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Abstract 
The mission of the Office of the Under Secretary of Defense for Acquisition and Sustainment 
(OUSD A&S) is to quickly and cost effectively deliver and sustain secure and resilient capabilities 
to warfighters and international partners. There are urgent requirements to develop adaptive 
acquisition framework (AAF) to speed up software development and acquisition processes that 
strengthen the concepts of operations (CONOPS) such as distributed maritime operations 
(DMO). It is imperative for the Department of Defense (DoD) to shape the AAF using data-driven 
analysis linked to the National Defense Strategy and the nature of global threats, and scale new 
capabilities to counter new threats. The threat and capability coevolutionary matrix (TCCM) 
addresses the requirement. A threat is a problem a capability tries to deal with. A capability is the 
solution to the problem that represents a threat. Coevolutionary algorithms explore domains in 
which the quality of a capability or combination of capabilities is determined by its ability to 
successfully defeat a threat or combination of threats. TCCM has the potential to systematically 
optimize, recommend, and coevolve capabilities and threats in new and contested environments. 
We show a use case regarding helping a program executive office (PEO) to wargame capabilities 
and threats against a specific domain DMO using unclassified data compiled from open sources. 

Introduction 
It is necessary not only for the Office of the Under Secretary of Defense for Acquisition 

and Sustainment (OUSD A&S) to shape the acquisition strategy but also for the whole 
Department of Defense (DoD) to apply data-driven analysis and innovative and adaptive 
concepts of operations (CONOPS) linked to the National Defense Strategy and the nature of 
global threats and to scale new capabilities for warfighters. 

For example, to enhance total force readiness and project combat power across the 
wide range of operations and spectrum of conflict at any time, the Navy needs flexible command 
and control (C2) organizational structures to meet the CONOPS. For example, DMO is a 
CONOPS for the Navy, and expeditionary advanced base operations (EABO) is a CONOPS for 
the U.S. Marine Corps (USMC). Both DMO and EABO are emerging operation concepts for 
modernization of naval warfare. PMW 150, PEO C4I’s Program Office for C2 Systems and 
preeminent provider of C2 solutions, focuses on acquisitions to transform operational needs into 
effective and affordable operational and tactical C2 capabilities for the Navy, Marine Corps, 
Joint and coalition warfighters. PMW 150’s mission is to “innovatively meet operational 
requirements with relevant capabilities, enabling the warfighter to maintain C2 superiority” 
(Colpo, 2016). 

On the other hand, U.S. ships’ maritime operations, particularly in the littorals, will 
continue to be contested and dangerous; therefore, it is imperative to develop DMO and EABO 
towards a unifying operational vision. DMO aims to support national and strategic objectives in 
contested environments. The DMO concept considers not only offensive strikes as the primary 
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tactic for winning in battle, but also identifies the ability to deceive and confuse the enemy as a 
critical task to achieve success in a contested environment. The current efforts are focused on 
integration of existing platforms, systems, and capabilities with the DMO specific tactics to 
achieve maritime strategic and operational objectives. DMO is defined as the “warfighting 
capabilities necessary to gain and maintain sea-control through the employment of combat 
power that may be distributed over vast distances, multiple domains, and a wide array of 
platforms” (Navy Warfare Development Command [NWDC], 2017).  

The development of DMO as a concept for the operations of Navy and Marine assets 
stems from the Distributed Lethality (DL) model (Popa et al., 2018). The concept of DMO adopts 
an extended viewpoint of DL, comprised of three pillars: the ability to increase the offensive 
power of individual warships through networked firing capability, distribution of the offensive 
capability over a wide geographic area, and the allocation of sufficient resources to the surface 
platforms in order to enable the enhanced combat capability (Rowden, 2017). DMO also 
stresses the need for more resilient and sustainable surface platforms in all domains, including 
air, subsurface, and cyber warfare. The futuristic view of DMO is to be a fleet-centric fighting 
power, enabled by integration, distribution, and maneuverability that allows simultaneous and 
synchronized execution of multiple capabilities and tactics across multiple domains (contested-
air, land, sea, space, and cyberspace; DoD, 2018) in order to fight and win in complex 
contested environments (Canfield, 2017). Therefore, DMO not only includes traditional warfare 
capabilities of sensors, platforms, networks, and weapons, but also extends to other tactics that 
evolve with new technologies. The DMO concepts use advanced detection and deception 
involving ISR, machine learning (ML), and artificial intelligence (AI), with the use of unmanned 
systems particularly for enhanced capabilities in offensive tactical operations; therefore, by 
potentially leveraging different combinations of platforms, sensors, weapons, networks, and 
tactics, the combat power of a diverse yet unified force can be amplified across all maritime 
domains. 

The DMO concepts include detailed capabilities such as tactics for counter-measures, 
counter-targeting, and counter-engagements. Counter-measures are defensive capabilities 
which aim to divert threats. Counter-targeting may be offensive capabilities, deceptive tactics, 
and operational maneuvers that divert a threat. Deceptive tactics include swarms of unmanned 
assets, mechanical and physical counter-measures, electronic jamming, and the limiting of 
electromagnetic radiation, or emissions control (EMCON). Counter-engaging is to neutralize a 
threat.  

Traditionally, a baseline force structure consists of a fixed set of friendly force ships and 
aircraft arranged into action groups including a Carrier Strike Group (CSG), Expeditionary Strike 
Group (ESG), Surface Action Group (SAG), and various independent deployable units such as 
expeditionary Marine units for EABO. 

The DMO operational requirements include capabilities, manpower, maintenance, and 
supply, among other resources, to be carefully analyzed, planned, and executed, which require 
the right data strategy, distributed infrastructure, and deep analytics. The technical concept of 
Threat and Capability Coevolutionary Matrix (TCCM) addresses the requirements of DMO and 
EABO operations. A threat is a problem that a capability tries to deal with, including the 
complexity and urgency. A capability is the solution to the problem that represents the threat. 
Coevolutionary algorithms from the ML/AI community explore domains in which the quality of a 
capability or combination of capabilities are determined by their ability to successfully defeat a 
threat or combination of threats. Coevolutionary algorithms used in a wargame simulation are 
similar to the Monte Carlo simulation widely used in defense applications, except they engage 
ML/AI like forecast and prediction, optimization, and game (minmax) algorithms. The DMO and 
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EABO concepts require flexibility and evolution of the capability and resource networks that 
handle ever changing and evolving threats.  

Methodology Review 
A TCCM contains three aspects, as follows: 
Data strategy 

One data strategy for a big organization such as the U.S. Navy is to build a 
centralized big data store for all the suborganizations. For this strategy, one needs to 
gather data from across the organizations and enterprises and put them in a centralized 
location. Building centralized data repositories can be very expensive, in addition to 
creating security and trust issues. An alternative strategy is distributed data strategy, where a 
complex enterprise usually includes highly interacting, interrelated, and interdependent sub-
systems. For example, data for a complex enterprise might be collected using distributed 
locations. This data strategy provides convenience, safety, and privacy for the data; however, it 
presents difficulty and challenges for data fusion and deep analytics. Traditional data sciences, 
even ML/AI algorithms used in small- or moderate-sized analysis, typically require tight coupling 
of the computations, where such an algorithm often executes in a single machine or job and 
reads all the data at once. Making a generic case of parallel and distributed computing across 
distributed data source proves a difficult task. One requires novel infrastructure such as 
Collaborative Learning Agents (CLA; Zhao & Zhou, 2014) or federated learning, where data 
from system of systems can be quickly examined locally, while analytic models from multiple 
agents can be also fused properly.  
Distributed Infrastructure and Collaborative Learning Agents 

The data strategy we focus on here is not only relevant to information warfare, but 
also to physical infrastructure such as force distribution, as well. Distributed force 
distribution allows avoidance of detection and flexibility of C2 among other innovations; for 
example, dynamic emergence and self-organization of new global structures can confuse 
the threats and adversaries. CLAs include distributed, networked, and peer-to-peer agent 
architecture and analytics. A single agent represents a single system capable of ingesting data, 
indexing, cataloging information, and performing knowledge and pattern discovery, machine 
learning from data, and separating patterns and anomalies from data. Multiple agents can work 
collaboratively in a network in Figure 1. In more detail, a CLA first applies unsupervised 
machine learning and data mining algorithms, indexes, catalogs, and data-mines structured and 
unstructured data sources and discovers knowledge patterns, then fuses models from its peer 
lists and makes them available for search and pattern match used for prediction. A network of 
CLAs’ collaboration is achieved through a peer list defined within each agent initially, through 
which each agent passes shared information to its peers, and then re-organizes or emerges 
based on a coevolution wargame with the threats. A CLA network and collaboration mechanism 
is fault-tolerant, self-organizing, adaptive, and resilient. A CLA is fault-tolerant because if one 
CLA goes down, it can be locally excluded and does not affect the whole network; it is self-
organizing because each CLA can have trusted peers (e.g., friends) based on its own real-time 
situation awareness and change dynamically. A CLA is adaptive because the top-level search, 
pattern match, and prediction depend on the real-time self-organized network structure. A CLA 
is resilient since it can apply the coevolutionary analytics in a wide space and simulate novel 
threat and capability for new and unknown situations.  

CLAs have been used in Navy applications such as building swarm intelligence to health 
monitoring of systems of systems such as ships, Internet of Things (IoTs; Zhao & Zhou, 2019), 
and edge computing. CLA also participated in a Naval Trident Warrior exercise (Zhou et al., 
2009). 
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Figure 1. A CLA is Used in Each Node  

Note: Each node’s content and data may include capabilities; capability needs to be indexed, cataloged, 
and data-mined first. 

Analytics 
The core analytics for TCCM is a wargame simulation with two asymmetrical players. 

The self-player (blue) is the capability holder. The opponent (red) of the self-player is a threat 
generator. The opponent generates new threats that may challenge the self-player’s capability. 
The self-player tries to predict and optimize capabilities to counter the opponent’s threat. The 
whole process iterates. The self-player uses a wargame simulation to constantly perform what-if 
analyses in both threat and capability perspectives to defend a complex enterprise and its 
operations in a distributed and contested environment. Such a wargame simulation allows one 
to search, simulate, and detect vulnerability of the complex enterprise and evolve 
countermeasures, solutions, and resilience in a dynamic and flexible fashion. 



 
 

Acquisition Research Program 
Graduate School of Defense Management - 408 - 
Naval Postgraduate School 

 
Figure 2. The Concept of TCCM and Wargame Simulation 

Coevolutionary algorithms (Goldberg, 1989; O’Reilly & Hemberg, 2018; Popovici et al., 
2012) provide search and optimization mechanisms based on evolutionary and genetic 
principles such as selection, mutation, and crossover. Coevolutionary algorithms explore 
domains in which the quality of a candidate solution (i.e., capability) is determined by its ability 
to successfully pass some set of tests (i.e., threats). Reciprocally, a threat’s quality is 
determined by its ability to force errors and inefficiencies from a capability. Such a competitive 
coevolution is similar to game theory (Brown & Sandholm, 2017); however, it does not require 
computation of gradient as in ML algorithms and requires less data compared to other ML/AI 
algorithms. The search can lead to an arms race between threats and capabilities, with both 
evolving while pursuing opposite objectives. Coevolutionary algorithms are similar to those 
encountered by generative adversarial networks (GANs; Arora et al., 2017; Goodfellow et al., 
2014). 

The mutation and crossover evolutionary principles are unsupervised with known trends 
to produce better solutions. In TCCM, a selection is accomplished by evaluating a fitness 
function for the capability holder to see how likely it can successfully defeat a threat. A fitness 
function is typically modeled using supervised or reinforcement machine learning algorithms 
when a payoff (reward or penalty) can be clearly observed. By using a CLA to represent a self-
player as a capability holder, the fitness function in this paper refers to a nearest neighbor 
lookup for an input threat (see the Use Case Scenario).  

Use Case Scenario 
The goal of this use case scenario is to help a program executive office (PEO) to 

wargame capabilities and threats in DMO focused areas. We will use this scenario to show a 
proof-of-concept of the TCCM.  
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Figure 3. TCCM Use Case Scenario 

 

As shown in Figure 3, the Navy’s warfare resource, capability, and assets may reside in 
different traditional warfare domains such as sensors, platforms, networks, and weapons, as 
well as the new tactics related to the DMO concept. The goal is to achieve the creation and 
continuous use of a distributed tactical common operational picture, weapon system network, 
and the integration of unmanned assets and existing platforms to enhance defensive and 
offensive capabilities. 

An order of battle (OOB) incorporates maritime platforms of surface ships, aircraft, 
weapons systems and sensors for both friendly and enemy forces. The high-level information of 
each platform, and asset for this paper, is compiled from open source databases, where a kill 
chain typically contains three steps: “find, target, and engage” (Joint Chiefs of Staff [JCS], 
2013). 

Operational domains can also include different areas such as air, surface, subsurface, 
land, and cyber, as well as detailed tactics that are associated with each domain. In a DMO 
environment, flexible combinations of these capabilities and tactics can provide powerful 
swarms of new capabilities that are unpredictable to new threats. A demand or operational 
node, such as U.S. Fleet Forces C3F or C7F as a node, may encounter a threat that may 
require capabilities of UAS, ISR, EW, new capabilities of handling gray zone (e.g., South China 
Sea) activities, logistics, or intelligence. The requirements go to capability organizations (units, 
nodes). In current C2 structure, a Maritime Operations Center (MOC) may communicate with a 
carrier strike group (CSG) or an amphibious ready group (ARG), then a carrier task force (CTF), 
and other units. Can the structure be more flexible, re-organized in a more dynamic fashion, and 
handle a vast amount and wide range of capabilities, resources, and requests? Future DMO 
enables a force that is capable of winning a fleet-on-fleet engagement through the integration of 
manned and unmanned systems, execution of deceptive tactics, and enabling units to conduct 
offensive strikes (Popa et al., 2018).  
A wargame between a threat and capability can be set up as follows using the concept of 
coevolutionary process: 
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Self-player (blue, capability): Evolve a solution based on a current threat’s 
characteristics (e.g., location). The solution may mean to find another CLA based on the input of 
required capability to increase the fitness functions representing measures of effectiveness 
(MOEs; global and overall measures) and measures of performance (MOPs; metrics for 
subtasks); for example, the selected CLA that represents an asset needs to contain required 
capability, and the asset has the highest probability of detection (POD) or probability of kill 
(POK) as MOP and MOE. 

Opponent (red, threat): Evolve the location and other characteristics to reduce the 
fitness of the self-player. 

A detailed simulation is set up based on a matrix of association and fitness values 
shown in Table 1. A synthetic data of such a table can be formed using the reference (Popa et 
al., 2018); for example, sensor capabilities and platforms associations for the blue force can be 
shown as in Table 2. 

Table 1. Threat and Capability Association Matrix 

 
 
 

  
Capability’s 
Sensor Cs 

Capability’s 
Platform 
Cp 

Capability’s 
Network 
Cn 

Capability’s 
Weapon 
Cw 

Capability’s 
Tactics Ct 

Threat’s 
Sensor 
Ts 

Threat’s 
Platform 
Tp 

Threat’s 
Network 
Tn 

Threat’s 
Weapon 
Tp 

Threat’s 
Tactics 
Tt 

Capability’s 
Sensor Cs 

 x x x x x     

Capability’s 
Platform 
Cp 

x  x x x      

Capability’s 
Network 
Cn 

x x  x  x     

Capability’s 
Weapon 
Cw 

 x  x x x x x x x 

Capability’s 
Tactics Ct x x x x x x x x x x 

Threat’s 
Sensor Ts x x x        

Threat’s 
Platform 
Tp 

x x         

Threat’s 
Network Tn x  x x x      

Threat’s 
Weapon 
Tp 

x x x x x  x  x x 

Threat’s 
Tactics Tt x x x x x x x x x x 
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Table 2. Sensors and Platforms for the Blue Force (Popa et al., 2018) 

Sensor Capabilities Platforms 

Visual All Surface, All Air, All Unmanned 

Infrared 
CVN, LHD/LHA, CG, DDG-51, DDG-1000, LCS, LPD, F-35, F/A-
18, EA-18, E-2, P-8, MH-60, AH-1, MQ-8 Fire Scout, MQ-4 
Triton, TERN 

Electronic Support Measures (ESM) CVN, LHD/LHA, CG, DDG-51, DDG-1000, LCS, LPD, F-35, F/A-
18, EA-18, E-2, P-8, MH-60, AH-1, MQ-8 Fire Scout, MQ-4 Triton 

Air Search Radar CVN, LHA/LHD, CG, DDG-51, DDG-1000, LCS, LPD, MH-60, 
AH-1, TERN 

Surface Search Radar All Surface Platforms, MH-60, AH-1, TERN 

Fire Control Radar CVN, LHD/LHA, CG, DDG-51, DDG-1000, LCS, LPD, MH-60, 
AH-1, MQ-8 Fire Scout 

Navigation Radar All Surface Platforms 

Phased Array Radar CVN, CG, DDG-51, DDG-1000 
AESA (Active Electronic Scanned Array Radar) F-35, F/A-18, EA-18, E-2, P-8, MQ-4 Triton 

Airborne Early Warning Radar E-2, P-8 

Synthetic Aperture Radar—Maritime MH-60, MQ-8 Fire Scout, MQ-4 Triton 
 
Weapon capabilities and platforms associations for the blue force are sampled in Table 3. 

 
Table 3. Weapon Capabilities and Platforms Associations for the Blue Force (Popa et al., 2018) 

 
Missile Designator Type Launching Platform(s) 

Standard Missile-2 RIM-66 Medium Range Surface to Air CG, DDG-51, DDG-1000 
Standard Missile-3 RIM-161 Ballistic Missile Defense CG, DDG-51, DDG-1000 

Standard Missile-6 RIM-174 Extended Range Surface to Air, Anti-Ship 
Cruise Missile (ASCM) CG, DDG-51, DDG-1000 

LRASM AGM-158C Long Range Anti-Ship Missile CG, DDG-51, DDG-
1000, F-35, F/A-18 

Maritime Strike 
Tomahawk MST Long Range Anti-Ship Cruise Missile CG, DDG-51, DDG-1000 

Harpoon AGM/RGM-
84 Over the Horizon Anti-Ship Missile CG, DDG-51, LCS, F-35, 

F/A-18 

ESSM RIM-162 Evolved Sea Sparrow - Medium Range 
Surface to Air Missile 

CVN, LHA/D, LPD, CG, 
DDG-51, DDG-1000, 

LCS 

Sidewinder AIM-9 Short Range Air to Air F-35, F/A-18, EA-18, 
AH-1 

Hellfire AGM-114 Short Range Air to Surface F-35, F/A-18, MH-60, 
AH-1, MQ-8, TERN 

AMRAAM AIM-120 Advanced Medium Range Air F-35, F/A-18 
HARM AGM-88 High Speed Anti-Radiation F-35, F/A-18 
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The current operations for efficient ships are enabled by multiple systems and multiple 
weapons systems on a single platform. However, with DMO, “rather than heavily invest in 
expensive and exquisite capabilities that regional aggressors have optimized their forces to 
target, naval forces will persist forward with many smaller, low signature, affordable platforms” 
(Blivas, 2020), for example, integrating the Marine’s EABO systems. These smaller platforms 
will be greatly advantaged by employment from EABOs situated on partner territory in proximity 
to close and confined seas (Corbett, 2018). Also, even with the current capabilities, weapons 
and sensors do not have to be in the same platform to collaborate for a kill chain; for example, 
an Aegis ashore can launch a missile when another DDG detects a threat. 

Table 3 lists examples of DMO tactics and counter-measures. As stated by Chung 
(2015), with the “increasing availability and proliferation of unmanned system technologies, such 
as unmanned aerial vehicles (UAVs) in civilian and military applications, both opportunities and 
challenges arise in addressing large numbers of robots capable of collective interactions.” 
Swarm, described as a cooperative system comprised of numerous UAVs that function with 
limited operator involvement (Lachow, 2017) or as a tactic for deception, including saturation of 
radar and detection systems by deploying a large number of remotely piloted vehicles, as well 
as the ability to emulate a larger vessel such as a surface combatant or manned aircraft by 
radiating active emissions from the unmanned systems. 

IR Smoke can be used as a decoy for heat-seeking sensors and weapons. Electronic 
jamming is a function within the EW subcomponent of electronic attack and serves to 
overwhelm or deceive a sensor through the controlled and directed propagation of 
electromagnetic signals. Electronic jamming can also exploit a specific vulnerability such as the 
reliance on a single frequency. An EMCON employs measures to reduce the electromagnetic, 
acoustic, heat, and radar cross section signatures from the platform. For example, a ship or 
aircraft can limit nearly all navigation, communications, propulsion, and weapons systems to the 
minimum in order to reduce the probability of being detected. 

Another example is developing detection capabilities of signature deception for DMO 
and EABO since emerging ISR capabilities mean the applicability of DMO, and EABO is 
dependent on a competition of detection. The deliberate use of signature emission to deceive a 
self-player and use of detection methods to detect deception have the potential. 
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Table 4. Examples of Blue Force DMO’s Tactics (Popa et al., 2018) 

Variable Minimum Maximum Type 

Swarm 0 1 Discrete 

Chaff 0 200 Continuous 

Flares 0 50 Continuous 

Visual Smoke 0 50 Continuous 

IR Smoke 0 50 Continuous 

Active Decoys 0 25 Continuous 

Passive Decoys 0 300 Continuous 

Spot Jamming 0 1 Discrete 

Barrage Jamming 0 1 Discrete 

Sweep Jamming 0 1 Discrete 

DRFM Jamming 0 1 Discrete 

GPS Jamming 0 1 Discrete 

CG EMCON 0 1 Discrete 

DDG-51 EMCON 0 1 Discrete 
DDG-1000 EMCON 0 1 Discrete 

Application of Threat and Capability Coevolutionary Matrix  
One CLA can associate with an asset, a platform, a unit, or a node, and the matrix in 

Table 1 can translate into the following representation in a CLA’s association for a node: 

• Capability_Platform_ddg-51  Capability_Sensor_visual 1 

• Capability_Platform_ddg-51  Capability_Sensor_infrared 1 

• Capability_Platform_ddg-51  Capability_Sensor_ESM 1 

• Capability_Platform_ddg-51  Capability_Sensor_fire_control radar 1 

• Capability_Platform_ddg-51  Capability_Sensor_phased_array_radar 1 
Given a knowledge that the sensor of infrared is able to detect a threat platform x, an 

association between the threat’s characteristics (e.g., platform x) and a capability’s feature 
dimension can be stored in a node (e.g., Sensor 1 in Figure 4) as follows: 

• Capability_Sensor_infared Threat_Platform_x 1 

• Capability_Weapon_y Threat_Platform_x 1 
The primary focus for collaborative assets with respect to DMO is to employ various 

traditional capabilities as well as DMO specific tactics and counter-measures that enable the 
disruption of the threat’s kill chain to either prevent or lower the probability of the success of the 
threat. As shown in Figure 4, if a Threat Platform x shows up in a battlefield, the initial phase of 
a kill chain consists of a sequence of activities of sensor capability to detect and locate the 
threat. A Platform z equipped with CLA 0 in Figure 4 may send requests as inputs to its peer list 
of Sensor 1 (CLA 1) and Sensor 2 (CLA 2), which both have the infrared capability. Either of the 
sensors can potentially detect Threat Platform x and become the solution for Platform y’s (CLA 
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0) request. The following other factors can be integrated into the TCCM’s CLA’s fitness 
computation: 

• The probability of find or detection (POD), an important dimension for Platform z to make 
the decision of which solution to select from the sensors, may be different because of 
distance and range parameters. 

• Even for the same sensor, POD can vary due to environmental factors such as weather, 
clutter, threat employed counter-measures, counter-engagements, and counter-targeting 
tactics. The environment in the vicinity of contested areas has the potential to impact the 
ability to perform DMO, specifically with respect to weather conditions and sea states, for 
example, the heavy presence of neutral commercial air and sea traffic (clutters) that 
cause significant congestion in sea lanes and air passages. For example, one-third of all 
global shipping passes through the South China Sea, as it is the one of the most used 
sea transit lanes in the world (Hoffmann et al., 2016). This may cause significant 
variation for POD, while an optical or infrared sensor can distinguish the threat as a 
legitimate target or neutral traffic; however, the fact can be also leveraged as an 
advantage for deception and decoy operations. 

• A factor could be association constraints, for example, a U.S. aircraft carrier is a high 
value unit that is typically the highest targeting priority for the threat; therefore, the 
adversary’s combat capable platforms will have a non-zero probability of being assigned 
the CVN for targeting and engagement. 

• Another challenge is that adversaries may use maritime militia fishing fleets that serve 
as non-militarized ISR platforms, and the blue forces include general lack of 
geographical familiarity with the region as well as considerations for the attempted 
control and management of the electromagnetic spectrum. 
Considering all the factors into the fitness best solution to Platform z via CLA 1 is the 

highest fitness from both sensors, for example, Sensor 1 (CLA 1) is selected. Since the peer list 
of the Sensor 1 (CLA 1) only includes Weapon 2 (CLA 4), Weapon 2 (CLA 4) is used for engaging 
with the Threat in the next step of the kill chain. Should Weapon 2 (CLA 2) be selected, which is 
a peer for Weapon 1 (CLA 3), Weapon 1 (CLA 3) would be used in the engaging step.  

If the threat is successfully engaged and killed, the adversaries may try to learn from the 
experience (data) and may try to avoid the detection by moving away from the last location of 
detection and engagement. For example, the Threat Platform x may try to move to a different 
location that is away from the combination Sensor 1 (CLA 1) and Weapon 2 (CLA 4); because 
of the distributed and different peer lists and combinations of the self-player’s assets, the self-
player (blue) may be not predictable from the experience for the Threat, since the Threat can be 
caught up with Sensor 2 (CLA 2) and Weapon 1 (CLA 3) should the Threat move to a different 
location.  
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Figure 4. A TCCM Example for Illustration 

 

Therefore, the following list shows the advantages of TCCM: 

• TCCM uses the peer lists to combine capabilities at the various stages of a kill chain to 
disrupt and degrade the threat progress to its target of blue and confuse its learning. 
Even the self-player (blue force) can become less predictable or unpredictable if the 
peer lists are purposely altered randomly and periodically. 

• TCCM represents pooled resources, and the model represents DMO as a united 
network of offensive lethality and firepower, and, therefore, all missiles are shared for 
cooperation and collaboration for all the assets and CLAs. 

• Because of the potential dimensions, features, and characteristics of threats and 
capabilities, and their combinations, peer lists can be extremely large. For example, with 
the current systems, there are many different types of procedures or action chains used 
to conduct a detect-to-engage (DTE) series of events where sub-tasks must occur for a 
weapons system to effectively engage a threat’s platform or location. Combinations of 
detecting or finding the target, establishing a track on the target’s location and 
movement, communication of targeting data between the sensor and weapon system, 
conducting the engagement with either kinetic or non-kinetic weapons, and evaluating 
the engagement to determine follow-on actions, can be extremely large. It is necessary 
to apply a systematic engine like TCCM to manage the large-scale tactical and 
distributed decisions.  

• TCCM is fault tolerant since the network is peer-to-peer. The network can be resilient 
like swarm intelligence, and CLAs can be re-organized to form emerging patterns which 
can be effective out of the box, given a wide range of contexts, and adapted to many 
others through reconfiguration and/or replacement (Goerger et al., 2014).  

Conclusions 
We show a TCCM and map it to a scenario that can help simulate threats and develop 

adaptations of capabilities for the benefits of the AAF, DMO, and EABO. 
TCCM has the potential to systematically optimize, recommend, and evolve solutions to 

warfighters’ requirements, which are more effective, suitable, survivable, sustainable, and 
affordable as a network of distributed and shared assets. A CLA network and collaboration 
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mechanism in TCCM makes it fault-tolerant, self-organizing, adaptive, and resilient. TCCM 
contains a system of data strategy, distributed infrastructure, and deep analytics that can greatly 
assist reconstructing defense acquisition, improving process effectiveness, and implementing 
the AAF, DMO, and EABO.  

Compared to the current method with less DMO and without CLA, the probabilities of 
detection and kill or fitness functions for a kill chain are modeled adaptively and are therefore 
much less predictable by the opponent, threat, or adversaries’ point of view, potentially adding 
to the concept and desired outcome of DMO for offense and defense. Should the opponent also 
adapt such a strategy, because of the asymmetry of assets and capabilities, the self-player is 
potentially still more advantageous over the opponent. Future work will include quantitative 
simulation to implement TCCM. 
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