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Abstract 
Both the commercial world and Department of Defense (DoD) are challenged with system safety 
issues when dealing with Machine Learned (ML)/Artificial Intelligence (AI) deployed products. 
DoD has a more severe issue when deploying weapons that could unintentionally harm groups of 
people and property. Commercial manufacturers are motivated by profit, while DoD is motivated 
by defense readiness. Both are in a race and can suffer the consequences from focusing too 
much on the finish line. Establishing formal oversight ensures safe algorithm performance. This 
paper presents a measurement approach that scrutinizes the quality and quantity of training data 
used when developing ML/AI algorithms. Measuring quality and quantity of training data 
increases confidence in how the algorithm will perform in a “realistic” operational environment. 
Combining modality with measurements determines: (1) how to curate data to support a realistic 
deployed environment; (2) what attributes take priority during training to ensure robust 
composition of the data; and (3) how attribute prioritization is reflected in size of the training set. 
The measurements provide a greater understanding of the operational environment, taking into 
account issues that result when missing and/or sparse data occur, as well as how data sources 
supply input to the algorithm during deployment. 

Introduction 
As opposed to traditional software development techniques, Machine Learned 

(ML)/Artificial Intelligence (AI) created functions have models that are configured using training 
data sets. Traditional code is used to manage the training process. Training sets are comprised 
of a combination of attributes, sometimes called features. When we refer to a feature within an 
image, we are describing a piece of information contained in the content of the image. In this 
case, the feature describes a certain region of the image, which has certain properties as 
opposed to another popular definition of a feature as a single pixel in an image. The aggregation 
of attributes can be contained in one source, e.g., a camera taking a facial picture, or from many 
sources, e.g., various sensor inputs, such as radar and communication links. In this paper, we 
will distinguish whether attributes are generated from one or multiple sources based on their 
modality. As will be described, understanding the type of modality and creating training data 
sets with the proper quality and quantity of instances/samples to replicate the variation, 
anomalies and noise experienced during deployment is key to algorithm behavioral confidence.  

No Warning Labels 

The first woman killed by an autonomous driven car (Schmelzer 2019) provided a reality 
check for the reliability of AI performance in a deployed environment. Interestingly, 1896 is when 
the first person was killed by a human driver. Who’ was at fault? It was determined to be the 
driver. When an autonomous system makes a mistake, is it the car or the driver (Gurney 2013) 
that is at fault? There are many factory recalls of faulty mechanisms in cars, like brakes. Is it any 
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different with AI software systems? The objective for many car developers is how safe can they 
make a car using autonomy as compared to other manufacturers (Griffith E 2016). That is their 
key to their advertising to create acceptance and sales from the consumer.  

Elon Musk states a major concern in that AI systems might be developed in secret 
(Etherington 2012), thereby limiting oversight. For example, Microsoft has exclusive rights to 
OpenAI’s text generation software (Hamilton 2020). This goes against the initial policy by Elon 
Musk as one of the founders of OpenAI with the goal of developing open source technology. 
Over the last decade and beyond, the primary motivator for car companies has been money. 
Over a 20-month period, a company producing technology for driverless cars was involved with 
18 accidents (Wiggers 2020). This company declined to support a conglomerate of major 
automotive developers focused on “safety first” guiding principles (Wiggers 2019) in 
autonomous vehicles. Instead, the company publicly stated that they support laws and 
regulations. From a legal standpoint, it is quite uncertain that existing laws will apply (Moses LB 
2007). Because of that, car manufacturers may not have the proper incentives to develop safe 
systems (Cooter 2000). Even with this company’s public being against a proactive safety focus, 
even with 18-accidents in 20 months, they were still able to raise over 3 billion dollars. Some 
legal thoughts support limited regulation, but with the caveat of incentivizing commercial 
manufacturers to only develop beneficial/useful AI (McGinnis JO 2010). For better or worse, 
discussions about economics, law, and philosophy (Russell 2015) are attempting to shape the 
answer to what is beneficial/useful. How to intrinsically motivate (Baum 2017) developers to 
create beneficial AI? The challenge is that people justify actions based on needs (Kunda 1990). 
Commercial manufactures must support their bottom-line, whereas DoD has a different set of 
goals. 

The DoD Unique AI Challenge – It’s Secret! 

DoD has a different set of standards with regard to what is beneficial as compared to 
commercial needs. Yet, there are many things we can learn from industry. Certainly, DoD 
cannot afford an international incident regarding an autonomous system, especially a series of 
incidents that occur over a 20 month period. The significant challenge is that DoD must develop 
solutions in a sheltered and isolated environment, even from other classified projects. Even 
open source based oversight is limited. That is the reason system safety organizations are so 
vital in DoD and must have standards, measurements, policies and procedures to support their 
effort. Whether in the commercial world or DoD, AI functionality is considered to be 
unpredictable, unexplainable and goal uncertain (Yampolskiy, 2020). When we talk about AI 
safety issues for naval weapon systems, this has not typically included adversarial attacks that 
might affect functional performance. Given this perspective, AI adversarial network attacks 
using techniques like DeepFakes, putting an image/video into another image/video for mis-
categorization (Chauhan 2018), was not included this research, but may be considered for 
future investigation. Unpredictable, unexplainable and goal uncertain is still an significant issue 
with AI deployed technology, even when developers are motivated and doing their best (Deci 
1971, Krantz 2008). Even the best is still resulting in 18 incidents in 20 months. 

A major challenge that both DoD and commercial manufactures face is a race to the 
finish line (Armstrong 2016) approach to development. Is there something to be learned from 
the nuclear arms race? The obvious lesson is that we need oversight in the early stages of 
development (Borrie 2014). AI may have the same dramatic effect, as did the nuclear arms 
race. Consider the issues of putting military drones and weaponry under the full control of AI 
systems (Bohannon 2015). Now consider Murphy’s Law, “Anything that can go wrong, will.” 
When it comes to what we expect computers to do and what they will actually do, especially 
when development gets more complex, unwanted incidents are more likely to occur (Joy 
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2000). Note that the majority of research that was been initiated over a decade ago involving 
robotic “decisions” and actions was being funded by the military (Lin 2011). 

What DoD must ask is, “Can we deploy AI in safety critical functions, i.e., AI-enabled 
weapons acting autonomously?” The challenge to answering this question is in determining if an 
AI system can ever be “fixed”, become more reliable, to support safety needs, like brakes in a 
car. 

For both commercial and government AI development, the need for safety standards is 
becoming more prominent (Ozlati 2017). The federal government has taken the initiative. 
National Institute of Standards and Technology (NIST) is focused on creating standards that 
provide oversight for AI development. In their 52 page report (NIST 2019), one of the nine areas 
of focus is on metrics. This paper is offered for consideration to be included in the NIST 
standards for AI development with regard to measuring the quantity/size and 
quality/composition of training data.  

Navy System Safety for Weapons Deployment 

In order to overcome the unique challenges of ensuring there is adequate safety and 
security in naval ordnance, the Naval Ordnance Safety and Security Activity (NOSSA) formed. 
NOSSA, the funding organization for this research, recognized the AI system safety might 
require a special set of policies, guidelines and metrics. Their concern was that ML/AI 
algorithms could not be analyzed using traditional hazard analyses approaches (MIL-STD 
882E), nor would Federal Aviation Administration rigor guidelines (DO-178C) be adequate. 
NOSSA wanted to investigate requirements for unique analysis specific to AI development in 
military systems (Joint SSSEH v1.0). NOSSA also wanted to investigate if any new 
methodologies were needed to conduct adequate hazard analysis for AI deployed weapon 
systems (JS-SSA-IF Rev. A). 

This research was motivated based on the six critical reasons why the Navy needs to 
establish measurable confidence in Machine Learned algorithms being deployed in weapons 
systems: 

1. We cannot and should not expect the warfighter to accept and use AI as a social norm 
(Lapinski 2005), even when the best explainable AI techniques are available, without first having 
our Acquisition Community measurably establish confidence in Machine Learned algorithms 
being deployed in realistic operational environments. 

2. Acquisition communities cannot identify and certify operational constraints of an ML algorithm 
for deployment without having confidence in the training data quality, including any negative 
side effects (Everitt 2018), that might result from the training process.  

3. DoD Acquisition communities are limited when following commercial system safety guidelines 
because the commercial world does not have the same rigor requirements for ensuring AI 
functional behavior. Commercial manufacturers are driven by profit and may suffer from 
objective reasoning (Lewandowsky 2015) associated with the conflicting motivation to 
emphasize safety issues might result in lowering sales. 

4. AI upgrades to Navy programs of record that were initially developed following a Capability 
Maturity Model for traditional software development (Shneiderman 2020) currently exclude 
ML/AI development differences. Acquisition communities need support and oversight to fill this 
gap. 
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5. It is imperative that “Speed to the fleet” deployment of AI systems must overcome their 
motivational limitations and consider safety impacts of AI using planning, oversight and 
continuous monitoring by knowledgeable review boards that includes retrospective analysis of 
disasters (Shneiderman 2016).  

6. Navy Weapon System Explosive Safety Review Board (WSESRB) and other approval 
oversight authorities are limited in their assessment without adequate guidance and tools 
(Porter 2020, Jones 2019). Guidance and tools need to be a priority in DoD budgets. 

AI has a potential of creating a technology leap (Eden 2013). That potential leap, 
especially when dealing with weapon systems, needs scrutiny. This scrutiny focuses on the 
specificity of the composition and size of the training data. This research will describe the 
needed scrutiny by oversight groups can use to increase safety and confidence in the 
deployment of AI functions.  

The AI Acquisition Paradigm 
An ML/AI function is selected because it can handle “noisy” inputs and still make a 

decision as to category or value of the output, the former being categorization and the latter 
being regression. The success rate of an ML/AI function is the primary measurement, but 
success is limited to the quality and quantity data input used to train the algorithm. Because of 
this dependency, “garbage in, garbage out” becomes a determining factor in the capability of the 
algorithm. For ML/AI functions, the degree of “garbage in” can affect how unpredictable, 
unexplainable and goal uncertain the algorithm performs (Amodei 2016). 

Machine learning is a process where input data is used to train the algorithm to 
determine a correct answer. In general, training data sets have two parts: (1) the attributes that 
the function is learning to recognize, most times called instances, and (2) a truth label that 
describes the categorization of those attributes to train on correct answers. A trained ML 
function receives attributes and determines whether those attributes belong to a category such 
as a dog or cat. This research investigated measuring various aspects of attributes used for 
categorization. In the research, we divided attributes within the training set into three levels of 
significance: (1) primary, (2) secondary and (3) tertiary. In our sandbox analysis, we considered 
and determined that tertiary was unnecessary with regard to its modality. Our concern focused 
on the effects missing or sparse data occurrences had on the most significant attributes, i.e., a 
noisy operational environment where the unexpected happens. Unexpected examples might be 
communication link failures, sensor malfunctions or human data input error. 

Training set size and composition (Foody 1995) is the principal ingredient that 
establishes the quality and quantity of a Machine Learned algorithm. No matter how exceptional 
is your Data Scientist development team, without the adequate quality and quantity of training 
data, the algorithm will never meet operational needs. The problem is that training data is a new 
paradigm for acquisition managers to consider. There are methods to test the output (Pei 2017) 
to determine incorrect corner case behaviors. Some of this tests are provide “whitebox” 
analysis. Yet, even these tests don’t provide insights into the composition and size of the input, 
again raising the concern about “garbage in, garbage out.” Key areas needing to be addressed 
regarding “negative training” (Rodríguez-Pérez 2017), i.e., things to not categorize, or how well 
noisy data occurs within a “realistic” operational environment cannot be addressed without 
looking at input. How well does input represent missing and sparse data issues and how much 
of the data set training consist of these examples. Testing the output or reviewing the array of 
weights inside the box might provide insights, but direct measurements of inputs will provide 
facts. 



Acquisition Research Program 
Graduate School of Defense Management - 301 - 
Naval Postgraduate School 

Instead of the output performance, our approach focused on measuring training data 
input as an approach to increase algorithm success rate reliability (Kim 2014). Preparing the 
training data for measurement is a form of curation within the Data Science field. This type of 
curation rigor of the input will aid the developer in thinking about how “noise” might affect the 
algorithm when deployed in its operational environment. Obviously, it is always important to 
measure output, but this research demonstrates the value of detailed measurements of the 
input. 

Training ML algorithm based on operational environment “realism” was the primary 
motivation behind the development of these measurements. Since “realism” was the goal, it was 
necessary to create a program that represented products that would eventually be deployed in 
the operation environment. For the purpose, a “Sandbox” was created. 

Our “Sandbox” – Because “Seeing is Believing” 
Results of this research are based on using a “Sandbox” implementation approach that 

represents completion of three phases of a four-phase research approach. A “Sandbox” 
implementation approach means that a project was created, stakeholder requirements 
generated, architecture defined, design constructed, code developed and tests conducted within 
a confined, controllable environment for training, experimentation and analysis. Our Sandbox is 
designed to support seven different AI-enabled algorithms. To support realism, a mocked up 
acquisition program was created that consisted of five different AI-enabled algorithms 
supporting a mission planner and three different AI-enabled algorithms supporting two deployed 
autonomous vehicles. Both mission planner and autonomous vehicles had a full set of DoDAF 
system diagrams and UML Sequence Diagrams defining interfaces associated with software 
message transfer, SQL commands and application programming interfaces (APIs). These 
artifacts were designed in detail and reviewed before proceeding with ML algorithm investigation 
and development. Using this process allowed for an understanding of needed measurements 
regarding training sets. We also developed and reviewed a graphic user interface (GUI) and 
how human interaction plays a role in safe AI. 

The Sandbox provided an opportunity for experimentation of an integrated hybrid 
system, combining various AI technologies to represent advanced capabilities (Baum 2011). 
This hybrid system allowed for “what-if” variations and intentional mistakes to investigate and 
test various measurements and approaches that could affect accurate forecasts and thereby 
resolve ML behavioral issues in advance. The following ML algorithms were either coded or 
design reviewed for implementation in the Sandbox: (1) for the Mission Planner -- Naïve Bayes, 
Logistic Regression, Random Forest, k Nearest Neighbor and XG-Boost, and (2) for the 
autonomous vehicles – Deep Neural Network, Deep Reinforced Learning and Convolutional 
Neural Networks. Algorithm design review included hyper-parameters variations specific to the 
algorithm under investigation. 

The eventual goal of the “Sandbox” is to develop code and analytical measurements for 
all five different AI-enabled algorithms supporting the mission planner and all the three different 
AI-enables algorithms used within the autonomous vehicles. Within the sandbox environment, 
identified AI-enabled systems were analyzed and the measurements described below were 
identified to address the issue of how quality and quantity of training data might affect the 
confidence in the behavior of the algorithm in a deployed environment.  

This phase of the research has resulted in postulating 14 tips that include best practices 
and measurements spanning requirements, architecture, design, development and test. All 14 
tips focus on how to improve confidence in ML algorithm behavior. This paper presents results 
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associated with two key tips regarding measurements to determine if there is adequate quality 
and quantity of data within a training set for the ML algorithm to meet operational needs. The 
measurement approaches described in this paper are to demonstrate the reliability of the 
training set in establishing confidence in the behavior of the machine learned algorithm.  

The paper will highlight insights into both the quality and quantity of the attributes within 
the training set instances. An instance is a single sample of data used for training the algorithm. 
The motivation of this research is to include the proposed measurements as part of Objective 
Quality Evidence (OQE) gathering when submitting recommendations by system safety 
practitioners for Weapons Systems Explosive Review Board (WSESRB) review in support of 
justifying ML behavior confidence. In addition to OQE, the research findings will also provide 
valuable insight to the acquisition community, to include program managers, and test and 
evaluation engineers. 

Training Data Modality  
When creating training data, it is important to understand the operational environment 

being represented in order to ensure adequate development of the ML algorithms. The training 
data is either found from live events or synthetically created to match the operational scenario 
that will be provided as input to the ML algorithm. Therefore, the ML algorithm must learn how to 
perform under these conditions. Three types of modality represent various operational 
environments that can be encountered during deployment, where the type of modality defines 
how the ML algorithm needs to be trained. 

ML Training Data Modality 1: This modality supports training data sets that are based on 
an operational environment from multiple data sources, where each source contains one or 
more attributes as described in Figure 1. In Figure 1, the various sources of separate data 
attributes is either found from live events or synthetically simulations created to match the 
deployed operational scenario. Therefore, the input for ML algorithm for training needs to 
replicate the input that will be received during deployment. 

 

Figure 1. ML Training Data Modality 1 
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ML Training Data Modality 2: Training data sets that are based on an operational 
environment from a single data source, where the single data source contains multiple data 
attributes as described in Figure 2. In Figure 2, the one stream set of aggregated attributes is 
either found from live events or synthetically simulations created to match the deployed 
operational scenario. Therefore, the input for ML algorithm for training needs to replicate the 
input during deployment. 

Figure 2 represents several versions of Modality 2, labeled (a), (b), (c) and (d). Version 
(a) describes the simple case where a sensor is capturing an image (in some frequency 
spectrum) that contains all the attributes needed to train the ML algorithm. As in all versions, 
Version (a) contains all the attributes needed to train the ML algorithm based on how the 
algorithm will be operationally deployed. Version (b) describes how one sensor might create a 
string of images causing channels for the ML algorithm to learn. Each channel might require one 
algorithm or a unique set of algorithms for processing. Version (c) describes a series of images, 
similar to Version (b), but in this case, as in an attempt to capture a 3-D image, where the 
combination of each slice of the image may constitute a single attribute that is part of the 
training. Finally, Version (d) describes how multiple attributes sources might be fused/combined 
into one source that will be used for training the ML algorithm. Again, the selection of Modality 2 
Versions is based on the operational need/requirements associated with its deployment. 

 

Figure 2. ML Training Data Modality 2 

ML Training Data Modality 3: Training data sets that are based on an operational 
environment from a combination of multiple data sources where each source contains one or 
more attributes form various sources and from a single source containing multiple aggregated 
data attributes. 

Modality 3 is the most challenging data set to replicate or find that can adequately 
represent “realistic” operational environments. In all three modalities, the primary challenge with 
using adequate data sets for ML training is to ensure the training set accurately represents 
“realistic” operational environments. The more complex in the composition of data sources that 
the ML algorithm needs for training in order to adequately perform its function, the more 
challenging it is to replicate a “realistic” training set that includes issues, such as communication 
failures over data links, unintentional human input error or sensor malfunctions. Additional 
challenges stem from adequately replicating noise that blur, surround or somehow challenges 
the data source feeding the ML algorithm. For example, synthetic replication of a single attribute 
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over various slices of an image may be difficult to create with the adequate noise background, 
e.g., the blur needs to be consistent. The difficulty increases when that attribute needs to train 
the ML algorithm using hundreds of slight variations. Complications increase when dozens of 
attributes need to be included within the slices of images that will constitute a training set will 
realistically represent the required operational environment. 

 

Figure 3. ML Training Data Modality 3 

Given these potential challenges, a need to measure the quality and quantity of the data 
set to meet the operational needs of a “realistic,” noisy environment become essential to ensure 
confidence in the behavior of the ML algorithm during deployment. 

Missing and Sparse Data Effects on Modality  
For Modality 1, missing data can be represented as a sensor, communication link or 

human input issue. The sandbox software filtered the faulty data as being out of performance 
bounds and therefore provided no values. Sparse data occurred when the sensor, 
communication link or human input was properly working but data was unavailable for the ML 
algorithm to use. In this case, the sandbox implementation design provided zero values for 
those data sources. The sandbox software handled the zero values as no input to the ML 
algorithm. The challenge for Modality 1 is that missing and sparse issues can occur at the same 
time from different data sources. Either the data source fails, causing missing data or the data 
source does not register any input. In either case, the sandbox software filtered the sparse or 
missing data and therefore provided no values in those situations. Therefore, when developing 
AI functions, the training data needs to represent these occurrences and the developer needs 
an approach to handle the occurrences of sparse or missing attribute data. In the case of the 
sandbox, the training set consisted of secondary attributes when the primary attributes were not 
present. Primary attributes represent nominal input expectations, whereas secondary attributes 
are a back up to the unexpected. 
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For Modality 2, we still used our previous definition of missing or sparse data, when 
either occurs from a single sensor. Because a single source was replicated, only one could 
occur but not both. From our sources, this was an accurate representation of a realistic 
operational environment. For Modality 3, the combination of missing and sparse data could 
occur causing significant replication issues with regard to the training data set supporting a 
“realistic” operational environment. It is important to note that in Modality 2 and 3, missing and 
sparse data issues become even more challenging because filter techniques, like used in our 
sandbox, are harder to apply. For example, if missing data occurs, then the sensor may be 
malfunctioning causing blurs in the image, which would require the developer to train on 
secondary attributes that compensate for this type of blur in the picture. Once the first algorithm 
failed to categorize above threshold, this compensation approach may require a second 
algorithm trained on primary and secondary combination of attributes within the image. If the 
image contains no attributes, potentially from a sparse data issue, then categorization is 
impossible, there would be no secondary attributes to use. Again, complexity of how the training 
data is composed becomes more challenging, but needs to be addressed as part of oversight. 

Training Set Composition Measurements 
In developing our measurement approach to better ensure a training set represented a 

“realistic” operational environment, it was important to measure how well the training data 
represented both in quality and quantity missing and sparse issues with the data sources. Table 
1, rows (a), (b), (c) and (d), represents questions that need to be addressed based on Modality, 
first by adequately defining the operation environment the training set represents based on 
modularity and then by ensuring the quality and quantity of data is adequate for the ML 
algorithm training. 

 

Table 1. ML Training Data Investigation Topics by Modality Types 

In Table 1, each row represents a series of questions associated with the modality of the 
ML Training set. Row (a) introduces the need to group attributes in terms of 
precedence/significance with regard to an expected operational norm and potential source 
failures (causing Missing and Sparse data issues) that the ML algorithm needs to learn in terms 
of data inputs. What attributes are primary to consider for training the ML algorithm? What 
attributes are secondary? Depending on the operational environment, there may be “n” number 
of groupings. Row (b) focuses on missing and sparse data modeling of attributes for training. As 
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described in the previous section, missing and sparse data issues can direct attribute 
precedence. For example, when one primary attribute is not available, can another attribute in 
the secondary group be used to increase behavior confidence? Is the ML Algorithm being 
trained to use primary and secondary combinations of attributes? Row (c) defines an approach 
to analyze quality based on a precedence list. Within each group, what is of highest precedence 
for the ML algorithm so it can be adequately trained? The answer to this question ensures that 
the developer understands the relationship between attributes and the operational environment 
those attributes will support. Finally, Row (d) focuses on the need to understand if the quantity 
of training data is sufficient. Although quantity may be analyzed using overfitting and underfitting 
techniques specific to the algorithm being trained, this quantity analysis is based on how much 
more emphasis is placed on training data with higher precedence vs lower precedence. For 
example, if higher precedence/significant attributes are based on nominal operational 
conditions, then by definition of precedence/significance, slight variations of higher precedence 
attributes should have a greater or at least equal number of instances as compared to lower 
precedence attributes. If this is not the case, then why is one attribute group more significant 
over the other? Row (d) topic of investigation asks the questions, “Is there sufficient training 
data based on precedence grouping?” Measurements described in this paper provide answers 
to the topic investigation questions shown in Table 1. 

Training Data Measurements 
Using the sandbox, we created and examined two types of measurements that support 

answers to the questions posed in Table 1. The focus of both measurements is on 
attributes/features within each sample/instance. 

If synthetic data is created, then a Design of Experiments (DOE) review needs to be 
performed during the requirements and architecture stages, e.g., somewhere during preliminary 
design review (PDR) and critical design review (CDR) timeframes. This become obvious while 
working within our sandbox development environment. In our sandbox, we used a modeling and 
simulation (M&S) approach to create training data. We developed a DOE that ensured primary 
and secondary data sources were created to support five ML classes using various 
combinations of seventeen attributes. Figure 4 represents the sandbox data sources, real-time 
and synthetic, and includes the operational environmental variables that are translated into 17 
attributes supporting five classes/categories. 
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Figure 4. Operational Environment being Represented using M&S Synthetic Data 

Training Set Alignment Test (TSAT) 

Training Set Alignment Test (TSAT) is an approach we recommend using during 
requirements definition, architecture review and finally during algorithm code analysis. When 
creating synthetic training set data via modeling and simulations, attributes from highest to 
lowest significance should be identified in the Design of Experiments (DOE) to ensure proper 
emphasis is placed on primary, secondary to n-levels of precedence.  

In our sandbox analysis using synthetic training set creation from simulations, we were 
able to develop the TSAT measurement process. Figure 5 diagrams the steps discussed below 
when taking a TSAT measurement: 

• At Requirements stage and checked during Architecture review 

• First Step: Determine what attributes are most significant as compared to others in 
terms of the function the ML algorithm must perform. Note: this is based on the part the 
algorithm plays in the mission. What functions must it perform so the other subsystems 
can achieve their goals? For example, a common ML algorithm function is computer 
vision. What are the most significant attributes it should use to perform its image 
recognition function? 

• Second Step: Group the most significant attributes and consider them as primary 
attributes to the algorithm’s learning process 

• Third Step: Group the other algorithms in terms of secondary and tertiary significance in 
terms of what the algorithm needs to learn 
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• When training set is produced, conduct analysis (Note: we’ve included the next three steps 
as part of Algorithm Code review because training data creates the weights and structures 
that constitute the deployed code). 

• Fourth Step: When the training data set is generated/gathered, use the statistics of how 
often an attribute occurred to determine the ranking. 

• Fifth Step: Perform a weighted calculation (similar to a discrete match filter in signal 
processing.) 

• Sixth Step: Determine if this grade, meaning the determination of how well the DOE 
goal matches the generated/created data. In this approach, the grades range up to 
100%, where 100%i s a perfect alignment between operational needs and training data, 
where below 25% is extremely poor. Even with the most tolerant requirements, it is 
recommended that anything below fifty percent should not be accepted. 

 

Figure 5. TSAT Diagram of Steps 

TSAT ensures that the developer verifies that the attribute priority and ML training set 
modality is congruent between the deployed architecture and the training data set generation 
process based on the precedence/rating of attributes defined in TSAT. This will also document 
compliance to requirements for review. 

Procedure for calculation: 

1. Determine a scale for grading from 1 to “m,” where “m” means greatest attribute 
priority/significance based on operational deployed needs. 

2. Identify attributes a1 to an to grade, such that “n” is the number of attributes being graded 
out of r total attributes available. Therefore n ≤ r and n ≤ m, where grading ai with grade 
“m” indicates ai (m) is the most important attribute based on operational needs. 
Additionally, attribute grading range is (m-n+1) to m, consecutively, where lowest grade 
indicates least operationally important (possibly DOE analysis and/or SME 
determination). 
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3. Identify the n attributes that occur the most times in the training data. Using the same 
scale “m,” grade attributes b1 to bn based which attribute occurred the most often within 
the training set (this can be a statistical number, e.g., 70% of the time bi attribute was 
used in simulations or 70% of the samples/instances were collected, e.g., images, that 
contained attribute bi). Again, grade “m” indicates bi occurred the most and (m-n+1) 
indicates bj occurred the least within the training set. 

4. Perform 𝑘𝑘 =) and 𝛽𝛽 =∗ 𝑏𝑏𝑏𝑏(𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔)  ≤ 𝑚𝑚  
5. Perform ∗ 100 =  𝛼𝛼% ≥ 50% as a constraint 

Source to Attribute Ratios – nth Order Grouping (StAR-n) 

Source to Attribute Ratios – nth Order Grouping (StAR-n) is an approach that can be 
used during requirements definition, architecture reviews and finally during code analysis. The 
basic premise is that attributes (e.g., primary, secondary or tertiary groupings) with the highest 
significance (precedence/rating) identified in the DOE (defined in TSAT) should be occur in 
greater numbers of instances within the Training Set than lower significance attributes. The 
comparison of numbers can be analyzed as ratios.  

The reason why developers should verify that primary instances have greater numbers 
than secondary, and so on, is because: (1) With live data collection, there is a difficulty with 
finding or creating realistic training data that includes noisy environments representing missing 
and sparse data issues; and (2) With synthetic data creation, there is a physical limitation with 
how much simulation can be performed within the timeframe allotted? (Remember that most 
likely there is an infinite number of possibilities in terms of training data variations.) What should 
be the priority in your DOE?  

In our sandbox analysis, we were able to develop the StAR-n measurement process. 
Figure 6 diagrams the steps discussed below when taking a StAR-n measurement: 

• At Requirements stage and checked during Architecture review: 

• First Step: Create a ten by ten matrix, labeling each axis from zero to 1.  
• Second Step: Label the horizontal axis “% Number of Primary Attributes vs Total 

Attributes for Class” and the vertical axis “% Number of Primary Attribute Instances vs 
All Instances for Class”  

• Third Step: Determine a three-color zone scheme (see Figure 6 as an example), where 
green indicates that the ratio fell within acceptable limits, yellow indicates ratio is boarder 
line acceptable, and red color zone indicated ration is outside expected limits. Color of 
the zone should how well training data reflects operational environment. Based on color 
zone, determine evidence justification. Examples (used for guidance only) are described 
below:  
• Zone Green: Evidence of data by showing appropriate n-th order groups of training 

sets collected or generated by the simulations, including success rates as well as 
the TSAT results. 

• Zone Yellow: Zone Green evidence plus justification on why n-th group precedence 
can still handle the unexpected and provide acceptable success rates. 

• Zone Red: Zone Green and Yellow evidence as to how this algorithm is going to be 
supervised or monitored when operationally unexpected events occur. 
 

• When training set is produced during Algorithm code review: 
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• Fourth Step: Calculate the σ and δ (see Figure 6 as an example) ratios. Each ratio 
should be less than 1. The example below is for primary attributes, but can be done for 
any n-th order attributes: 

• σ (by Class) = (Number of Primary Attributes / Number of All Attributes) ≤ 1. 
• δ (by Class) = (Number of all Primary Instances / Number of All Instances) ≤ 1. 

• Fifth Step: Plot (x, y) using (σ, δ) pair of numbers and assess where the pair fall within 
the color zones to determine support action. An example is provided in Figure 6. 

• Zone Green: Evidence of data by showing appropriate n-th order groups of 
training sets collected or generated by the simulations, including success rates 
as well as the TSAT results. 

• Zone Yellow: Zone Green evidence plus justification on why n-th group 
precedence can still handle the unexpected and provide acceptable success 
rates. 

• Zone Red: Zone Green and Yellow evidence as to how this algorithm is going to 
be supervised or monitored when operationally unexpected events occur. 

 

 

Figure 6. StAR-n Diagram of Steps 

Notice that in Figure 6, the five classes have been plotted based on our sandbox results, 
provided as an example. Given the plot, there are two classes in the green, two in the yellow 
and one in the red. The color scheme relates to the type of justification needed in support of 
using the training data for those classes to adequately develop the algorithm to support the 
required operational environment. Since there is a significant mismatch when a (σ, δ) pair a 
plotted in the red zone, as in our example in Figure 6, we need to make sure that this algorithm 
has supervision when the expected occurs. Justification and the relationship to which boxes are 
colored needs to be described during requirements and checked during the architecture review. 
Again, the periods can be around PDR and CDR. 
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Matrices can be created for Primary, Secondary and Tertiary attributes, not just Primary. 
The StAR-n Grouping Matrix for this sandbox was only 2nd order. A StAR-3 looks at ratios of 
primary, secondary and tertiary attributes, as they are defined through requirements. As stated, 
training data is key to the development and the question becomes how much of the training data 
consist of primary vs secondary vs tertiary attributes as dependent on data sources that will be 
available in the field. Again, the issue becomes missing and sparse data during deployed 
operations.  

StAR-n provides confidence to the system safety practitioner or test and evaluation 
engineer when the training data is generated synthetically and an attribute random generator is 
used. StAR-n ensures that justification is provided as Level of Rigor evidence based on primary, 
secondary, … n-th order attribute ratios to training data content ratios as part of the assessment 
of operational needs compared to what the training data contains. 

In the Sandbox, an attribute random generator was used to create 15,000 simulations 
supporting 5 classes and 17 attributes. The analysis focused on determining the “Simulation to 
Attribute Ratios” for 1, 2 or 3 (nth) Order and graphed in a matrix to determine what type of rigor 
is needed to justify the ratio involved with each class being modeled via selected attributes. 
Consideration included how the attribute random generator creating the training data simulated 
an operational environment of sparse and missing data for the targeted algorithm to learn. The 
matrix using StAR-n identifies the need for the three types of justification, Zone Green, Yellow 
and Red, as described above. 

StAR-n measures data source requirements, architecture and data set generation 
process specific to the categorized ratios of attributes defined. This measurement helps ensure 
that the developer is reflecting reality during algorithm development. 

Combining TSAT and StAR-n ensures congruency between the operational environment 
and the training data set generation process. Figure 7 graphically describes the congruency 
using our sandbox classes between the blue operational deployment of the algorithms and the 
brown development of training data incorporating the attributes that will be available to the 
algorithm during operations. 

It should be noted that labeling attributes/features, especially when live data is being 
collected, can be challenging. Labeling each instance within a Modularity 2 training set means 
looking at each sample and ranking, grouping and counting various n-order attributes. The 
challenge increases when evaluating effective sample size and the correlation between the 
attributes. Effective sample size affects the total number of instances used for training and 
therefore the classifier’s performance/confidence interval (Figueroa 2012). Feature correlation 
affects total number of attributes used for training. Correlation can be measured and observed. 
For example, a smile affects two sides of the mouth. It would be inappropriate to consider both 
ends of the mouth as two different attributes. They are not independent events. Statistical 
independence of attribute within an instance affects algorithm training. A smile, a single 
attribute, can have many variations that affect both sizes of the mouth. Effective sample size is 
related to the randomness of each created or observed instance. Again, the samples should 
support statistical independence. 

Instances and features within the instances need scrutiny to know if an algorithm is 
taught properly. Without this focus, the training would be uncontrolled. It would be like 
instructing children math and not knowing if they are being taught the “right” mix of problems or 
just the same problem with different letters for the variables. In training algorithms, it is important 
to ensure the training content is specific to the feature level of the education. This rigor is 
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practiced in life sciences (Toloşi 2011) where wrong conclusions might lead to fatality. This 
same level of rigor should apply to any function performing operations that could cause lives to 
be at risk. Therefore, as applied to DoD, effective sample size and attribute/feature correlation 
of each instance needs to both be assessed as statistically independent (or at an acceptable 
low correlation) when applying TSAT and StAR-n measurements to training sets of algorithms 
performing operations that could cause lives to be at risk. 

 

Figure 7. TSAT and StAR-n ensure congruency between what will be operationally deployed and what 
will be synthetically developed or collected from live data sources. 

Numerical and Graphical Interpretation of Measurements 
Using sandbox generated training sets, both TSAT and StAR-n were applied. Figure 8 and 
Table 2 represent the TSAT analysis for 17 attributes used by five classes from our sandbox. 
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Figure 8. Sandbox Results from Applying TSAT Measurements for the LT class. 

In Figure 8 (one of the five classes), you can notice that the blue and red bars are fairly 
equal in height causing a high score of 80%. Visually, if blue and red bars have significantly 
different heights, then a lower score will occur. 

 

Table 2. Attribute Alignment Scores for Each of the Five Classes 

When looking a StAR-n ratios, Figure 9 describes a visual inspection of the two axis in 
the matrix. The “Instances Ratio” represents the vertical axis, “% Number of Primary Attribute 
Sims vs All Sims for Class.” The “Attribute Ratio” represents the horizontal axis, “% Number of 
Primary Attributes vs Total Attributes for Class.” In Figure 9, there are an equal number of 
primary and secondary attributes, as seen in the “Attribute Ratio” graph. In the “Instances Ratio” 
graph, although equal in number, there are more primary attributes in the training set.  



Acquisition Research Program 
Graduate School of Defense Management - 314 - 
Naval Postgraduate School 

 

Figure 9. Visual Review of Instances Ratio to Attribute Ratio in StAR-n Matrix 

To better understand the significance of the ratios, consider the combinations of training 
instances based on use of the sandbox. In Figure 10, just focusing on whether an attribute, i.e., 
data source, will be present or not in the operational environment. Class combinations range 
from 821 to 2026, totaling 9580 different combinations. If we decided to train our ML algorithm 
to recognize a class based on attribute presences and numerical integer value, the 
combinations become extremely large. If we decide to have values in the real number domain, 
the combinations become infinite. 

How much training data can you generate or collect to support 9580 combinations, in the 
simple case, or an infinite number of values in the extreme case? Therefore, it is necessary to 
prioritize attributes in terms of the number and type of instances within the training set. That is 
why TSAT and StAR-n are vital measurements. 

 

Figure 10. Attribute Occurrence Combinatorial Variations of Primary and Secondary Attribute Types per 
Class within Sandbox 

From this research, three guidelines when using StAR-n to analyze ratios consistently surfaced.  

Guideline 1: Order of precedence/significance should also describe ratio structure. 
Primary should have more instances than Secondary, Secondary should have more instances 
than Tertiary, etc. Describing the obvious, you would not want the ratios to be inverted, meaning 
the secondary would have more secondary attributes than the primary. 

Guideline 2: Depending on the n-th order grouping of significance, there should be 
instances, therefore ratio values, for all n-th order combinations. Figure 11 describes when a 
tertiary attribute group, equal in number to the primary and secondary attributes, was omitted 
from the modeling and simulation. This means that the training data will not support the 
operational need associated with its deployment.  

Design of 
Experiments

1st Order 
Significant 
Attributes

2nd Order 
Significant 
Attributes

Total 1st and 2nd 
Order

Keep 2 1st Order Keep 3 1st Order Keep 4 1st Order Keep 5 1st Order Keep 6 1st Order
Total 

Configurations

LT 5 5 10 560 210 30 1 0 821

MT 6 5 11 1890 1120 315 36 1 3384

UT 5 6 11 840 280 35 1 0 1178

MR 6 4 10 1050 700 225 30 1 2026

DP 6 4 10 1050 700 225 30 1 2026

9580
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Guideline 3: If one of the n-th order grouping attributes is less than 5% (conservatively) 
in the attribute ratio graph, consider including it in other attribute groupings. Remember that a 
lower order attribute is likely to have less simulated or live data instances collected. This means 
that the instances will be lower than 5%, and likely be between 1 and 2% if Rule 1 and 2 are 
followed. Therefore, it may make more sense to include this n-th order attribute into another 
attribute group. 

 

Figure 11. TSAT and StAR-n Identified Issues. 

By following the three guidelines, valuable discussions can occur with the developer. As 
a reminder, the order significance sources relates to primary, secondary and tertiary data 
sources providing the related attributes in the algorithm. In Figure 11, tertiary data source 
creating attributes is not included, like our sandbox example, which means tertiary attributes i 
“not significant” from DOE viewpoint. It could be that there is less than 5%, which is causing the 
tertiary attributes to not be considered for ML algorithm training. In our sandbox, there were no 
tertiary attributes. 

The Figure 11 example provides discussion points as follows: 

• In Attributes Ratio, notice that 1st and 2nd attribute grouping have about the same 
number of attributes. Yet, if primary and secondary attributes are equally produced in the 
simulation, why is one group considered more significant than the other? This may not 
be wrong but definitely a discussion point for the developer. In this example, maybe 2nd 
order plays important role acting as a noisy environment or non-ideal environment. If of 
equal importance, then maybe there are only primary attributes. If so, is a noisy 
environment still being modeled? No right or wrong answers, just discussions that 
should be had on the operational environment and how the ML algorithm is being 
trained. 

• In this example, there is a potential issue: If 1st and 2nd order are about the same number 
of simulations and this needs to be understood. What also needs to be discussed is why 
the fraction of attribute occurrence in the training set is so disproportionate to the fraction 
of total attributes? (Again, 2nd order acts as noisy or none ideal environment) 
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• Should the 2nd order and 1st order be a different ratio given the attribute numbers are 
about equal? 

• Consider a better ratio, possibly 33 % to 66%, meaning I’ve run twice as many 
simulations on the 1st order vs the 2nd order. 

Findings 
From a sandbox approach, Table 3 became evident in terms of how much AI and traditional 
software code differ with respect to the acquisition process: 

 

Table 3. Traditional Logic vs Likelihood Software– Why treat ML/AI Algorithms differently in Acquisition. 

A key question asked in this paper was, “Can the safety question with regard to weapon 
deployment regarding autonomy/AI ever be answered?” This paper answers this question in 
terms of rigor with regard to the training data. The measurements focused on improving 
confidence to an acceptable standard defined in requirements, checked during architecture and 
validated when reviewing the algorithm coding practices. To improve confidence of ML/AI 
behavior within the sandbox, TSAT and StAR-n measurements focus on n-th order grouping of 
attributes based on nominal operations for primary grouping, and non-nominal operations for 
lower level grouping. The cause of non-nominal operations is noise or faults in the deployed 
system. As described in previous sections, noise or faults result in missing and sparse data. 
How missing and sparse data affect the training data is based on the type of modality, as was 
discussed. TSAT and StAR-n measurements allows for ML algorithm training that ensures a 
match between the training data set and reality in the operational environment.  

In the Sandbox, an attribute random generator was used to create 15,000 simulations 
supporting 5 classes and 17 attributes. The analysis focused on determining the “Simulation to 
Attribute Ratios” for 2nd Order analysis and graphed in a matrix to determine what type of OQE 
rigor was needed to justify the ratio involved with each class being modeled via selected 
attributes. Consideration included how the attribute random generator creating the training data 
simulated an operational environment of sparse and missing data for the targeted algorithm to 
learn. The matrix, using StAR-n, identifies the need for various types of rigor described 
previously based on where it is located in the matrix. 

TSAT and StAR-n demonstrated that these measurement can support quality and 
quantity factual analysis that can be used by the acquisition community, including system safety 
and test and evaluation groups, to improve the confidence of the behavior of the algorithm to 
support a realistic deployment operations. From these measurement processes, issues 
associated with training, i.e., “garbage in,” can be identified and resolved in advance and 
thereby increase ML functional confidence.  
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In our analysis, we were able to successfully use TSAT to ensure synthetic data for each 
of the five classes and 17 attributes had adequate quality and quantity of training data. 
The basic premise is that attributes (primary, secondary and tertiary) with the highest 
significance identified in the Design of Experiments (DOE) should be simulated more 
than attributes with lower significance. TSAT can effectively analyze Primary, Secondary to 
an n-th order data sources to determine if the training data is adequately aligned the 
Operational Needs defined in the DOE (note that the DOE must match operational use cases 
associated with mission parameter and environment). 

1) We were also able to successfully use StAR-n. The Star-n can effectively use ratios involving 
primary, secondary to an n-th order, as they are defined by requirements and described in the 
architecture. As stated, training data is key to the development and the question becomes 
how much of the training data consist of primary vs secondary vs tertiary attributes, etc., 
as dependent on data sources that will be available in the field. StAR-n provides 
confidence to the system safety practitioner or test and evaluation engineer whether the 
training data is generated synthetically or collected from live events. StAR-n ensures that 
a Level of Rigor is provided based on primary, secondary and tertiary attribute ratios being 
with expected values. 

By using both StAR-n and TSAT, the sandbox proved that quality and quantity of training 
data can be assessed. For TSAT, quality assessment meant the correct ranking of attributes 
(including primary, secondary, etc. mixes) that represented real world deployment issues 
associated with data source availability, which included noise factors. For StAR-n, quantity 
assessment meant the appropriate amount of samples/instances used for training based on 
operational priorities, which considered the mix of n-th order attribute ratios. Combining both 
measurements provides the Acquisition community, from project managers to test and 
evaluation engineers, the ability to maintain positive control over knowing that an AI/ML 
algorithm have been rigorously developed to support the expected behavior during deployment, 
even worst case environments. Why? Because using these measurements ensured that those 
environments were captured using the adequate quality and quantity of samples/instances 
needed to train the ML algorithm to deal with those issues. 
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