
Acquisition Research Program 
Graduate School of Defense Management 
Naval Postgraduate School 

SYM-AM-21-058 

 

Excerpt from the 
Proceedings 

of the 
Eighteenth Annual  

Acquisition Research Symposium 
 

  

Interdependence Analysis for Artificial Intelligence 
System Safety 

May 11–13, 2021 
 

Published: May 10, 2021 

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy 
position of the Navy, the Department of Defense, or the federal government. 

Approved for public release; distribution is unlimited. 

Prepared for the Naval Postgraduate School, Monterey, CA 93943. 



Acquisition Research Program 
Graduate School of Defense Management 
Naval Postgraduate School 

 

The research presented in this report was supported by the Acquisition Research 
Program of the Graduate School of Defense Management at the Naval Postgraduate 
School. 

To request defense acquisition research, to become a research sponsor, or to print 
additional copies of reports, please contact any of the staff listed on the Acquisition 
Research Program website (www.acquisitionresearch.net).  

http://www.acquisitionresearch.net/


Acquisition Research Program 
Graduate School of Defense Management - 243 - 
Naval Postgraduate School 

Interdependence Analysis for Artificial Intelligence 
System Safety 

Bruce Nagy is a Research Engineer at the Naval Air Warfare Center, Weapons Division at China Lake. 
His research focuses on advanced game theory techniques, artificial intelligence, and machine learning 
applications for tactical decision aids. Nagy has earned four degrees: one in mathematics, two in 
electrical engineering, and one in biology from The Citadel and the Naval Postgraduate School. He led 
the development of advanced algorithms and metrics that resolved national defense issues in satellite 
communications for the DoD. At UCLA, during postgraduate work, he investigated modeling brain stem 
communication with muscle groups at the cellular level, in cooperation with the NIH. 
[bruce.nagy@navy.mil] 

Scot Miller is a Faculty Associate Researcher at the Naval Postgraduate School. Prior to that, he served 
29 years in the Navy as a P-3 pilot and Information Professional. He holds bachelor’s and master’s 
degrees in Operations Research from the U.S. Naval Academy and Naval Postgraduate School, and 
other graduate degrees from the University of West Florida and the Naval War College. 
[scot.miller@nps.edu] 

Abstract  
Engineers responsible for evaluating tactical and weapons systems for system safety will need a 
new approach for evaluating emerging artificial intelligence (AI)-enabled systems, since these 
systems leverage machine learning (ML) techniques. For many reasons, ML algorithms are often 
difficult to diagnose for safety purposes. For instance, they did not lend themselves easily to 
codebase inspections, thus necessitating the reduction in “autonomy” of the ML-enabled 
component. By modifying Interdependence Analysis (IA) techniques, a more rigorous approach to 
evaluating AI/ML-enabled weapons can be found. The IA process produces a rigorous 
exploration based on observability, predictability, and direct ability, highlighting the key 
requirements that encapsulate all interactions between human and machine. This paper explores 
using IA to define the interaction requirements for human–machine teaming, employs those 
results to identify key critical functions, and leverages those findings to reveal how “autonomy” 
reduction might be employed.  

Introduction 
Artificial intelligence (AI) increasingly is used in many regimens. When AI is used in 

weapons systems, are there new considerations the tester, certifier, and operators should 
consider? If so, how should they handle them? Let us define AI. AI is “the theory and 
development of computer systems able to perform tasks that normally require human 
intelligence, such as visual perception, speech recognition, decision-making, and translation 
between languages” (“Artificial Intelligence,” 2021). 

Johnson (2021) describes two types of AI. The first is handcrafted knowledge systems 
that use traditional rules-based software to codify subject matter knowledge of human experts 
into a long series of programmed rules (Johnson, 2021). These are simply just what we have 
always called computer applications. Various test and certification agencies execute well-
developed procedures for assessing these applications and are not considered. 

The second kind of AI becoming more prevalent is machine learning (ML) and this 
demands investigation. In ML, test data trains an algorithm to identify something or some 
pattern. Once the system has learned, it is ready to identify similar or the same things or 
patterns from more incoming data. There are variations on exactly how this works. One 
important variation is that if one is trying to find a specific thing or pattern in the real world, the 
system must have “seen” that data in the training data set.  

mailto:bruce.nagy@navy.mil


Acquisition Research Program 
Graduate School of Defense Management - 244 - 
Naval Postgraduate School 

These types of ML capabilities have improved accuracy, often in many cases achieving 
90% success in identifying the object. That is a great accomplishment for the ML algorithm, if it 
is designed to recommend possible work shoes when one is shopping for new shoes. However, 
if the algorithm is distinguishing between a church steeple, the tower of a hospital, and a 
medium range ballistic missile launcher, 90% does not inspire user confidence, when destroying 
the missile launcher is the goal. Moreover, the ML algorithms work in mysterious ways, 
processing a myriad of complex mathematical equations, meaning it is often unrealistic to 
determine how the algorithm succeeds. For ensuring the safety of weapons that include ML-
enabled components, evaluating ML functions in detail is important. This paper identifies the 
potential challenges of employing ML and how human–machine teaming engineering design 
techniques contribute to a rigorous ML system safety assessment.  

Safety Failure Modes of Artificial Intelligence Machine Learning  
The Navy organization responsible for certifying weapons as system safe is the Naval 

Ordnance Safety and Security Activity (NOSSA). They employ the MIL STD 882E as their rule 
book (DoD, 2012), and the Joint Software System Safety Guide as their compass (Joint 
Services-Software Safety Authorities, 2016). As part of that review, evaluation, and certification 
process, they conduct hazard analyses of the weapons system under test and associated 
supporting elements. Their intent is to identify all possible outcome likelihoods and their 
consequences for every system function. 

An example from the previous section highlighted a 10% likelihood that the AI ML 
algorithm would identify a hospital or church as the target, with the loss of many innocent lives, 
waste of an otherwise good weapon, and a black eye for the United States. That is just one 
example of possible AI ML failures. Others are listed in Table 1 (Faria, 2017). They break into 
three categories: system failure, human–machine interaction issues, and active sabotage. 
Examples of each might be: 1. ML training data set has inherited biases that skew results; 2. 
humans assume ML algorithm is always right and do not apply critical thinking to results; and 3. 
an adversary manipulates the training data set. 

TABLE 1. EXAMPLES OF AI SYSTEM FAILURE MODES (Faria, 2017). 
Failure 

Category Failure Mode Examples 

System Produces 
Faulty/Poor Decision 
Recommendation 

Biased outcomes/predictions 

Skewed outcomes/predictions 

Uncertain outcomes/predictions 

Human–Machine 
Operation Issues 

Operators have lack of trust in the system 

Operators are overly trusting (overreliant) in the system 

Operators ignore the system 

Operators misunderstand the system recommendations/predictions  

Operators introduce errors into the system 

System Under Attack 
(Cyber attack) 

System is overtaken by adversary/adversary is controlling system 

System and its outcomes are corrupted by adversary 

Adversary jams or shuts down system 

Adversary gains access to system; decision information/knowledge is compromised 

The consequences of these failures depend on which part of the kill process of the 
weapons was affected. Table 2 provides a functional view of general weapons. 



Acquisition Research Program 
Graduate School of Defense Management - 245 - 
Naval Postgraduate School 

TABLE 2. GENERAL WEAPONS FUNCTIONS 
Functions Details 
Transport Truck, Rail, Ship, Aircraft 
Storage Bunker, Warehouse, Environment 
Load on Platform Pier side, Unrep, Cranes, Vertrep 
Maintenance Power, BIT, Lubricants, Fueling 
Readied Power on, Check out 
Placed on Launcher Movement, Rails, Hoists, Handled 
Launched Fire, Released, Sent 
Navigate Waypoints, Terrain 
Avoid Terrain, Weather, ESM 
Deceive ECM, ESM, Cloaking, IR 
Identify Target Recognition, Human Input, Sense Laser Illumination 
Fuze/Arm Timing, Mechanical, Human Input, Sensing 
Effects Detonation, Dispersal, Virus, Programs 

Observation shows that many of the functions in the table could be supported by ML 
tools. Navigation and target recognition could be aided by an ML computer vision tool, as well 
as avoiding other platforms or specific topographical entities. It stands to reason that NOSSA 
needs to consider all of these failure modes for each weapon function that uses a ML 
component. 

Each failure mode is comprised of possible root causes, as seen in Table 3 (Johnson, 
2021). With 31 root causes and at least 15 functions, there are at least 465 possible failure 
combinations to assess in NOSSA’s failure analyses.  

TABLE 3. EXAMPLES OF ROOT CAUSES OF AI SYSTEM FAILURES (Johnson, 2021) 
Type of 

Root Cause Root Cause Examples 

Issues within the 
training datasets 

Biased training datasets 

Incomplete training datasets 

Corruption in the training datasets 

Mis-labeled data 

Mis-associated data 

Lack of rare examples—data doesn’t include unusual scenarios 

Unrepresentative datasets 

Issues with the 
process of data 
validation 

Poor data collection methods 

Poor data validation methods 

Improper data validation criteria 

Insufficient data validation  

Issues with the ML 
algorithms 
  

Underfitting in the model—when the model does not attain sufficiently low error on the training data 

Overfitting in the model—when the model presents very small error on the training data, but fails to 
generalize to new data 

Cost function algorithm errors—when the trained model is optimized to the wrong cost function 

Wrong algorithm—when the training data is fit to the wrong algorithmic approach or mathematical 
model 

Issues with the 
operational datasets 

Uncertainty/error in the operational datasets (Epistemic uncertainty) 

Corruption in the operational data 

Introduction of datatypes that the AI system is not designed to handle 

The pace of the situation overwhelms the human–machine decision process 



Acquisition Research Program 
Graduate School of Defense Management - 246 - 
Naval Postgraduate School 

Type of 
Root Cause Root Cause Examples 

Operational 
complexity 

The decision space overwhelms the decision process (the number of options is too large or a viable option 
does not exist) 

Operator trust issues 

Lack of explainability 

Lack of confidence 

Overreliance 

Insufficient operator training or experience with system 

Operator induced 
error 

Inverse trust issues in which the AI system loses “trust” in the human operator or identifies operator 
problems 

Operator misuses the system accidentally or intentionally 

Operator fails their part in the decision process accidentally or due to being overwhelmed, negligent, or 
confused 

Adversarial attacks 

Hacking 

Deception 

Inserting false or corrupt data 

Gaining control of the AI system 

A weapon uses radar computer vision to identify a turn point as part of its navigation. A 
possible root cause for failure might be mislabeled data. In this case, the turn point is mislabeled 
as 1,500 feet in elevation, when it should be labeled 1,500 meters in elevation. The likelihood 
that the weapons might fly into the terrain is high, with the consequence that the weapons 
effects are not delivered.   

Here is a more insidious example. A weapon requires a system update, for instance, a 
new load of training data. The weapon is already loaded onboard a ship, so the ship’s weapons 
maintenance team is assigned the task. Their communications connection to the shore base 
where the file will be downloaded is sketchy. Despite best efforts, the download is interrupted 
several times due to latency and signal jitter (common occurrences underway). Even the 
checksums that ensure a good transmission are misplaced, leading the ship to think it has a 
good download, when it really does not. Now there is an unknown likelihood the weapons could 
malfunction, and unknown consequences, and no way to check. 

Understanding every function in the life cycle of a combat or weapons system is critical. 
Existing procedures already account for the vast number of functions that are not related to any 
ML support and are not addressed in this paper. However, there needs to be a way to 
determine how ML-related techniques impact the weapons and associated operators.  

Tables 1–3 list many ways that ML functions cause safety issues. If their likelihoods and 
consequences are significant, these functions can be designated critical, which by the MIL STD 
requires applying a scrupulous code check process. This is impractical for ML functions, so 
reducing the criticality of the ML functions remains paramount.  

Criticality is associated with “autonomy,” which in this case means that the function will 
operate automatically without human intervention. Thus, if the function can be modified to 
include human involvement, then the criticality is not rated as high, and no code check is 
required, which then resolves the evaluation conundrum of critical ML functions. One proven 
way to investigate human–machine interaction is through a system engineering technique called 
Co-Active Design, especially a key component called interdependence analysis (IA). Does 
applying IA to the ML functional evaluation help? 



Acquisition Research Program 
Graduate School of Defense Management - 247 - 
Naval Postgraduate School 

Co-Active Design 
The purpose of IA is understanding how people and an agent (in our case the ML 

function) can effectively team by identifying and providing insight into the potential 
interdependent relationships used to support one another throughout an activity (Johnson et al., 
2014). One of the IA tool’s strengths is that it can guide the initial design and anticipate how the 
tool or system will be used by the warfighter. In this specific case, though, NOSSA is most 
interested in how humans can be involved in the application of a ML algorithm so as to ensure 
that it is not deemed a critical function. As we have seen, critical functions require a software 
code review, which is problematic, since advanced ML algorithms are complex, especially in the 
mathematics involved, and a software code review is not practical. 

The IA tool is in the form of a table, as shown in Figure 1. IA breaks the planning 
process down hierarchically into specific tasks. Those tasks are analyzed to determine the 
necessary capacities needed to conduct each function, using cognitive task analysis techniques 
(Annett, 2003; Bolte et al., 2003; Chapman et al., 2009; Crandall et al., 2006). Once capacities 
are identified, the next step is assessing each performer’s (ML component or human) ability to 
provide that capacity. The assessment process uses a color-coding scheme, as shown in Figure 
2. The color scheme is dependent on the type of column being assessed. The color assessment 
is subjective, but the process compels the analyst to carefully consider the algorithm and human 
interactions. Under the “performer” column, the colors are used to assess the individual’s 
capacity to perform the activity specified by the row. The green color in the “performer” column 
indicates that the performer can do the task. Yellow indicates less than perfect reliability. 
Orange indicates some capacity, but not enough for the task. Red indicates no capacity. 

 
Figure 1. Explanation of the Different Areas of the Interdependence Analysis (IA) Table 

(Johnson, 2014) 



Acquisition Research Program 
Graduate School of Defense Management - 248 - 
Naval Postgraduate School 

 
Figure 2. Color Dey for Team Member Role Alternative Capability Assessment 

(Johnson, 2014). 
Once completed, careful analysis of the results displays or infers several key design 

inputs for the human–machine teaming involved in the robot delivery process: 
1. From the color schemes, analysts determine how many possible paths exist between 

the users and the systems to accomplish the tasks. This identifies areas where 
multiple paths are availability (improving reliability), and where single points of failure 
may compromise success (and require further design attention). And indeed, may be 
showstoppers to the NOSSA evaluators.  

2. Analysis shows where the system is required to either ensure effectiveness or 
improve efficiencies. Teaming is achieved by practicing three actions between the 
performer and the supporting team members: staying observable, predictable, and 
directable (OPD). Where there are opportunities for a team member to assist the 
performer, and vice versa, engineers and designers can brainstorm ways to achieve 
that teaming through the lens of OPD. In this case, NOSSA evaluators seek ways for 
the AI-enabled function to be either supported by or monitored by humans. This 
reduces “autonomy” and the criticality of the system function.  

3. Combining these first two results helps designers and developers prioritize efforts on 
the machine’s development. Which capacity executed by the performer adds the most 
value? This establishes a context for organizing work efforts and resources. From a 
NOSSA perspective this analysis helps focus on potential ML-enabled trouble areas. 
As described in Table 1, three areas of potential issues exist: system failure, human–
machine interaction issues, and active sabotage. As evaluators use the IA, when they 
evaluate the OPD between the ML algorithm and the humans, they should also 
consider these three possible failure mode areas, associated possible root causes 
from Table 3, and which general functional area is impacted from Table 2.   

Applying IA to ML Safety Use Case 
Nagy (2021) created an unclassified use case for exploring system safety aspects of 

ML-enabled systems (see Figure 3). We use that scenario as a use case for the IA. The results 
are depicted in Table 4. In this scenario, a truck is loaded with two robots, which are then driven 
to a point, then unloaded. For simplicity, assume predecessor functions such as storage and 
maintenance (from Table 2) have no ML components. The robots proceed via another route to 
deliver packages to one or two recipients. As will be introduced in the analysis, at several 
stages in the process ML-enabled techniques are used to conduct activities or make decisions. 
Understanding how the human–machine teaming is associated with those activities and 
decisions is critical to the evaluation process that NOSSA uses. Many of the other functions 
normally considered in an IA were skipped as not relevant to the AI safety discussion.  

 



Acquisition Research Program 
Graduate School of Defense Management - 249 - 
Naval Postgraduate School 

 
FIGURE 3. AI-ENABLED ROBOT DELIVERY SAFETY USE CASE (Nagy, 2021) 

The above use case supports two functions. The first involves mission planning, defining 
the route and robots to use. The second function involves the management of the robot. There 
are two performers of interest in the scenario, the robot and the user. For the first system, the 
user must agree to both the route and robots to use. In the second system, the user interfaces 
with the robot through a graphical user interface (GUI). In most IA, two options are available. 
One where the unmanned system is chosen to perform functions, and humans provide support, 
and vice versa. In this case there is just one option, that the robot traverses a route and delivers 
the packages. This simplifies the IA.  

In column D, we designate which part of the robot is executing that capacity. For 
example, route movement is the role of the stabilizer and propulsion mechanisms, while identify 
customer is a segment of the computer vision ML module. These distinctions are crucial, since if 
an ML module is involved, NOSSA evaluators need to up their awareness. The supporting 
performer is either the mission user, but in NOSSA’s case, the evaluator. Column F describes 
the interactions between the robot and human, described by the three OPD characteristics. In 
this column we evaluate how the human uses those techniques to work with the robot. As one 
can see by examining the Column F, OPD in this scenario is accomplished through the GUI. 
The GUI is well designed and enables specific windows for observing location and robot state, 
provides a route details window which predicts the robots next moves, and specific robot and 
route approval buttons to provide direction. An additional geography map provides back up 
situation awareness for users. A final feature, crucial for NOSSA evaluators, is that the 
geographic map on the GUI can also be toggled to a statistical display. 

Details associated with the GUI’s capabilities are relevant to the interdependence 
possibilities for the ML-enabled components of the overall system. They enable the GUI to 
reduce the autonomy ML related functions within the delivery robot. These specific GUI 
functions are listed in Table 5.   



Acquisition Research Program 
Graduate School of Defense Management - 250 - 
Naval Postgraduate School 

TABLE 5. SCENARIO GUI FUNCTIONS 
Number Scenario GUI Function Details 

1 Enables manual take over control, e.g., direction, speed, avoidance 

2 Provides awareness of autonomous system’s actions—and change through “Affiliation” 
designation—who receives package 

3 Option to cancel delivery actions  

4 Verify recipient visually  

5 Abort operations if needed 

6 Change the success threshold (a statistic identifying the likelihood of success) when selecting 
recipient and related package delivery approach 

7 Modify methods for recipient recognition or navigation method, from a ML function to traditional 
approach  

Figure 4 pictures the GUI and highlights its Markov Decision Process (MDP) State 
design. A MDP is a way to model discrete, stochastic-based actions, popularly used in 
engineering and data science disciplines. In the Figure 4 example, the GUI allows the user to 
observe each state of the robot (and the actions associated with the state), displays the route 
prediction of where the robot is planning to go (actions that move to a different state), and ways 
to move from state to state by directing the robot to make task changes, if necessary. 

IA examines the process defined between the human user and the automated system 
for analysis. The MDP GUI in Figure 4 shows how a user can track the progress of the robots 
(following a process), as they take various actions from state to state (the process flow). The list 
of seven ways to reduce autonomy, described above, emphasizes how IA can analyze process 
states and their related actions, as well as defining where user intersession (monitoring and 
decision override, etc.) can occur to ensure autonomy reduction of the robots’ critical functions 
during mission execution. 

 
FIGURE 4. MARKOV DECISION STATE GUI DESIGN (Nagy, 2021) 

To understand this analysis process, let us examine several capacities and the 
associated analysis. In capacity row 1 in Table 4, the evaluator learns that OPD is executed 
through the GUI and is straight forward. The function reflects a standard database look up call, 
and it is clear that it is not ML-related. Normal NOSSA procedures will apply. In capacity row 4, 



Acquisition Research Program 
Graduate School of Defense Management - 251 - 
Naval Postgraduate School 

the capacity is the application of a naive Bayes algorithm to determine best input attributes. This 
sounds very ML-like, so the analyst should enlist two sets of questions. First, what are the OPD 
interactions between this algorithm and the humans? The GUI provides a view into the 
statistical data. This enables evaluators to ascertain whether the algorithm is working properly. 
The second set of questions addresses the three areas of ML failure modes. From Table 1, the 
first is “Does the algorithm produce faulty/poor decision recommendations?” The second is “Are 
there human–machine operation issues?” and the last is “Is the system under (cyber) attack?” 
Our goal is not to resolve these questions directly, though at some point that will be required. 
Rather, are there human interventions that prevent these issues that by reducing the 
“autonomy” of the algorithm? Because if there are, then the function is not so critical as to 
require a code base check. 

TABLE 4. IA FOR SYSTEM SAFETY USE CASE 

. TASKS . SUB 
TASKS 

C. CAPACITIES D. 
PERFORMING 

ROBOT 
COMPONENT 

E
. 
SUPPORTING 
HUMAN  

F. OBSERVABILITY, PREDICTABILITY, AND 
DIRECTABILITY ASSESSMENT WRT NOSSA EVALUATIONS, PLUS 
SPECIFIC GUI FUNCTIONS FROM ABOVE 

-thru GUI ap 
obstacle
s 

1. Use leg route & 
obstacle DB  

Data 
Loader Manager 

U
ser 

OPD-thru GUI and MDP  (1, 7) 

2. Use wx DB Data 
Loader Manager 

U
ser 

OPD-thru GUI 

3. Use police intel DB Data 
Loader Manager 

U
ser 

OPD-thru GUI 

haracteri
ze legs 

4. Use naive Bayes (nB) 
to determine best input attributes 

nB, DB 
Farm, DB Manager 

E
valuator 

OPD-thru GUI 

Leverage statistical output part of GUI to verify inputs for 
attributes make sense.  

(2, 3, 6)  

5. User Random Forest 
(RF) to estimate probability and missing 
attributes 

RF, DB 
Farm, DB Manager 

E
valuator 

OPD-thru GUI 

While RF is a black box to evaluators, in this case techniques 
exist to prove that the results are useful. Evaluators  need to understand this 
proof and how to apply.   

(2, 3, 6) 

elect 
robot/rou
te pairs 

6. Apply temporal greedy 
search (TGS) to create robot /route 
candidates 

TGS, 
Business Rule Manager, 
DB Farm, DB Manager 

E
valuator 

OPD-thru GUI While TGS is an algorithm, it is not ML, no 
special attention required 

(1, 2, 3, 6, 7) 

7. Use non-linear 
optimization (NLO) to determine combos 
that provide highest likelihood of mission 
success 

  OPD-thru GUI  

While NLO is an algorithm, it is not ML, no special attention 
required 

(1, 2, 3, 6, 7) 

nload 
robot in 
delivery 
Zone 

emove 
from 
truck 

8. Activate robots Processor, 
Power Regulator, and 
Power Supply 

T
ruck Driver 

OPD-thru GUI  

(1) 

obot 
navigation 

etermine 
lead 

9. Select robot as lead Main 
Navigation and Guidance 
Controller 

U
ser 

OPD-thru GUI 

(1) 

avigate 
10, Access planned 

waypoint DB 
Main 

Navigation and Guidance 
Controller 

U
ser 

OPD-thru GUI and MDP 

(1, 2, 7) 

Update status 

 

Main 
Navigation and Guidance 
Controller 

U
ser 

OPD-thru GUI and MDP 

(1, 2, 3, 5, 6, 7) 

elivery nter 
delivery 
zone 

11. Compare up date to 
plan 

 

Main 
Navigation and Guidance 
Controller 

U
ser 

OPD-thru GUI and MDP 

(1, 2, 3, 5, 6, 7) 

12. Adjust location as 
necessary 

Main 
Navigation and Guidance 
Controller 

U
ser 

OPD-thru GUI and MDP 

(1, 3, 7) 

dentify 
customer 

13. Use computer vision 
(CV) to identify customer 

Image DB 
and CV 

U
ser, Recipient 

OPD-thru GUI and MDP; CV is ML, so a human on the loop 
checking the identity as seen by the robot reduces “Autonomy.” In other 
systems, this may not be feasible. May have to assume risk here. (1, 4) 

14. Check time so 
delivery can be synchronous 

GPS 
Signal & SATCOM 
Transceiver, GPS 
Translator 

U
ser 

OPD-thru GUI and MDP 

(2, 3, 5) 

15. Deliver package Robot 
arms 

R
ecipient 

(1, 4, 7) 



Acquisition Research Program 
Graduate School of Defense Management - 252 - 
Naval Postgraduate School 

If we review these questions from that lens, what do we learn? First, because the 
evaluator employs the seven GUI functions to explore the algorithm outputs, that means the 
evaluator or user could be involved in directing the rerunning of the algorithm so that it could 
succeed (see functions 2, 6, and 7 in Table 5). Alternatively, the user may be able to insert data 
directly (functions 1 and 7). Because the user, using the GUI, can modify robot data and inputs, 
question number two comes into view. Can the human introduce errors into the statistics so that 
the system is not functioning properly? Yes, this is possible, but can be addressed through 
proper training, something Navy systems scrupulously employ. Finally, the fact that humans can 
view the algorithm output means that they could detect adversary or insider activity disrupted 
the data (in this case, all the GUI functions apply). Yes, there are procedural implications for 
using this part of the system. One can also surmise, though, that because of the human ability 
to address all three types of failure modes, that an evaluator could conclude that the software 
criticality of this particular algorithm is relatively low. That is, the algorithm’s “autonomy” is not 
high. 

Capacity row 5 is similar to row 4, but there are interesting differences with regard to 
“explainable” AI—explaining the AI decision. For example, when using a Random Forest (RF) 
algorithm (an advanced ML technique based on many variations of a single decision tree), the 
user interface might consider a design that supports the strength of the algorithm—this is 
referred to as a symbiosis. For example, the GUI might be designed to show the user when 
there is a gap in the existing input data to the RF (a potential “real world issue”) and how this 
data gap is being estimated/compensated by the RF algorithm, along with providing the user 
with a statistical explanation of the algorithm’s estimation approach and solution. Further, Nagy 
(2021) shows that an RF algorithm can be used to estimate missing statistical data, including 
statistical data describing highest success in supporting a final decision (e.g., routes and robot 
selection). This type of statistical explanation for critical decision-making data provides the user 
with increased confidence as to whether to accept or reject the estimations of an RF algorithm. 

This raises another key point. If possible, GUI design and algorithm selection should be 
symbiotically determined, facilitated by the IA results. For the RF example, selection of an ML 
algorithm’s capability to compensate for “real world issues” through statistical understanding of 
how the data was estimated should influence the GUI design with the end goal of reducing the 
autonomy of an ML algorithm. The design supporting the expandability strength of the ML 
should provide visibility into potential “real world issues” and how the selected algorithm 
compensates with statistical insight for the user. This IA driven, symbiotic GUI to ML algorithm 
design ensures that the user has the knowledge needed to make a final approval regarding any 
data estimated, thereby assisting in answering the first question, “Does the algorithm produce 
faulty results?” When symbiosis of design and algorithm occur, as provided in the RF example, 
there is greater confidence that the answer will be “no.”  

When symbiosis does not occur, there is a greater chance that system safety risks 
increase. Again, using the RF algorithm as an example, through its estimation process and 
statistical explanation, the user is provided with the necessary data to have confidence in 
approving or rejecting the route and robot selection during a “real world issue” lack of available 
data. Providing the necessary “knowledge” for a user to have confidence in the final approval 
becomes a key requirement necessary to maintain overall system performance and adequately 
reduce autonomy of an ML algorithm. Without the user having confidence in how well the 
algorithm is addressing “real world issues,” final approval authority is meaningless. This is 
because the man-in-the-loop is not achieving the designed result of autonomous reduction of 
the ML algorithm. When things go wrong during deployment, it is about making sure that the 
user has the necessary “knowledge” provided by the ML algorithm (or other means) to make the 
final approval decision.  



Acquisition Research Program 
Graduate School of Defense Management - 253 - 
Naval Postgraduate School 

In this example we use the three general fault areas for ML. Table 3 adds root causes. In 
this particular example, the possible root causes that might require deeper examination would 
include training dataset corruption, mis-validation of data set, overfitting of the ML model, 
operator overreliance, or adversarial deception. These are just two examples of how to use IA to 
support NOSSA critical function analysis for ML-enabled functions. A complete IA would yield 
far more insights into potential problem areas and root causes.   

Next Steps and Recommendations 
After considering the analysis conducted above, one asks, “Does IA serve to solve the 

challenges of evaluating ML based components in weapon systems?” “Not completely,” the 
authors argue. However, what IA does do is to add detail to those functional areas that need to 
be evaluated. IA helps identify specific ML components, which humans might be involved in the 
process to reduce “autonomy” and suggest which mechanisms amongst the OPD triad might be 
best employed, such as GUIs and their design. Moreover, not all designers appreciate the 
interdependence that should exist between user and the algorithm and therefore build no OPD 
connections. This makes reducing “autonomy” infinitely harder. Conducting IA rapidly speeds 
that discovery, which might suggest necessary rework by the original developer.   

By adding the three main fault areas of ML use to the IA, very specific evaluation details 
and questions are raised. While it may not solve the emerging ML evaluation conundrum, it 
does add considerable detail to the kinds of discussions that system developers and NOSSA 
ought to consider, especially when evaluators use the root cause details to inform their 
questions. Further, the authors recommend adding a seventh column to the IA table, which 
would include what root causes were suspect and why. Here are several specific considerations 
that also emerged from developing this work.  

As a nascent requirement for the NOSSA evaluators, recommend careful consideration 
of each function using these techniques, plus frequent review of deployed system performance. 
Specifying a special follow up with operational users may be required for the first years of use. 
While Nagy’s scenario benefits from a very capable GUI already informed by a knowledge of IA, 
NOSSA evaluators should expect that not all systems submitted for such review will be as well 
developed. In fact, NOSSA may want to consider making an IA a requirement for submission of 
a system for certification.  

We recommend not updating training data sets to the deployed edge, which is to 
platforms deployed in actual operations. At this point, the processes that support such updates 
are not well understood. Any updates to training data sets ought to be reexamined by NOSSA. 
However, as the use of ML devices becomes prevalent, NOSSA will not be able to maintain the 
pace to evaluate these changes. New procedures will need to be considered, developed, 
evaluated, and then adopted. We recommend tasking the Naval Postgraduate School, the Joint 
AI Center, or the Navy’s Digital Software Engineering Transformation Working Group to start 
this work. 

In many respects, updating training data sets is like the Navy’s development security 
operations (DEVSECOPS) efforts to update patches to the Fleet in hours, not weeks. NOSSA 
should learn from those lessons, though recognizing that the size of most training data sets 
makes over the air updates challenging and unreliable. NOSSA and training data set updaters 
should consider leveraging standard storage device deliveries. This would include ways to 
secure the data on those storage devices.  

Introducing ML techniques into systems, because of the importance of the training data 
sets, means that changes to the system engineering processes are necessary. In the past, the 
SE “Vee” diagram is a set of procedures that are executed to an end state, normally at the end 



Acquisition Research Program 
Graduate School of Defense Management - 254 - 
Naval Postgraduate School 

of a variety of test and evaluation events. This includes operational test, security and weapons 
certification, and in NOSSA’s case, safety certification. According to Johnson (2021), this new 
SE “Vee” may change to be continuous for the entire life cycle of a system. This means, in 
theory, that NOSSA has a continuous responsibility to monitor system safety. That is a 
significant change, and worth thinking about. It may be that IA provides at least a way to wrap 
one’s head around this potentially new responsibility. IA could be used to identify those 
functions that do require continuous evaluation.  

References 
Annett, J. (2003). Hierarchical task analysis. Handbook of cognitive task design (pp. 17–

35). Lawrence Erlbaum Associates. 
Artificial Intelligence. (2021). In Oxford online dictionary. 

https://en.oxforddictionaries.com/definition/artificial_intelligence 
Bolté, B., Endsley, M., & , Jones, D. (2003). Designing for situation awareness: An 

approach to user-centered design. Taylor & Francis. 
Chipman, S., Schraagen, J., & Shalin, V. (2009). Cognitive task analysis. Lawrence 

Erlbaum Associates, Inc. 
Crandall, B., & Klein, G. (2006). Working minds: A practitioner’s guide to cognitive task 

Analysis. Bradford Books. 
DoD. (2012). Department of Defense standard practice: System Safety (MIL-STD-882E). 
Faria, J. (2017, October 23–26). Non-determinism and failure modes in machine 

learning. Proceedings of IEEE 28th International Symposium on Software Reliability 
Engineering Workshops, 310–316. 

Johnson, B. W. (2021, March 3). Metacognition for artificial intelligence system safety 
[Online conference presentation]. Developing Artificial Intelligence in Defense Programs 
Acquisition Research Symposium, Monterey, CA, United States. 

Johnson, M., Bradshaw, J. M., Feltovich, P. J., Jonker, C. M., van Riemsdijk, B. M., & 
Sierhuis, M. (2014). Coactive design: Designing support for interdependence in joint activity. 
Journal of Human-Robot Interaction, 3(1), 43–69. 

Joint Services-Software Safety Authorities. (2016). Software system safety: 
Implementation process and tasks supporting MIL-STD-882E. Joint Staff. 

Nagy, B. N. (2021, March 25). Using event-verb-event (EVE) constructs to train 
algorithms to recommend a complex mix of tactical actions that can be statistically analyzed 
[Online conference presentation]. Fifth Annual Naval Application of Machine Learning, San 
Diego, CA, United States. 

Varshney, K. (2016, January 31–February 5). Engineering safety in machine learning. 
Proceedings of Information Theory and Applications Workshop, 1–5

https://en.oxforddictionaries.com/definition/artificial_intelligence


 



 
 
 
Acquisition Research Program 
Graduate School of Defense Management 
Naval Postgraduate School 
555 Dyer Road, Ingersoll Hall 
Monterey, CA 93943 

www.acquisitionresearch.net 

 


	Safety Failure Modes of Artificial Intelligence Machine Learning
	References

