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During his internship with the Graduate School of Business & Public Policy in June 
2010, U.S. Air Force Academy Cadet Chase Lane surveyed the activities of the Naval 
Postgraduate School’s Acquisition Research Program in its first seven years.  The sheer 
volume of research products—almost 600 published papers (e.g., technical reports, journal 
articles, theses)—indicates the extent to which the depth and breadth of acquisition 
research has increased during these years.  Over 300 authors contributed to these works, 
which means that the pool of those who have had significant intellectual engagement with 
acquisition issues has increased substantially.  The broad range of research topics includes 
acquisition reform, defense industry, fielding, contracting, interoperability, organizational 
behavior, risk management, cost estimating, and many others.  Approaches range from 
conceptual and exploratory studies to develop propositions about various aspects of 
acquisition, to applied and statistical analyses to test specific hypotheses.  Methodologies 
include case studies, modeling, surveys, and experiments.  On the whole, such findings 
make us both grateful for the ARP’s progress to date, and hopeful that this progress in 
research will lead to substantive improvements in the DoD’s acquisition outcomes. 

As pragmatists, we of course recognize that such change can only occur to the 
extent that the potential knowledge wrapped up in these products is put to use and tested to 
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practice” gap, which would separate the acquisition scholar from the acquisition practitioner, 
and relegate the scholar’s work to mere academic “shelfware.”  Some design features of our 
program that we believe help avoid these effects include the following: connecting 
researchers with practitioners on specific projects; requiring researchers to brief sponsors on 
project findings as a condition of funding award; “pushing” potentially high-impact research 
reports (e.g., via overnight shipping) to selected practitioners and policy-makers; and most 
notably, sponsoring this symposium, which we craft intentionally as an opportunity for 
fruitful, lasting connections between scholars and practitioners. 

A former Defense Acquisition Executive, responding to a comment that academic 
research was not generally useful in acquisition practice, opined, “That’s not their [the 
academics’] problem—it’s ours [the practitioners’].  They can only perform research; it’s up 
to us to use it.”  While we certainly agree with this sentiment, we also recognize that any 
research, however theoretical, must point to some termination in action; academics have a 
responsibility to make their work intelligible to practitioners.  Thus we continue to seek 
projects that both comport with solid standards of scholarship, and address relevant 
acquisition issues.  These years of experience have shown us the difficulty in attempting to 
balance these two objectives, but we are convinced that the attempt is absolutely essential if 
any real improvement is to be realized. 

We gratefully acknowledge the ongoing support and leadership of our sponsors, 
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Abstract 
The role of software ecosystems in the development and evolution of secure open 
architecture systems has received insufficient consideration. Such systems are 
composed of software components subject to different security requirements in an 
architecture in which evolution can occur by evolving existing components or by 
replacing them. But this may result in possible security requirements conflicts and 
organizational liability for failure to fulfill security obligations. We have developed an 
approach for understanding and modeling software security requirements as 
“security licenses,” as well as for analyzing conflicts among groups of such licenses 
in realistic system contexts and for guiding the acquisition, integration, or 
development of systems with open source components in such an environment. 
Consequently, this paper reports on our efforts to extend our existing approach to 
specifying and analyzing software intellectual property licenses to now address 
software security licenses that can be associated with secure OA systems. 

Introduction 
A substantial number of development organizations are adopting a strategy in which 

a software-intensive system is developed with an open architecture (OA; Oreizy, 2000), 
whose components may be open source software (OSS) or proprietary with open application 
programming interfaces (APIs). Such systems evolve not only through the evolution of their 
individual components, but also through replacement of one component by another, possibly 
from a different producer or under a different license. With this approach, the organization 
becomes an integrator of components largely produced elsewhere that are interconnected 
through open APIs as necessary to achieve the desired result. 

An OA development process results in an ecosystem in which the integrator is 
influenced from one direction by the goals, interfaces, license choices, and release cycles of 
the component producers, and in another direction by the needs of its consumers. As a 
result, the software components are reused more widely, and the resulting OA systems can 
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achieve reuse benefits such as reduced costs, increased reliability, and potentially increased 
agility in evolving to meet changing needs. 

An emerging challenge is to realize the benefits of this approach when the individual 
components are subject to different security requirements. This may arise due either to how 
a component’s external interfaces are specified and defended, or to how system 
components are interconnected and configured in ways that can or cannot defend the 
composed system from security vulnerabilities and external exploits. Ideally, any software 
element in a system composed from components from different producers can have its 
security capabilities specified, analyzed, and implemented at system architectural design-
time, build-time, or at deployment run-time. Such capability-based security in simplest form 
specifies what types, value ranges, and values of data, or control signals (e.g., program 
invocations, procedure, or method calls), can be input, output, or handed off to a software 
plug-in or external (helper) application, from a software component or composed system. 

When designing a secure OA system, decisions and trade-offs must be made as to 
what level of security is required, as well as what kinds of threats to security must be 
addressed. The universe of possible security threats is continually emerging and the 
cost/effort of defending against them, ongoing. Similarly, anticipating all possible security 
vulnerabilities or threats is impractical (or impossible). Further, though it may be desirable 
that all systems be secure, different systems need different levels of security, which may 
come at ever greater cost or inconvenience to accommodate. Strategic systems may need 
the greatest security possible, while other systems may require much less rigorous security 
mechanisms. Thus, finding an affordable, scalable, and testable means for specifying the 
security requirements of software components, or OA systems composed with components 
with different security requirements, is the goal of our research. 

The most basic form of security requirements that can be asserted and tested are 
those associated with virtual machines. Virtual machines (VM) abstract away the actual 
functional or processing capabilities of the computational systems on which they operate, 
and instead provide a limited functionality computing surround (or “sandbox”). VM can 
isolate a given component or system other software applications, utilities, repositories, or 
external/remote control data access (input or output). The capabilities for a VM (e.g., an 
explicit, pre-defined list of approved operating system commands or programs that can write 
data or access a repository) can be specified as testable conditions that can be assigned to 
users or programs authorized to operate within the VM. The VM technique is now widely 
employed through software “hypervisors” (e.g., IBM VM/370, VMware, VirtualBox, Parallels 
Desktop for Mac) that isolate software applications and operating system from the 
underlying system platform or hardware. Such VMs act like “containment vessels” through 
which it is possible to specify barriers to entry (and exit) of data and control via security 
capabilities that restrict other programs. These capabilities thus specify what rights or 
obligations may be, or may not be, available for access or update to data or control 
information. Thus architectural design-time decisions pertaining to specifying the security 
rights or obligations for the overall system or its components are done by specification of 
VMs that contain the composed system or its components. These rights or obligations can 
be specified as pre-conditions on input data or control signals, or post-conditions on output 
data or control signals.  

The problem of specifying the build-time and run-time security requirements of OA 
systems is different from that at design-time. In determining how to specify the software 
build sequence, security requirements are manifest as capabilities that may be specific to 
explicitly declared versions of designated programs. For example, if an OA system specifies 
a “Web browser” as one of its components at design-time, at build-time a particular Web 
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browser (Mozilla Firefox or Internet Explorer) must then be specified, as must its baseline 
version (e.g., Firefox 4.0 or Internet Explorer 9.0). However, if the resulting run-time version 
of the OA system must instead employ a locally available Web browser (e.g., Firefox 3.6.1 
or Internet Explorer 8.0 Service Pack 2), then the OA system integrators may either need to 
produce multiple run-time versions for deployment, or else build the OA system using either 
(a) an earlier version of the necessary component (e.g., Firefox 3.5 or Internet Explorer 7.0) 
that is “upward compatible”; (b) a stub or abstract program interface that allows for a later 
designated compatible component version to be installed/used at run-time; or else, (c) 
create different run-time version alternatives (i.e., variants) of the target OA systems that 
may or not be “backward compatible” with the system component versions available in the 
deployment run-time environment. The need to specify build-time and run-time components 
by versions (and possibly timestamps of their creation or local installation) arises since 
evolutionary version updates often include security patches that close known vulnerabilities 
or prevent known exploits. As indicated in the Related Research section below, security 
attacks often rely on system entry through known vulnerabilities that are present in earlier 
versions of software components that have not been updated to newer versions that do not 
have the same vulnerabilities.  

As we have been able to address an analogous problem of how to specify and 
analyze the intellectual property rights and obligations of the licenses of software 
components, our efforts now focus on the challenge of how to specify and analyze software 
components and composed system security rights and obligations using a new information 
structure we call a “security license.” The actual form of such a security license is still to be 
finalized, but at this point, we believe it is appropriate to begin to develop candidate forms or 
types of security licenses for further research and development, especially for security 
license forms that can be easily formalized, be readily applied to large-scale OA systems, as 
well as be automatically analyzed or tested. This is another goal of our research here.  

Next, the challenge of specifying secure software systems composed from secure or 
insecure components is inevitably entwined with the software ecosystems that arise for 
secure OA systems. We find that an OA software ecosystem involves organizations and 
individuals producing and consuming components, and supply paths from producer to 
consumer; but also  

 the OA of the system(s) in question, and how best to secure it,  
 the open interfaces provided by the components, and how to specify their 

security requirements, 
 the degree of coupling in the evolution of related components that can be 

assessed in terms of how security rights and obligations may change, and  
 the rights and obligations resulting from the security licenses under which 

various components are released, that propagate from producers to 
consumers. 

An example software ecosystem producing and integrating secure software 
components or secure systems is portrayed in Figure 1. 
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Figure 1. An Example of a Software Ecosystem in Which Secure OA Systems Are 
Developed 

In order to most effectively use an OA approach in developing and evolving a 
system, it is essential to consider this OA ecosystem. An OA system draws on components 
from proprietary vendors and open source projects. Its architecture is made possible by the 
existing general ecosystem of producers, from which the initial components are chosen. The 
choice of a specific OA begins a specialized software ecosystem involving components that 
meet (or can be shimmed to meet) the open interfaces used in the architecture. We do not 
claim this is the best or the only way to reuse components or produce secure OA systems, 
but it is an ever more widespread way. In this paper, we build on previous work on 
heterogeneously-licensed systems (German & Hassan, 2009; Scacchi & Alspaugh, 2008; 
Alspaugh, Asuncion, & Scacchi, 2009a) by examining how OA development affects and is 
affected by software ecosystems, and the role of security licenses for components included 
within OA software ecosystems.  

In the remainder of this paper, we survey some related work in the next section, 
define and examine characteristics of open architectures with or without secure software 
elements (in the Secure Open Architecture Composition section), define and examine 
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characteristics for how secure OA systems evolve (in the OA System Evolution section), 
introduce a structure for security licenses (in the Security Licenses section), outline license 
architectures (in the Security License Architectures section), and sketch our approach for 
license analysis (in the Security License Analysis section). We then close with a discussion 
addressing how our software license and analysis scheme relates to software products lines 
(the Discussion section), before stating our conclusions in the final section. 

Related Work 
Software systems, whether operating as standalone components, or as elements 

within large system compositions, are continuously being subjected to security attacks. 
These attacks seek to slip through software vulnerabilities known to the attackers, but 
perhaps not by the system integrators or consumers. These attacks often seek to access, 
manipulate, or remotely affect the data values or control signals that a component or 
composed system processes for nefarious purposes, or seek to congest or over-saturate 
networked services. Recent high profile security attacks like Stuxnet (Falliere, Murchu, & 
Chien, 2011) reveal that security attacks may be very well planned and employ a bundle of 
attack vectors and social engineering tactics in order for the attack to reach strategic 
systems that are mostly isolated and walled off from public computer networks. The Stuxnet 
attacks entered through software system interfaces at either the component, application 
subsystem, or base operating system level, and their goal was to go outside or beneath their 
entry context. However, all of the Stuxnet attacks on the targeted software system could be 
blocked or prevented through security capabilities associated with the open software 
interfaces that would (a) limit access or evolutionary update rights lacking proper 
authorization, as well as (b) “sandboxing” (i.e., isolating) and holding up any evolutionary 
updates (the attacks) prior to their installation and run-time deployment. Furthermore, as the 
Stuxnet attack involved the use of corrupted certificates of trust from approved authorities as 
false credentials that allowed evolutionary system updates to go forward, it seems clear that 
additional preventions are needed that are external to, and prior to, their installation and run-
time deployment. In our case, that means we need to specify and analyze software security 
requirements and evolutionary update capabilities at architectural design-time and system 
integration build-time, and then reconcile those with the run-time system composition. It also 
calls for the need to maintain the design-time, build-time, and run-time system compositions 
in repositories remote from system installations, and in possibly redundant locations that can 
be encrypted, randomized, fragmented, and dispersed (e.g., via Torrents or “onion routing”), 
then cross-checked and independently verified prior to run-time deployment in a high 
security system application.  

As already noted, both software intellectual property licenses, and security licenses 
represent a collection of rights and obligations for what can or cannot be done with a 
licensed software component. Licenses thus denote non-functional requirements that apply 
to a software system or system components as intellectual property (IP) or security 
requirements (i.e., capabilities) during their development and deployment. But rights and 
obligations are not limited to concerns or constraints applicable only to software as IP. 
Instead, they can be written in ways that stipulate non-functional requirements of different 
kinds. Consider, for example, that desired or necessary software system security properties 
can also be expressed as rights and obligations, addressing system confidentiality, integrity, 
accountability, system availability, and assurance (Breaux & Anton, 2005, 2008). 
Traditionally, developing robust specifications for non-functional software system security 
properties in natural language often produces specifications that are ambiguous, misleading, 
inconsistent across system components, and lacking sufficient details (Yau & Chen, 2006). 
Using a semantic model to formally specify the rights and obligations required for a software 
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system or component to be secure (Breaux & Anton, 2005, 2008; Yau & Chen, 2006) means 
that it may be possible to develop both a “security architecture” notation and model 
specification that associates given security rights and obligations across a software system, 
or system of systems. Similarly, it suggests the possibility of developing computational tools 
or interactive architecture development environments that can be used to specify, model, 
and analyze a software system’s security architecture at different times in its development—
design-time, build-time, and run-time. The approach we have been developing for the past 
few years for modeling and analyzing software system IP license architectures for OA 
systems (Alspaugh, Asuncion, & Scacchi, 2009b, 2010; Scacchi & Alspaugh, 2008) may 
therefore be extendable to also being able to address OA systems with heterogeneous 
“software security license” rights and obligations. Furthermore, the idea of common or 
reusable software security licenses may be analogous to the reusable security requirements 
templates proposed by Firesmith (2004) at the Software Engineering Institute. But such an 
exploration and extension of the semantic software license modeling, meta-modeling, and 
computational analysis tools to also support software system security can be recognized as 
a promising next stage of our research studies. 

Secure Open Architecture Composition 

Open architecture (OA) software is a customization technique introduced by Oreizy 
(2000) that enables third parties to modify a software system through its exposed 
architecture, evolving the system by replacing its components. Increasingly more software-
intensive systems are developed using an OA strategy, not only with open source software 
(OSS) components, but also proprietary components with open APIs. Similarly, these 
components may or may not have their own security requirements that must be satisfied 
during their build-time integration or run-time deployment, such as registering the software 
component for automatic update and installation of new software versions that patch 
recently discovered security vulnerabilities or prevent invocation of known exploits. Using 
this approach can lower development costs and increase reliability and function, as well as 
adaptively evolve software security (Scacchi & Alspaugh, 2008). Composing a system with 
heterogeneously secured components, however, increases the likelihood of conflicts, 
liabilities, and no-rights stemming from incompatible security requirements. Thus, in our 
work, we define a secure OA system as a software system consisting of components that 
are either open source or proprietary with open API, whose overall system rights at a 
minimum allow its use and redistribution, in full or in part such that they do not introduce new 
security vulnerabilities at the system architectural level.  

It may appear that using a system architecture that incorporate secure OSS and 
proprietary components, and uses open APIs, will result in a secure OA system. But not all 
such architectures will produce a secure OA, since the (possibly empty) set of available 
license rights for an OA system depends on the following: (a) how and why secure or 
insecure components and open APIs are located within the system architecture, (b) how 
components and open APIs are implemented, embedded, or interconnected, and (c) the 
degree to which the IP and security licenses of different OSS components encumber all or 
part of a software system’s architecture into which they are integrated (Scacchi & Alspaugh, 
2008; Alspaugh & Anton, 2008).  

The following kinds of software elements appearing in common software 
architectures can affect whether the resulting systems are open or closed (Bass, Clements, 
& Kazman, 2003). 

Software Source Code Components—These can be either (a) standalone programs; 
(b) libraries, frameworks, or middleware; (c) inter-application script code such as C shell 
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scripts; (d) intra-application script code, as for creating Rich Internet Applications using 
domain-specific languages such as XUL for the Firefox Web browser (Feldt, 2007) or 
“mashups” (Nelson & Churchill, 2006) whose source code is available and they can be 
rebuilt; or (e) similar script code that can either install and invoke externally developed plug-
in software components, or invoke external application (helper) components. Each may 
have its own distinct IP/security requirements.  

Executable components—These components are in binary form, and the source 
code may not be open for access, review, modification, or possible redistribution (Rosen, 
2005). If proprietary, they often cannot be redistributed, and so such components will be 
present in the design- and run-time architectures, but not in the distribution-time 
architecture.  

Software services—An appropriate software service can replace a source code or 
executable component.  

Application programming interfaces/APIs—Availability of externally visible and 
accessible APIs is the minimum requirement for an “open system” (Meyers & Oberndorf, 
2001). 

Software connectors—This includes software whose intended purpose is to provide 
a standard or reusable way of communication through common interfaces (e.g., High Level 
Architecture [Kuhl, Weatherly, & Dahmann, 1999], CORBA, MS .NET, Enterprise Java 
Beans, and GNU Lesser General Public License, LGPL, libraries). Connectors can also limit 
the propagation of IP license obligations or provide additional security capabilities.  

Methods of connection—These include linking as part of a configured subsystem, 
dynamic linking, and client-server connections. Methods of connection affect license 
obligation propagation, with different methods affecting different licenses.  

Configured system or subsystem architectures—These are software systems that 
are used as atomic components of a larger system, and whose internal architecture may 
comprise components with different licenses, affecting the overall system license and its 
security requirements. To minimize license interaction, a configured system or sub-
architecture may be surrounded by what we term a license firewall, namely a layer of 
dynamic links, client-server connections, license shims, or other connectors that block the 
propagation of reciprocal obligations. 

Figure 2 shows a high-level run-time view of a composed OA system whose 
reference architectural design in Figure 3 includes all the kinds of software elements listed 
above. This reference architecture has been instantiated in a build-time configuration in 
Figure 4, that in turn could be realized in alternative run-time configurations in Figures 5, 6, 
and 7 with different security capabilities. The configured systems consist of software 
components such as a Mozilla Web browser, Gnome Evolution email client, and AbiWord 
word processor (similar to MS Word), all running on a RedHat Fedora Linux operating 
system accessing file, print, and other remote networked servers such as an Apache Web 
server. Components are interconnected through a set of software connectors that bridge the 
interfaces of components and combine the provided functionality into the system’s services. 
However, note how the run-time software architecture does not pre-determine how security 
capabilities will be assigned and distributed across different variants of the run-time 
composition. 
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Figure 2. An Example Composite OA System Potentially Subject to Different IP 
and Security Licenses 
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Figure 3. Design-Time Architecture of the System of Figure 2 That Specifies a 
Required Security Containment Vessel Scheme 

 

Figure 4. A Secure Build-Time Architecture Describing the Version Running in 
Figure 2 With a Specified Security Containment Vessel Scheme 
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Figure 5. Instantiated Build-Time OA System With Maximum Security 
Architecture of Figure 4 via Individual Security Containment Vessels for Each System 

Element 

 

Figure 6.  Instantiated Build-Time OA System With Minimum Security 
Architecture of Figure 4 via a Single Overall Security Containment Vessel for the 

Complete System Using a Common Software Hypervisor 
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Figure 7. Instantiated Build-Time OA System With Mixed Security Architecture of 
Figure 4 via Security Containment Vessels for Some Groupings of System Elements 

OA System Evolution  
An OA system can evolve by a number of distinct mechanisms, some of which are 

common to all systems, but others of which are a result of heterogeneous IP and security 
licenses in a single system.  

By component evolution—One or more components can evolve, altering the overall 
system’s characteristics (for example, upgrading and replacing the Firefox Web browser 
from version 3.5 to 3.6, which may update existing software functionality, while also patching 
recent security vulnerabilities).  

By component replacement— One or more components may be replaced by others 
with different behaviors but the same interface, or with a different interface and the addition 
of shim code to make it match (for example, replacing the AbiWord word processor with 
either Open Office or MS Word, depending on which is considered the least vulnerable to 
security attack). 

By architecture evolution—The OA can evolve, using the same components but in a 
different configuration, altering the system’s characteristics. For example, as discussed in 
the Secure Open Architecture Composition section, changing the configuration in which a 
component is connected can change how its IP or security license affects the rights and 
obligations for the overall system. This could arise when replacing email and word 
processing applications with web services like Google Mail and Google Docs, which we 
might assume may be more secure since the Google services (operating in a cloud 
environment) may not be easily accessed or penetrated by a security attack. 

By component license evolution—The license under which a component is available 
may change, as, for example, when the license for the Mozilla core components was 
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changed from the Mozilla Public License (MPL) to the current Mozilla Disjunctive Tri-
License; or the component may be made available under a new version of the same license, 
as, for example, when the GNU General Public License (GPL) version 3 was released. 
Similarly, the security license for a component may be changed by its producers, or the 
security license for a composed system changed by its integrators, in order to prevent or 
deter recently discovered security vulnerabilities or exploits before an evolutionary version 
update (or patch) can be made available. 

By a change to the desired rights or acceptable obligations—The OA system’s 
integrator or consumers may desire additional IP or security license rights (e.g., the right to 
sublicense in addition to the right to distribute), or no longer desire specific rights; or the set 
of license obligations they find acceptable may change. In either case, the OA system 
evolves, whether by changing components, evolving the architecture, or other means, to 
provide the desired rights within the scope of the acceptable obligations. For example, they 
may no longer be willing or able to provide the source code for components that have known 
vulnerabilities that have not been patched and eliminated. 

 

Figure 8. A Second Instantiation at Run-Time (Firefox, Google Docs and 
Calendar, Fedora) of the OA System in Figures 2, 3, and 4 as an Evolutionary 
Alternative System Version, Which in Turn Requires an Alternative Security 

Containment Scheme 
The interdependence of integrators and producers results in a co-evolution of 

software within an OA ecosystem. Closely-coupled components from different producers 
must evolve in parallel in order for each to provide its services, as evolution in one will 
typically require a matching evolution in the other. Producers may manage their evolution 
with a loose coordination among releases, for example, as between the Gnome and Mozilla 
organizations. Each release of a producer component creates a tension through the 
ecosystem relationships with consumers and their releases of OA systems using those 
components, as integrators accommodate the choices of available, supported components 
with their own goals and needs. As discussed in our previous work (Alspaugh, Asuncion, & 
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Scacchi, 2009a), license rights and obligations are manifested at each component’s 
interface, then mediated through the system’s OA to entail the rights and corresponding 
obligations for the system as a whole. As a result, integrators must frequently re-evaluate an 
OA system’s IP/security rights and obligations. In contrast to homogeneously-licensed 
systems, license change across versions is a characteristic of OA ecosystems, and 
architects of OA systems require tool support for managing the ongoing licensing changes.  

We propose that such support must have several characteristics: 

 It must rest on a license structure of rights and obligations (see the Security 
Licenses section), focusing on obligations that are enactable and testable.  

 It must take account of the distinctions between the design-time, build-time, 
and distribution-time architectures (see the sections entitled Secure Open 
Architecture Composition, Security Licenses, and Security License 
Architectures), and the rights and obligations that come into play for each of 
them. 

 It must distinguish the architectural constructs significant for software 
licenses, and embody their effects on rights and obligations (see the Secure 
Open Architecture Composition section).  

 It must define license architectures (see the Security License Architectures 
section).  

 It must provide an automated environment for creating and managing license 
architectures. We are developing a prototype that manages a license 
architecture as a view of its system architecture (Alspaugh, Asuncion, & 
Scacchi, 2009a). 

 Finally, it must automate calculations on system rights and obligations, so 
that they may be done easily and frequently, whenever any of the factors 
affecting rights and obligations may have changed (see the Security License 
Analysis section). 

Security Licenses 
Licenses typically impose obligations that must be met in order for the licensee to 

realize the assigned rights. Common IP/copyright license obligations include the obligation 
to publish at no cost any source code you modify (MPL), or the reciprocal obligation to 
publish all source code included at build-time or statically linked (GPL). The obligations may 
conflict, as when a GPL’d component’s reciprocal obligation to publish source code of other 
components is combined with a proprietary component’s license prohibition of publishing its 
source code. In this case, no rights may be available for the system as a whole, not even the 
right of use, because the two obligations cannot simultaneously be met, and thus neither 
component can be used as part of the system. Security capabilities can similarly be 
expressed and bound to the data values and control signals that are visible in component 
interfaces, or through component connectors. 

Some typical security rights and obligations might be the following: 

 the right to read data in containment vessel T;  
 the obligation for a specific component to have been vetted for the capability 

to read and update data in containment vessel T;  
 the obligation for a user to verify his/her authority to see containment vessel 

T, by password or other specified authentication process; 
 the right to replace specified component C with some other component;   
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 the right to add or update specified component D in a specified configuration; 
and 

 the right to add, update, or remove a security mechanism. 

The basic relationship between software IP/security license rights and obligations 
can be summarized as follows: if the specified obligations are met, then the corresponding 
rights are granted. For example, if you publish your modified source code and sub-licensed 
derived works under MPL, then you get all the MPL rights for both the original and the 
modified code. Similarly, software security requirements are specified as security obligations 
that, when met, allow designated users or other software programs to access, modify, and 
redistribute data and control information to designated repositories or remote services. 
However, license details are complex, subtle, and difficult to comprehend and track—it is 
easy to become confused or make mistakes. The challenge is multiplied when dealing with 
configured system architectures that compose a large number of components with 
heterogeneous IP/security licenses, so that the need for legal counsel begins to seem 
inevitable (Rosen, 2005; Fontana et al., 2008).  

We have developed an approach for expressing software licenses of different types 
(intellectual property and security requirements) that is more formal and less ambiguous 
than natural language, and that allows us to calculate and identify conflicts arising from the 
rights and obligations of two or more component’s licenses. Our approach is based on 
Hohfeld’s (1913) classic group of eight fundamental jural relations, of which we use right, 
duty, no-right, and privilege. We start with a tuple <actor, operation, action, object> for 
expressing a right or obligation. The actor is the “licensee” for all the licenses we have 
examined. The operation is one of the following: “may,” “must,” “must not,” or “need not,” 
with “may” and “need not” expressing rights, and “must” and “must not” expressing 
obligations. The action is a verb or verb phrase describing what may, must, must not, or 
need not be done, with the object completing the description. A license may be expressed 
as a set of rights, with each right associated with zero or more obligations that must be 
fulfilled in order to enjoy that right. Figure 9 shows the meta-model with which we express 
licenses. 
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Figure 9. Security License Meta-Model  
Designers of secure systems have developed a number heuristics to guide 

architectural design in order to satisfy overall system security requirements, while avoiding 
conflicts among interacting security mechanisms or defenses. However, even using design 
heuristics (and there are many), keeping track of security rights and obligations across 
components that are interconnected in complex OAs quickly becomes too cumbersome. 
Automated support is needed to manage the complexity of multi-component system 
compositions where different security requirements must be addressed through different 
security capabilities. 

Security License Architectures  
Our security license model forms a basis for effective reasoning about licenses in the 

context of actual systems, and calculating the resulting rights and obligations. In order to do 
so, we need a certain amount of information about the system’s configuration at design-time, 
build-time, and run-time deployment. The following needed information comprises the 
license architecture, an abstraction of the system architecture: 

1. the set of components of the system (for example, see Figure 2) for the 
current system configuration, as well as subsequently for system evolution 
update versions (as seen in Figure 8); 

2. the relation mapping each component to its security requirements (specified 
and analyzed at design-time, as exemplified in Figure 3) or capabilities 
(specified and analyzed at build-time in Figure 4, and run-time across 
alternatives shown in Figures 5, 6, and 7);  

3. the connections between components and the security requirements or 
capabilities of each connector passing data or control signals to/from it; and 
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4. possibly other information, such as information to detect or prevent IP and 
security requirements conflicts, which is as yet undetermined. 

With this information and definitions of the licenses involved, we believe it is possible 
to automatically calculate rights and obligations for individual components or for the entire 
system, as well as guide/assess system design and evolution, using an automated 
environment of the kind that we have previously demonstrated (Alspaugh, 2009a, 2009b, 
2010; Alspaugh, Scacchi, & Asuncion, 2010). 

Security License Analysis  
Given a specification of a software system’s architecture, we can associate security 

license attributes with the system’s components, connectors, and sub-system architectures, 
resulting in a license architecture for the system, and calculate the security rights and 
obligations for the system’s configuration. Due to the complexity of license architecture 
analysis, and the need to re-analyze every time a component evolves, a component’s 
security license changes, a component is substituted, or the system architecture changes, 
OA integrators really need an automated license architecture analysis environment. We 
have developed a prototype of such an environment for analogous calculations for software 
copyright licenses (Alspaugh, Asuncion, & Scacchi, 2009b; Alspaugh, Scacchi, & Asuncion, 
2010), and are extending this approach to security licenses. 

Security Obligation Conflicts 

A security obligation can conflict with another obligation, a related right for the same 
or nearby components, or with the set of available security rights, by requiring a right that 
has not been granted. For instance, consider the following two connected components C 
and D with security obligations: 

(O1) The obligation for component C to have been vetted for the capability to read 
and update data in containment vessel T 

(O2) The obligation for all components connected to specified component D to grant 
it the capability to read and update data in containment vessel T 

 
If C has not been vetted, then these two obligations conflict. This possible conflict must be 
taken into consideration in different ways at different development times, as follows:  

 at design time, ensuring that it will be possible to vet C;  
 at build time, ensuring that the specific implementation of C has been vetted 

successfully; and  
 possibly at run time as well, confirming that C is certified to have been vetted, 

or (if C is dynamically connected at run time) vetting C before trusting this 
connection to it. 

The second obligation may also conflict with the set of available security rights, for 
example if D is connected to component E for which the security right (R1) The right to read 
and update data in containment vessel T using component E is not available. 

The absence of such conflicts does not mean, of course, that the system is secure. 
But the presence of conflicts reliably indicates that it is not secure. 
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Rights and Obligations Calculations 

The rights available for the entire system (the right to read and update data in 
containment vessel T, the right to replace components with other components, the right to 
update component security licenses, etc.) are calculated as the intersection of the sets of 
security rights available for each component of the system. If a conflict is found involving the 
obligations and rights of interacting components, it is possible for the system architect to 
consider an alternative scheme, for example, using one or more connectors along the paths 
between the components that act as a security firewall. This means that the architecture and 
the automated environment together can determine what OA design best meets the problem 
at hand with available software components. Components with conflicting security licenses 
do not need to be arbitrarily excluded, but instead may expand the range of possible 
architectural alternatives if the architect seeks such flexibility and choice.  

Discussion 
Our approach to specifying and analyzing the security requirements for a complex 

OA system is based on the use of a security license. As noted, a security license is a new 
kind of information structure whose purpose is to declare operational capabilities that 
express the obligations and rights of users or program to access, manipulate, control, 
update, or evolve data, control signals, and accessible software system elements. Our 
proposed security license is influenced by IP licenses that are employed to specify property 
control and declared copyright freedoms/restrictions, such as those for OSS components 
subject to licenses like the GPLv2, MPL, LGPL, or others. These IP licenses as information 
structures often pre-exist to facilitate their widespread use, dissemination, and common 
interpretation. Further, the choice of which IP license to choose or assign to a software 
component results from a trade-off analysis typically performed by the components 
producers, rather than the system integrators or consumers, as a way to protect or 
propagate the obligations and rights to use, evolve, and redistribute the updated 
component's open source code. 

The security licenses we propose do not necessarily exist prior to their specification 
and assignment to a given OA system. Similarly, we do not yet have a basis to anticipate or 
expect that generic security licenses will emerge, as they have for OSS components. 
However, one follow-on goal we seek to address is whether and how best to specify security 
licenses for different types of software elements or components, so that it becomes possible 
to semi-automatically specify the security license for a given component or composed OA 
system through the reuse and instantiation of security requirement templates. This idea is 
somewhat similar to the license templates and taxonomy that is employed by the Creative 
Commons for non-software intellectual property like online art or new media content (cf., 
http://creativecommons.org/licenses/). In this regard, it may be possible to develop a 
technique and supporting computational environment whereby system integrators or 
consumers can conveniently specify the security requirements they seek (e.g., fill out online 
security requirements forms), while the environment interprets these specifications to 
generate operational security capabilities that can guard the entry and exit of data or control 
information from the appropriate containment vessel that encapsulates the corresponding 
system element. Consequently, this is a topic for further study and investigation. 

Next, one might wonder why it is not simply desirable to have maximum system 
security under all circumstances. When considering the alternative run-time system 
composition variants shown in Figures 5, 6, and 7, it appears there may be trade-offs in one 
layout of security capabilities over another. For example, the layout in Figure 5 maximizes 
security by encapsulating each system element within its own containment vessel. This in 
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turn requires a VM technology of a kind different from that commonly available (e.g., like 
VMware), and instead requires a new lightweight VM technology that can provide security 
capabilities (e.g., create, read, update authorizations) for potentially small-scale software 
elements (e.g., Cshell scripts). Similarly, the different security containment layouts may 
affect system performance, ease of evolutionary update, and associated level of security 
administration. But these again all represent trade-offs in the desire to achieve affordable, 
practical, and ever more robust and testable secure software component/system capabilities 
at build-time and run-time. Thus, we take the position that it is better to provide the ability to 
specify and analyze the security requirements of different software elements at design-time, 
as well as specify and analyze the security capabilities at build-time and run-time, rather 
than the current practice that does not account for system architecture or license 
architecture, and is thus inherently vulnerable to attacks that can otherwise be prevented or 
detected. 

One other topic that follows from our approach to semantically modeling and 
analyzing OA systems that are subject to software security licenses. More specifically, how 
our approach and emerging results might shed light on software systems whose 
architectures articulate a software product line. 

Accordingly, organizing and developing software product lines (SPLs) relies on the 
development and use of explicit software architectures (Bosch, 2000; Clements & Northrop, 
2001). However, the architecture of a secure SPL is not necessarily a secure OA—there is 
no requirement for it to be so. Thus, we are interested in discussing what happens when 
SPLs may conform to a secure OA, and to an OA that may be composed from secure SPL 
components. Three considerations come to mind. 

First, if the SPL is subject to a single homogeneous security software license, which 
may often be the case when a single vendor or government contractor has developed the 
SPL, then the security license may act to reinforce a vendor lock-in situation with its 
customers. One of the motivating factors for OA is the desire to avoid such lock-in, whether 
or not the SPL components have open or standards-compliant APIs. 

Second, if an OA system employs a reference architecture much like we have in the 
design-time architecture depicted in Figure 3, which is then instantiated into a specific 
software product configuration, as suggested in the build-time architecture shown in Figure 
4, then such a reference or design-time architecture, as we have presented it here, 
effectively defines an SPL consisting of possible different system instantiations composed 
from similar components instances (e.g., different but equivalent Web browsers, word 
processors, email, calendaring applications, relational database management systems). 

Third, if the SPL is based on an OA that integrates software components from 
multiple vendors or OSS components that are subject to heterogeneous security licenses 
(i.e., those that may possibly conflict with one another), then we have the situation 
analogous to what we have presented in this paper. So secure SPL concepts are 
compatible with secure OA systems that are composed from heterogeneously security 
licensed components. 

Conclusion 
This paper introduces the concept and initial scheme for systematically specifying 

and analyzing the security requirements for complex open architecture systems. We argue 
that such requirements should be expressed as operational capabilities that can be 
collected and sequenced within a new information structure we call a security license. Such 
a license expresses security in terms of capabilities that provide users or programs 
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obligations and rights for how they may access data or control information, as well as how 
they may update or evolve system elements. These security license rights and obligations 
thus play a key role in how and why an OA system evolves in its ecosystem of software 
component producers, system integrators, and consumers. 

We note that changes to the license obligations and rights, whether for control of 
intellectual property or software security, across versions of components, is a characteristic 
of OA systems whose components are subject to different security requirements or other 
license restrictions. A structure for modeling software licenses and automated support for 
calculating its rights and obligations are needed in order to manage an OA system’s 
evolution in the context of its ecosystem. 

We have outlined an approach for achieving these and sketched how they further the 
goal of reusing components in developing software-intensive systems. Much more work 
remains to be done, but we believe this approach turns a vexing problem into one for which 
workable, as well as robust, formal solutions can be obtained. 
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