
licensed software component. Licenses thus denote non-functional requirements that apply
to a software system or system components as intellectual property (IP) or security
requirements (i.e., capabilities) during their development and deployment. But rights and
obligations are not limited to concerns or constraints applicable only to software as IP.
Instead, they can be written in ways that stipulate non-functional requirements of different
kinds. Consider, for example, that desired or necessary software system security properties
can also be expressed as rights and obligations, addressing system confidentiality, integrity,
accountability, system availability, and assurance (Breaux & Anton, 2005, 2008).
Traditionally, developing robust specifications for non-functional software system security
properties in natural language often produces specifications that are ambiguous, misleading,
inconsistent across system components, and lacking sufficient details (Yau & Chen, 2006).
Using a semantic model to formally specify the rights and obligations required for a software

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 55 -
=

=

system or component to be secure (Breaux & Anton, 2005, 2008; Yau & Chen, 2006) means
that it may be possible to develop both a “security architecture” notation and model
specification that associates given security rights and obligations across a software system,
or system of systems. Similarly, it suggests the possibility of developing computational tools
or interactive architecture development environments that can be used to specify, model,
and analyze a software system’s security architecture at different times in its development—
design-time, build-time, and run-time. The approach we have been developing for the past
few years for modeling and analyzing software system IP license architectures for OA
systems (Alspaugh, Asuncion, & Scacchi, 2009b, 2010; Scacchi & Alspaugh, 2008) may
therefore be extendable to also being able to address OA systems with heterogeneous
“software security license” rights and obligations. Furthermore, the idea of common or
reusable software security licenses may be analogous to the reusable security requirements
templates proposed by Firesmith (2004) at the Software Engineering Institute. But such an
exploration and extension of the semantic software license modeling, meta-modeling, and
computational analysis tools to also support software system security can be recognized as
a promising next stage of our research studies.

Secure Open Architecture Composition

Open architecture (OA) software is a customization technique introduced by Oreizy
(2000) that enables third parties to modify a software system through its exposed
architecture, evolving the system by replacing its components. Increasingly more software-
intensive systems are developed using an OA strategy, not only with open source software
(OSS) components, but also proprietary components with open APIs. Similarly, these
components may or may not have their own security requirements that must be satisfied
during their build-time integration or run-time deployment, such as registering the software
component for automatic update and installation of new software versions that patch
recently discovered security vulnerabilities or prevent invocation of known exploits. Using
this approach can lower development costs and increase reliability and function, as well as
adaptively evolve software security (Scacchi & Alspaugh, 2008). Composing a system with
heterogeneously secured components, however, increases the likelihood of conflicts,
liabilities, and no-rights stemming from incompatible security requirements. Thus, in our
work, we define a secure OA system as a software system consisting of components that
are either open source or proprietary with open API, whose overall system rights at a
minimum allow its use and redistribution, in full or in part such that they do not introduce new
security vulnerabilities at the system architectural level.

It may appear that using a system architecture that incorporate secure OSS and
proprietary components, and uses open APIs, will result in a secure OA system. But not all
such architectures will produce a secure OA, since the (possibly empty) set of available
license rights for an OA system depends on the following: (a) how and why secure or
insecure components and open APIs are located within the system architecture, (b) how
components and open APIs are implemented, embedded, or interconnected, and (c) the
degree to which the IP and security licenses of different OSS components encumber all or
part of a software system’s architecture into which they are integrated (Scacchi & Alspaugh,
2008; Alspaugh & Anton, 2008).

The following kinds of software elements appearing in common software
architectures can affect whether the resulting systems are open or closed (Bass, Clements,
& Kazman, 2003).

Software Source Code Components—These can be either (a) standalone programs;
(b) libraries, frameworks, or middleware; (c) inter-application script code such as C shell

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 56 -
=

=

scripts; (d) intra-application script code, as for creating Rich Internet Applications using
domain-specific languages such as XUL for the Firefox Web browser (Feldt, 2007) or
“mashups” (Nelson & Churchill, 2006) whose source code is available and they can be
rebuilt; or (e) similar script code that can either install and invoke externally developed plug-
in software components, or invoke external application (helper) components. Each may
have its own distinct IP/security requirements.

Executable components—These components are in binary form, and the source
code may not be open for access, review, modification, or possible redistribution (Rosen,
2005). If proprietary, they often cannot be redistributed, and so such components will be
present in the design- and run-time architectures, but not in the distribution-time
architecture.

Software services—An appropriate software service can replace a source code or
executable component.

Application programming interfaces/APIs—Availability of externally visible and
accessible APIs is the minimum requirement for an “open system” (Meyers & Oberndorf,
2001).

Software connectors—This includes software whose intended purpose is to provide
a standard or reusable way of communication through common interfaces (e.g., High Level
Architecture [Kuhl, Weatherly, & Dahmann, 1999], CORBA, MS .NET, Enterprise Java
Beans, and GNU Lesser General Public License, LGPL, libraries). Connectors can also limit
the propagation of IP license obligations or provide additional security capabilities.

Methods of connection—These include linking as part of a configured subsystem,
dynamic linking, and client-server connections. Methods of connection affect license
obligation propagation, with different methods affecting different licenses.

Configured system or subsystem architectures—These are software systems that
are used as atomic components of a larger system, and whose internal architecture may
comprise components with different licenses, affecting the overall system license and its
security requirements. To minimize license interaction, a configured system or sub-
architecture may be surrounded by what we term a license firewall, namely a layer of
dynamic links, client-server connections, license shims, or other connectors that block the
propagation of reciprocal obligations.

Figure 2 shows a high-level run-time view of a composed OA system whose
reference architectural design in Figure 3 includes all the kinds of software elements listed
above. This reference architecture has been instantiated in a build-time configuration in
Figure 4, that in turn could be realized in alternative run-time configurations in Figures 5, 6,
and 7 with different security capabilities. The configured systems consist of software
components such as a Mozilla Web browser, Gnome Evolution email client, and AbiWord
word processor (similar to MS Word), all running on a RedHat Fedora Linux operating
system accessing file, print, and other remote networked servers such as an Apache Web
server. Components are interconnected through a set of software connectors that bridge the
interfaces of components and combine the provided functionality into the system’s services.
However, note how the run-time software architecture does not pre-determine how security
capabilities will be assigned and distributed across different variants of the run-time
composition.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 57 -
=

=

Figure 2. An Example Composite OA System Potentially Subject to Different IP
and Security Licenses

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 58 -
=

=

Figure 3. Design-Time Architecture of the System of Figure 2 That Specifies a
Required Security Containment Vessel Scheme

Figure 4. A Secure Build-Time Architecture Describing the Version Running in
Figure 2 With a Specified Security Containment Vessel Scheme

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 59 -
=

=

Figure 5. Instantiated Build-Time OA System With Maximum Security
Architecture of Figure 4 via Individual Security Containment Vessels for Each System

Element

Figure 6. Instantiated Build-Time OA System With Minimum Security
Architecture of Figure 4 via a Single Overall Security Containment Vessel for the

Complete System Using a Common Software Hypervisor

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 60 -
=

=

Figure 7. Instantiated Build-Time OA System With Mixed Security Architecture of
Figure 4 via Security Containment Vessels for Some Groupings of System Elements

OA System Evolution
An OA system can evolve by a number of distinct mechanisms, some of which are

common to all systems, but others of which are a result of heterogeneous IP and security
licenses in a single system.

By component evolution—One or more components can evolve, altering the overall
system’s characteristics (for example, upgrading and replacing the Firefox Web browser
from version 3.5 to 3.6, which may update existing software functionality, while also patching
recent security vulnerabilities).

By component replacement— One or more components may be replaced by others
with different behaviors but the same interface, or with a different interface and the addition
of shim code to make it match (for example, replacing the AbiWord word processor with
either Open Office or MS Word, depending on which is considered the least vulnerable to
security attack).

By architecture evolution—The OA can evolve, using the same components but in a
different configuration, altering the system’s characteristics. For example, as discussed in
the Secure Open Architecture Composition section, changing the configuration in which a
component is connected can change how its IP or security license affects the rights and
obligations for the overall system. This could arise when replacing email and word
processing applications with web services like Google Mail and Google Docs, which we
might assume may be more secure since the Google services (operating in a cloud
environment) may not be easily accessed or penetrated by a security attack.

By component license evolution—The license under which a component is available
may change, as, for example, when the license for the Mozilla core components was

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 61 -
=

=

changed from the Mozilla Public License (MPL) to the current Mozilla Disjunctive Tri-
License; or the component may be made available under a new version of the same license,
as, for example, when the GNU General Public License (GPL) version 3 was released.
Similarly, the security license for a component may be changed by its producers, or the
security license for a composed system changed by its integrators, in order to prevent or
deter recently discovered security vulnerabilities or exploits before an evolutionary version
update (or patch) can be made available.

By a change to the desired rights or acceptable obligations—The OA system’s
integrator or consumers may desire additional IP or security license rights (e.g., the right to
sublicense in addition to the right to distribute), or no longer desire specific rights; or the set
of license obligations they find acceptable may change. In either case, the OA system
evolves, whether by changing components, evolving the architecture, or other means, to
provide the desired rights within the scope of the acceptable obligations. For example, they
may no longer be willing or able to provide the source code for components that have known
vulnerabilities that have not been patched and eliminated.

Figure 8. A Second Instantiation at Run-Time (Firefox, Google Docs and
Calendar, Fedora) of the OA System in Figures 2, 3, and 4 as an Evolutionary
Alternative System Version, Which in Turn Requires an Alternative Security

Containment Scheme
The interdependence of integrators and producers results in a co-evolution of

software within an OA ecosystem. Closely-coupled components from different producers
must evolve in parallel in order for each to provide its services, as evolution in one will
typically require a matching evolution in the other. Producers may manage their evolution
with a loose coordination among releases, for example, as between the Gnome and Mozilla
organizations. Each release of a producer component creates a tension through the
ecosystem relationships with consumers and their releases of OA systems using those
components, as integrators accommodate the choices of available, supported components
with their own goals and needs. As discussed in our previous work (Alspaugh, Asuncion, &

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 62 -
=

=

Scacchi, 2009a), license rights and obligations are manifested at each component’s
interface, then mediated through the system’s OA to entail the rights and corresponding
obligations for the system as a whole. As a result, integrators must frequently re-evaluate an
OA system’s IP/security rights and obligations. In contrast to homogeneously-licensed
systems, license change across versions is a characteristic of OA ecosystems, and
architects of OA systems require tool support for managing the ongoing licensing changes.

We propose that such support must have several characteristics:

 It must rest on a license structure of rights and obligations (see the Security
Licenses section), focusing on obligations that are enactable and testable.

 It must take account of the distinctions between the design-time, build-time,
and distribution-time architectures (see the sections entitled Secure Open
Architecture Composition, Security Licenses, and Security License
Architectures), and the rights and obligations that come into play for each of
them.

 It must distinguish the architectural constructs significant for software
licenses, and embody their effects on rights and obligations (see the Secure
Open Architecture Composition section).

 It must define license architectures (see the Security License Architectures
section).

 It must provide an automated environment for creating and managing license
architectures. We are developing a prototype that manages a license
architecture as a view of its system architecture (Alspaugh, Asuncion, &
Scacchi, 2009a).

 Finally, it must automate calculations on system rights and obligations, so
that they may be done easily and frequently, whenever any of the factors
affecting rights and obligations may have changed (see the Security License
Analysis section).

Security Licenses
Licenses typically impose obligations that must be met in order for the licensee to

realize the assigned rights. Common IP/copyright license obligations include the obligation
to publish at no cost any source code you modify (MPL), or the reciprocal obligation to
publish all source code included at build-time or statically linked (GPL). The obligations may
conflict, as when a GPL’d component’s reciprocal obligation to publish source code of other
components is combined with a proprietary component’s license prohibition of publishing its
source code. In this case, no rights may be available for the system as a whole, not even the
right of use, because the two obligations cannot simultaneously be met, and thus neither
component can be used as part of the system. Security capabilities can similarly be
expressed and bound to the data values and control signals that are visible in component
interfaces, or through component connectors.

Some typical security rights and obligations might be the following:

 the right to read data in containment vessel T;
 the obligation for a specific component to have been vetted for the capability

to read and update data in containment vessel T;
 the obligation for a user to verify his/her authority to see containment vessel

T, by password or other specified authentication process;
 the right to replace specified component C with some other component;

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 63 -
=

=

 the right to add or update specified component D in a specified configuration;
and

 the right to add, update, or remove a security mechanism.

The basic relationship between software IP/security license rights and obligations
can be summarized as follows: if the specified obligations are met, then the corresponding
rights are granted. For example, if you publish your modified source code and sub-licensed
derived works under MPL, then you get all the MPL rights for both the original and the
modified code. Similarly, software security requirements are specified as security obligations
that, when met, allow designated users or other software programs to access, modify, and
redistribute data and control information to designated repositories or remote services.
However, license details are complex, subtle, and difficult to comprehend and track—it is
easy to become confused or make mistakes. The challenge is multiplied when dealing with
configured system architectures that compose a large number of components with
heterogeneous IP/security licenses, so that the need for legal counsel begins to seem
inevitable (Rosen, 2005; Fontana et al., 2008).

We have developed an approach for expressing software licenses of different types
(intellectual property and security requirements) that is more formal and less ambiguous
than natural language, and that allows us to calculate and identify conflicts arising from the
rights and obligations of two or more component’s licenses. Our approach is based on
Hohfeld’s (1913) classic group of eight fundamental jural relations, of which we use right,
duty, no-right, and privilege. We start with a tuple <actor, operation, action, object> for
expressing a right or obligation. The actor is the “licensee” for all the licenses we have
examined. The operation is one of the following: “may,” “must,” “must not,” or “need not,”
with “may” and “need not” expressing rights, and “must” and “must not” expressing
obligations. The action is a verb or verb phrase describing what may, must, must not, or
need not be done, with the object completing the description. A license may be expressed
as a set of rights, with each right associated with zero or more obligations that must be
fulfilled in order to enjoy that right. Figure 9 shows the meta-model with which we express
licenses.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 64 -
=

=

Figure 9. Security License Meta-Model
Designers of secure systems have developed a number heuristics to guide

architectural design in order to satisfy overall system security requirements, while avoiding
conflicts among interacting security mechanisms or defenses. However, even using design
heuristics (and there are many), keeping track of security rights and obligations across
components that are interconnected in complex OAs quickly becomes too cumbersome.
Automated support is needed to manage the complexity of multi-component system
compositions where different security requirements must be addressed through different
security capabilities.

Security License Architectures
Our security license model forms a basis for effective reasoning about licenses in the

context of actual systems, and calculating the resulting rights and obligations. In order to do
so, we need a certain amount of information about the system’s configuration at design-time,
build-time, and run-time deployment. The following needed information comprises the
license architecture, an abstraction of the system architecture:

1. the set of components of the system (for example, see Figure 2) for the
current system configuration, as well as subsequently for system evolution
update versions (as seen in Figure 8);

2. the relation mapping each component to its security requirements (specified
and analyzed at design-time, as exemplified in Figure 3) or capabilities
(specified and analyzed at build-time in Figure 4, and run-time across
alternatives shown in Figures 5, 6, and 7);

3. the connections between components and the security requirements or
capabilities of each connector passing data or control signals to/from it; and

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 65 -
=

=

4. possibly other information, such as information to detect or prevent IP and
security requirements conflicts, which is as yet undetermined.

With this information and definitions of the licenses involved, we believe it is possible
to automatically calculate rights and obligations for individual components or for the entire
system, as well as guide/assess system design and evolution, using an automated
environment of the kind that we have previously demonstrated (Alspaugh, 2009a, 2009b,
2010; Alspaugh, Scacchi, & Asuncion, 2010).

Security License Analysis
Given a specification of a software system’s architecture, we can associate security

license attributes with the system’s components, connectors, and sub-system architectures,
resulting in a license architecture for the system, and calculate the security rights and
obligations for the system’s configuration. Due to the complexity of license architecture
analysis, and the need to re-analyze every time a component evolves, a component’s
security license changes, a component is substituted, or the system architecture changes,
OA integrators really need an automated license architecture analysis environment. We
have developed a prototype of such an environment for analogous calculations for software
copyright licenses (Alspaugh, Asuncion, & Scacchi, 2009b; Alspaugh, Scacchi, & Asuncion,
2010), and are extending this approach to security licenses.

Security Obligation Conflicts

A security obligation can conflict with another obligation, a related right for the same
or nearby components, or with the set of available security rights, by requiring a right that
has not been granted. For instance, consider the following two connected components C
and D with security obligations:

(O1) The obligation for component C to have been vetted for the capability to read
and update data in containment vessel T

(O2) The obligation for all components connected to specified component D to grant
it the capability to read and update data in containment vessel T

If C has not been vetted, then these two obligations conflict. This possible conflict must be
taken into consideration in different ways at different development times, as follows:

 at design time, ensuring that it will be possible to vet C;
 at build time, ensuring that the specific implementation of C has been vetted

successfully; and
 possibly at run time as well, confirming that C is certified to have been vetted,

or (if C is dynamically connected at run time) vetting C before trusting this
connection to it.

The second obligation may also conflict with the set of available security rights, for
example if D is connected to component E for which the security right (R1) The right to read
and update data in containment vessel T using component E is not available.

The absence of such conflicts does not mean, of course, that the system is secure.
But the presence of conflicts reliably indicates that it is not secure.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 66 -
=

=

Rights and Obligations Calculations

The rights available for the entire system (the right to read and update data in
containment vessel T, the right to replace components with other components, the right to
update component security licenses, etc.) are calculated as the intersection of the sets of
security rights available for each component of the system. If a conflict is found involving the
obligations and rights of interacting components, it is possible for the system architect to
consider an alternative scheme, for example, using one or more connectors along the paths
between the components that act as a security firewall. This means that the architecture and
the automated environment together can determine what OA design best meets the problem
at hand with available software components. Components with conflicting security licenses
do not need to be arbitrarily excluded, but instead may expand the range of possible
architectural alternatives if the architect seeks such flexibility and choice.

Discussion
Our approach to specifying and analyzing the security requirements for a complex

OA system is based on the use of a security license. As noted, a security license is a new
kind of information structure whose purpose is to declare operational capabilities that
express the obligations and rights of users or program to access, manipulate, control,
update, or evolve data, control signals, and accessible software system elements. Our
proposed security license is influenced by IP licenses that are employed to specify property
control and declared copyright freedoms/restrictions, such as those for OSS components
subject to licenses like the GPLv2, MPL, LGPL, or others. These IP licenses as information
structures often pre-exist to facilitate their widespread use, dissemination, and common
interpretation. Further, the choice of which IP license to choose or assign to a software
component results from a trade-off analysis typically performed by the components
producers, rather than the system integrators or consumers, as a way to protect or
propagate the obligations and rights to use, evolve, and redistribute the updated
component's open source code.

The security licenses we propose do not necessarily exist prior to their specification
and assignment to a given OA system. Similarly, we do not yet have a basis to anticipate or
expect that generic security licenses will emerge, as they have for OSS components.
However, one follow-on goal we seek to address is whether and how best to specify security
licenses for different types of software elements or components, so that it becomes possible
to semi-automatically specify the security license for a given component or composed OA
system through the reuse and instantiation of security requirement templates. This idea is
somewhat similar to the license templates and taxonomy that is employed by the Creative
Commons for non-software intellectual property like online art or new media content (cf.,
http://creativecommons.org/licenses/). In this regard, it may be possible to develop a
technique and supporting computational environment whereby system integrators or
consumers can conveniently specify the security requirements they seek (e.g., fill out online
security requirements forms), while the environment interprets these specifications to
generate operational security capabilities that can guard the entry and exit of data or control
information from the appropriate containment vessel that encapsulates the corresponding
system element. Consequently, this is a topic for further study and investigation.

Next, one might wonder why it is not simply desirable to have maximum system
security under all circumstances. When considering the alternative run-time system
composition variants shown in Figures 5, 6, and 7, it appears there may be trade-offs in one
layout of security capabilities over another. For example, the layout in Figure 5 maximizes
security by encapsulating each system element within its own containment vessel. This in

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 67 -
=

=

turn requires a VM technology of a kind different from that commonly available (e.g., like
VMware), and instead requires a new lightweight VM technology that can provide security
capabilities (e.g., create, read, update authorizations) for potentially small-scale software
elements (e.g., Cshell scripts). Similarly, the different security containment layouts may
affect system performance, ease of evolutionary update, and associated level of security
administration. But these again all represent trade-offs in the desire to achieve affordable,
practical, and ever more robust and testable secure software component/system capabilities
at build-time and run-time. Thus, we take the position that it is better to provide the ability to
specify and analyze the security requirements of different software elements at design-time,
as well as specify and analyze the security capabilities at build-time and run-time, rather
than the current practice that does not account for system architecture or license
architecture, and is thus inherently vulnerable to attacks that can otherwise be prevented or
detected.

One other topic that follows from our approach to semantically modeling and
analyzing OA systems that are subject to software security licenses. More specifically, how
our approach and emerging results might shed light on software systems whose
architectures articulate a software product line.

Accordingly, organizing and developing software product lines (SPLs) relies on the
development and use of explicit software architectures (Bosch, 2000; Clements & Northrop,
2001). However, the architecture of a secure SPL is not necessarily a secure OA—there is
no requirement for it to be so. Thus, we are interested in discussing what happens when
SPLs may conform to a secure OA, and to an OA that may be composed from secure SPL
components. Three considerations come to mind.

First, if the SPL is subject to a single homogeneous security software license, which
may often be the case when a single vendor or government contractor has developed the
SPL, then the security license may act to reinforce a vendor lock-in situation with its
customers. One of the motivating factors for OA is the desire to avoid such lock-in, whether
or not the SPL components have open or standards-compliant APIs.

Second, if an OA system employs a reference architecture much like we have in the
design-time architecture depicted in Figure 3, which is then instantiated into a specific
software product configuration, as suggested in the build-time architecture shown in Figure
4, then such a reference or design-time architecture, as we have presented it here,
effectively defines an SPL consisting of possible different system instantiations composed
from similar components instances (e.g., different but equivalent Web browsers, word
processors, email, calendaring applications, relational database management systems).

Third, if the SPL is based on an OA that integrates software components from
multiple vendors or OSS components that are subject to heterogeneous security licenses
(i.e., those that may possibly conflict with one another), then we have the situation
analogous to what we have presented in this paper. So secure SPL concepts are
compatible with secure OA systems that are composed from heterogeneously security
licensed components.

Conclusion
This paper introduces the concept and initial scheme for systematically specifying

and analyzing the security requirements for complex open architecture systems. We argue
that such requirements should be expressed as operational capabilities that can be
collected and sequenced within a new information structure we call a security license. Such
a license expresses security in terms of capabilities that provide users or programs

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 68 -
=

=

obligations and rights for how they may access data or control information, as well as how
they may update or evolve system elements. These security license rights and obligations
thus play a key role in how and why an OA system evolves in its ecosystem of software
component producers, system integrators, and consumers.

We note that changes to the license obligations and rights, whether for control of
intellectual property or software security, across versions of components, is a characteristic
of OA systems whose components are subject to different security requirements or other
license restrictions. A structure for modeling software licenses and automated support for
calculating its rights and obligations are needed in order to manage an OA system’s
evolution in the context of its ecosystem.

We have outlined an approach for achieving these and sketched how they further the
goal of reusing components in developing software-intensive systems. Much more work
remains to be done, but we believe this approach turns a vexing problem into one for which
workable, as well as robust, formal solutions can be obtained.

References
Alspaugh, T. A., & Anton, A. I. (2008, February). Scenario support for effective

requirements. Information and Software Technology, 50(3), 198–220.

Alspaugh, T. A., Asuncion, H. U., & Scacchi, W. (2009a, May). Analyzing software licenses
in open architecture software systems. In 2nd International Workshop on Emerging
Trends in FLOSS Research and Development (FLOSS).

Alspaugh, T. A., Asuncion, H. U., & Scacchi, W. (2009b, August 31–September 4).
Intellectual property rights requirements for heterogeneously-licensed systems. In
17th IEEE International Requirements Engineering Conference (RE’09; pp. 24–33).

Alspaugh, T. A., Asuncion, H. U., & Scacchi, W. (2010, May). The challenge of
heterogeneously licensed systems in open architecture software ecosystems. In
Proceedings of the Seventh Acquisition Research Symposium. Monterey, CA: Naval
Postgraduate School.

Alspaugh, T. A., Scacchi, W., & Asuncion, H. U. (2010, November). Software licenses in
context: The challenge of heterogeneously licensed systems. Journal of the
Association for Information Systems, 11(11), 730–755.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice. Boston, MA:
Addison–Wesley Longman.

Bosch, J. (2000). Design and use of software architectures: Adopting and evolving a
product-line approach. Boston, MA: Addison–Wesley Professional.

Breaux, T. D., & Anton, A. I. (2005). Analyzing goal semantics for rights, permissions, and
obligations. In Proceedings of the 13th IEEE International Conference on
Requirements Engineering (RE ’05; pp. 177–188).

Breaux, T. D., & Anton, A. I. (2008). Analyzing regulatory rules for privacy and security
requirements. IEEE Transactions on Software Engineering, 34(1), 5–20.

Clements, P., & Northrop, L. (2001). Software product lines: Practices and patterns. Boston,
MA: Addison–Wesley Professional.

Falliere, N., Murchu, L. O., & Chien, E. (2011, February). W32.Stuxnet dossier, Version 1.4.
Retrieved from

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 69 -
=

=

http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepa
pers/w32_stuxnet_dossier.pdf

Feldt, K. (2007). Programming Firefox: Building rich internet applications with XUL. O’Reilly
Media.

Firesmith, D. (2004, January–February). Specifying reusable security requirements. Journal
of Object Technology, 3(1), 61– 75.

Fontana, R., Kuhn, B. M., Moglen, E., Norwood, M., Ravicher, D. B., Sandler, K., Vasile, J.,
& Williamson, A. (2008). A legal issues primer for open source and free software
projects. Software Freedom Law Center.

German, D. M., & Hassan, A. E. (2009, May). License integration patterns: Dealing with
licenses mis-matches in component-based development. In 28th International
Conference on Software Engineering (ICSE ’09).

Hohfeld, W. N. (1913, November). Some fundamental legal conceptions as applied in
judicial reasoning. Yale Law Journal, 23(1), 16–59.

Kuhl, F., Weatherly, R., & Dahmann, J. (1999). Creating computer simulation systems: An
introduction to the high level architecture. Prentice Hall.

Meyers, B. C., & Oberndorf, P. (2001). Managing software acquisition: Open systems and
COTS products. Boston, MA: Addison–Wesley Professional.

Nelson, L., & Churchill, E. F. (2006). Repurposing: Techniques for reuse and integration of
interactive systems. In International Conference on Information Reuse and
Integration (IRI-08; p. 490).

Oreizy, P. (2000). Open architecture software: A flexible approach to decentralized software
evolution (Doctoral dissertation), University of California, Irvine.

Rosen, L. (2005). Open source licensing: Software freedom and intellectual property law.
Prentice Hall.

Scacchi, W., & Alspaugh, T. A. (2008, May). Emerging issues in the acquisition of open
source software within the U.S. Department of Defense. In Proceedings of the Fifth
Annual Acquisition Research Symposium. Monterey, CA: Naval Postgraduate
School.

Yau, S. S., & Chen, Z. (2006). A framework for specifying and managing security
requirements in collaborative systems. In Third International Conference on
Autonomic and Trusted Computing (ATC 2006; pp. 500–510).

Acknowledgments
This research is supported by grant #N00244-10-1-0038 and #N00244-10-1-077

from the Acquisition Research Program at the Naval Postgraduate School, and by grant
#0808783 from the U.S. National Science Foundation. No review, approval, or endorsement
implied.

