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“Most acquisitions for complex systems are done at
the system level and independent of other systems
in the architecture. Any organization acquiring a
complex system employs some form of data
analytics to assess a system’s independent
objectives. Even though the systems contribute to
and benefit from the larger SoS, the data analytics
and decision-making about the independent
system is rarely shared across the SoS
stakeholders…”

Problem Statement
Identify how the sharing of datasets and the
corresponding analytics among SoS stakeholders
can lead to an improved SoS capability

Motivation

Department of Defense Architecture Framework 
(DoDAF) OV-1 representation



STATUS QUO

• Predictive data analytics provides an ability to anticipate and predict outcomes by collecting and 
utilizing prior information (Waller & Fawcett, 2013) (Rehman et al., 2016) (Joseph & Johnson, 2013).
 Using data to guide decision-making has been around since the Babylonian times, where data was recorded 

on tablets to predict harvest (Lo & Hasanhodzic, 2011).

• In 1940s, with the advent of computer development, the ability to reason over large amount of data 
emerged. Using computational data to analyse has occurred in three waves since then:

• Analytics 1.0 – data-based decision making
• Analytics 2.0 – handle large structured and unstructured data sets
• Analytics 3.0 – big data landscape shaped by the volume, variety, velocity, and veracity of data 

• For SoS acquisition, Analytics 3.0 provides a unique challenge where the individual organizations 
contributing the constituent systems individually employ a suite of unique predictive and prescriptive 
analytics tools.

• Capabilities of computing and machine learning techniques are evolving in the Big Data landscape
• How can we leverage these techniques for SoS acquisitions?

• Analytics and the underlying data sets are rarely shared across the SoS stakeholders
• Yet SoS capability emerges from the collaboration of otherwise independent systems



Method Description DoD Application

Linear regression
Fits predictors and response to regression line using 
OLS

Two-step process to identify DoD programs that have cost growth 
using logistic regression and estimate the cost growth of those 
programs using multivariate linear regression

Ridge and Lasso regression

Regularization methods used when the standard linear 
regression model suffers from multicollinearity and 
overfitting

Ridge: address multicollinearity problem in defense spending by 
modeling relationship between military expenditures and economic 
growth
Lasso: variable reduction technique to select variables most 
relevant to supply and demand of airline tickets

Binary logistic regression Models the log odds of a binary categorical outcome as 
a linear combination of quantitative and/or predictors

Explore how the DoD can use info on contractor performance to 
identify variables that drive success of a contract

Support vector machines 
(SVM)

Uses a linearly separable hyperplane to classify data into 
two classes

Estimate the state of charge of lithium-ion batteries for unmanned 
aerial vehicles

Artificial neural networks (ANN) Model consisting of interconnected nodes that receive 
inputs and return outputs based on an activation function

Detect anomalies in engine operation of advanced military aircraft

K-nearest neighbors Classifies data points based on the class that appears 
the most among neighboring points

Classify types of military vehicles based on the acoustic and 
seismic signals generated

Naïve Bayes classifier
Uses Bayes theorem to calculated probabilities of a 
class response and selects the class with the highest 
probability as the output

Identify DoD acquisition programs with elevated levels of cost risk

Decision Tree
Algorithm that recursively and iteratively partitions the 
data into homogeneous subsets to identify a target 
outcome

Use of a decision tree to analyze success and failure of a contract

K-means Use to identify homogeneous clusters in a data set Uncover patterns in military peacekeeping documents

MACHINE LEARNING – REVIEW
• Supervised learning use predictors and a target variable to learn a function that maps the predictors to the target
• Unsupervised learning algorithms model underlying structure of data with a set of predictors and no target variable
• Machine Learning techniques are finding numerous application in various domains



PREVIOUS WORK

• Conceptual problem to demonstrate the impact that even 
small, intuitive changes in how data is collected and 
shared, can result in different predictive and prescriptive 
analytic implementations and lead to a different outcome 
for SoS decision making (Davendralingam et al., 2018).

• For example (in figure), a Market Research Team performs 
a market study to understand the consumer’s opinion 
→ this information can be used to support the future
product design by providing insights on what aspects are 
the most crucial for the consumer 
→ resulting in better understanding of information flow
→ collected data can then help dictate demand and thus 
control profit

• In this research, we are pursuing development of a 
framework that will facilitate identification of such links and 
quantify how the SoS level capability could evolve by 
sharing data sets across the systems.

Figure: Conceptual problem to identify impact of 
data-set connectivity 



SOS ACQUISITION 
PROBLEM & CASE STUDY



SoS Acquisition Problem
• Approach to lexicon and taxonomy for representing the 

various SoS constructs are derived from Davendralingam et 
al., 2018.

• Here, sub-systems 𝛼𝛼1 and  𝛼𝛼2 form the system 𝛽𝛽1 whereas 
𝛼𝛼3 relates to the system, 𝛽𝛽2. At the higher level, 𝛽𝛽1 and 𝛽𝛽2
form the system-of-system, 𝛾𝛾1.

• In our example, each domain i.e., Air Superiority System(s) 
is accounted as a 𝛽𝛽-level system with constituent 𝛼𝛼-level 
systems.

• Each of the sub-system suppliers, system manager, and 
SoS managers have independent goals of employing data 
analytics to improve their figures of merit.

• For the SoS capability, right information pathways and 
connecting data sets becomes necessary for SoS-level 
predictive and prescriptive analytics.

Figure(above): SoS representation Example



AMPHIBIOUS WARFARE SCENARIO 

• In this research, we address this problem by first formulating the SoS capability measure based on 
acquiring multiple systems within the DoD application domain. Then demonstrate how 
the SoS capability evolves due to sharing preferences between sub-hierarchical systems while 
maintaining the independent system objectives.

• A synthetic, multi-objective SoS acquisition problem is based on Amphibious Warfare Scenario which is 
a multi-domain problem involving air, ground, naval, and space systems, inspired by World War II.

• The systems in Amphibious Warfare interact to provide logistical support and system-level capabilities 
to achieve certain SoS-level capabilities

• The focus of the study will be on three SoS capabilities related to an amphibious warfare scenario – Air 
Superiority, Naval Superiority and Reconnaissance. Each SoS capability is computed using a 
normalized sum of individual system capabilities in their respective domain.

• A Purdue University developed Decision Support Framework (DSF) software is used to run 
simulations. 



DECISION SUPPORT FRAMEWORK
• The primary function of the DSF is to perform quantitative 

Analysis of Alternatives (AoA). It generates portfolios of 
systems that provide both the SoS capabilities of interest and 
the necessary logistical support for the systems.

• This capability is accomplished by integrating Robust 
Portfolio Optimization (RPO) (Davendralingam & 
DeLaurentis, 2015) analysis tool for SoS which evaluates not 
only system-level and SoS-level capabilities but also the 
constraints imposed by interactions between systems.

• The user can create their own Mission System Library (MSL) 
for their specific problem. It is a key means to pass inputs into 
the DSF

• Implementation of RPO for a certain SoS design problem 
yields a set of Pareto optimal portfolios of cost vs. SoS 
performance. The DSF runs the RPO tool using as input the 
system information from the MSL. 

• The user can modify the parameters of the analysis in the 
DSF Main GUI (figure).

• Another feature of the DSF, and the one that is used to 
investigate our problem statement, is the ability to assign 
weights to the SoS capability based on the preference for the 
mission requirement.



MISSION SYSTEMS LIBRARY

Systems Support 
requirements

Cost Modular 
properties

UncertaintySystem 
capabilities



SIMULATION SETUP 
• Common occurrence: differences in interpretation of the mission 

requirements either due to lack of communication or judgement.

• This study investigates how such dissimilarities in the definition 
of the mission requirements of one contributing individual from 
another affects the final SoS performance and cost.

• This then leads to the issue of conflicting objectives among the 
team of acquisition managers or SoS designers. 

• We run 30 cases of varying weights among the team of 
acquisition managers to understand the variance in portfolios, 
performance and cost of the SoS. 

• Each of these cases represent an instance of the previously 
discussed uncertainty in definition of the mission requirement by 
stakeholders (varying weights in air superiority, naval superiority, 
and reconnaissance).

• Figure shows the weight distribution for each of the SoS 
capabilities in the 30 unique cases.

Cases AS NS Recon
1 0.8 0.1 0.1
2 0.7 0.2 0.1
3 0.7 0.1 0.2
4 0.6 0.2 0.2
5 0.6 0.3 0.1
6 0.6 0.1 0.3
7 0.5 0.1 0.4
8 0.5 0.2 0.3
9 0.5 0.3 0.2

10 0.5 0.4 0.1
11 0.4 0.5 0.1
12 0.4 0.4 0.2
13 0.4 0.3 0.3
14 0.4 0.2 0.4
15 0.4 0.1 0.5
16 0.3 0.6 0.1
17 0.3 0.5 0.2
18 0.3 0.4 0.3
19 0.3 0.3 0.4
20 0.3 0.2 0.5
21 0.3 0.1 0.6
22 0.2 0.7 0.1
23 0.2 0.6 0.2
24 0.2 0.5 0.3
25 0.2 0.4 0.4
26 0.2 0.3 0.5
27 0.2 0.2 0.6
28 0.2 0.1 0.7
29 0.1 0.1 0.8
30 0.1 0.8 0.1

Weights

Figure: 30 simulation test cases



RESULTS



PORTFOLIOS
• For each case, the DSF produces portfolios containing data about the

various possible portfolios and its associated SoS performance index and
cost.

• A portfolio is a feasible combination of systems, which includes some that
provide the required capabilities and others that provide the needed support.

• Figure is an example (case 1) for a portfolio generated for a test case. Each
column is a Pareto-optimal portfolio for a given budget limit.

• Zeros mean that the corresponding architecture does not utilize the system
in question. Ones indicate systems that are part of the architecture.

• This data will give the user insight on how these suggested architectures
differ amongst themselves and how they compare with other cases.

In this example result(figure), it is observable that when the architectures switch to a
combination that includes one or more different systems, better performing yet
expensive, the SoS capability improves. This possibility of various permutations of
system architectures make a portfolio-based study more relevant and accurate for SoS
acquisition problems.



PARETO FRONTIERS
• Portfolio Performance Frontiers where the SoS Performance 

Index is mapped with its corresponding costs is plotted.

• Each of these portfolio performance frontiers identify the best 
possible solution (architecture) for a given cost. 

• Every distinguishable point on the frontier is a feasible 
architecture. With increase in budget, as expected, better 
performing systems are acquired to form the SoS architecture.

• This results in better performing SoS architectures within the 
same scenario. 

• Closely inspecting and comparing the two pareto frontiers it is 
evident that while the shape/form of the two is similar, the data 
points are not the same. 

• This indicates that different weight preferences for the SoS
capability produce portfolios that provide different 
performances. 

CASE 1

CASE 17

Figure: Performance Pareto Frontiers



VARIANCE IN FRONTIERS

• Case 1 had a weight of 0.8 (out of 1) and Case 29 had 
0.1 for Air Superiority and as stated the SoS
performance index for their respective portfolios are 
inversely related to the value of the assigned weights.

• Leading to two portfolios with a sizeable difference in 
their performance index. Another influencing factor in 
any acquisition problem is the restrictive nature of the 
proposed budget i.e., cost.

• By using RPO, the accountability of cost-based 
comparisons are visible too. 

• Instances where the performance index of a portfolio for 
one case (case 26) is higher than the other (case 22) for 
a specified cost value. However, with an increase in cost 
to a higher value, the previous trend does not hold true.



TAKEAWAYS & FUTURE WORK

DSF shows that when the portfolios 
switch to a combination that includes 
one or more different systems, better 
performing yet expensive, the SoS 
capability improves. This highlights 
the importance of sharing preferences 
and connecting data sets across SoS. 

Any uncertainty in SoS requirement 
definition or system capabilities has a direct 
effect on the resulting performance. These 
differences thus reflect various information 
and decision by stakeholders and will be 
used in future steps

Instances where the performance index of
a portfolio for one case is higher than the
other for a specified cost value but
contradictory results exist too. This shows
that final performance is more than just
system capabilities and SoS capabilities
but also include the contribution by the
interaction of various systems.

• A major challenge that we aim to address in future is identification of which datasets needs to be connected across the SoS, since 
a fully connected Big Data enterprise is unlikely to be pragmatic in the real world. Further our focus is on investigating machine 
learning techniques that can predict the SoS capability based on having access to decision making loops at the system level and 
prescribe a path forward for generating information flows between systems in the SoS.

Inclusion of information 
flow paths between 

systems

Identification of data sets

Use ML to predict 
capabilities

Access to decision making 
loops
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