

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

SYM-AM-21-105

Excerpt from the
Proceedings

of the
Eighteenth Annual

Acquisition Research Symposium

Blockchain Data Management Benefits by Increasing
Confidence in Datasets Supporting Artificial Intelligence
(AI) and Analytical Tools using Supply Chain Examples

May 11–13, 2021

Published: May 10, 2021

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research Program of
the Graduate School of Defense Management at the Naval Postgraduate School.
To request defense acquisition research, to become a research sponsor, or to print additional
copies of reports, please contact any of the staff listed on the Acquisition Research Program
website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
Graduate School of Defense Management - 209 -
Naval Postgraduate School

Blockchain Data Management Benefits by Increasing
Confidence in Datasets Supporting Artificial Intelligence (AI)

and Analytical Tools using Supply Chain Examples

Anthony Kendall—is a lecturer and researcher at the Naval Postgraduate School where he is in
the Information Sciences department researching and teaching in the field of data science including
Investigating the emerging “Big Data” and machine learning concepts and technologies on how they
enhance analytics for decision-making in DoD areas such as logistics and CTAP (Common Tactical Air
Picture). He currently heads a project on using “money ball” and other methods to provide analytics for
Navy aviation maintenance as well as a project on investigating how blockchain might assist in Navy
logistics processes. Tony graduated from the University of Texas at Arlington. In his earlier career he was
a Naval Flight Officer (lieutenant commander) He wrote an award-winning article (USNI) on creativity in
the military. He received his Master of Science at the Naval Postgraduate School.

Arijit Das—is a Computer Science research faculty at the Naval Postgraduate school
specializing in teaching CS courses and doing applied research trying to find industry solutions for
DoD/DoN challenges. His educational background is BECS from MNREC (Allahabad University, India),
followed by a MSCS from Oregon State University (Corvallis, Oregon). His other MS degree is an MSEE
from UNLV (Las Vegas, Nevada). His work experience is in the Philadelphia tri-state area service
industries as a developer using technologies running on Mainframe, Oracle, and UNIX as production
servers. Arijit is a frequent speaker in Oracle Database user group events in the Silicon Valley. His
current research focus is Big Data, AI/Analytics and Blockchain.

Bruce Nagy—is a Senior Scientist and Systems Engineer at the Naval Air Warfare Center,
Weapons Division at China Lake. His research focuses on advanced game theory techniques, artificial
intelligence and machine learning applications as applied to naval weapon systems and tactical decision
aids. Nagy received an BS in Biology and BA in Mathematics from the Citadel. He went on to receive an
BS and MS in Electrical Engineering from the Naval Postgraduate School. He continued his neural
network interest with post graduate work in modeling brain stem activities to muscle fibers at UCLA, in
cooperation with NIH. Nagy is a former Engineering Duty Office. bruce.nagy@navy.mil

Avantika Ghosh—is a sophomore at University of California, Berkeley studying Computer
Science and Economics. She has been a research intern at NPS in 2018 and 2020. In 2018, she
conducted a Data Analytics study on benchmarking various machine learning algorithms’ to detect
anomalous behavior in military aircraft data. Through her current research, she is exploring possible
applications of blockchain technology in the Navy. Avantika has been awarded the Bay Area Affiliate
Winner award by the National Center for Women in Technology.

Abstract
We describe how Hyperledger Fabric (HLF) blockchain (BC) technology that we previously
applied to Navy logistics supply chains can be applied to data supporting artificial intelligence (AI)
and software development in terms of system safety and the timely acquisition of data. Data-
driven AI/machine learning (ML) requires trusted data for their use in AI functions and requires
significant amounts of training data from diverse sources including Internet of Things (IoT)
devices/sensors. Unauthorized alterations to data supporting AI/ML could go unnoticed within the
AI function build process but surface during operation in hazards affecting unwanted human
death or resource destruction. AI/ML controlling hardware usually falls into the two highest
software control categories: Levels 1 and 2, risk of death, disability, or resource destroyed.

HLF BC is a tamper-resistant decentralized trusted ledger that provides proof of transaction
where trust is implemented through distributed consensus to ensure that only authorized people
can modify data and that the modification is traceable and transparent. Distributed ledgers
provide system safety through BC provenance, immutability, and policy enforcement through
smart contracts.

Acquisition Research Program
Graduate School of Defense Management - 210 -
Naval Postgraduate School

We show how BC can contribute to the safety of the data and transactions and provide data to
the researchers in a timely manner through “smart repositories.”

Introduction
Artificial intelligence (AI) software exercises a high degree of control over a particular

system function (e.g., movement/guidance of a missile). If the function creates a hazard, this
can cause a mishap that has a consequence of a catastrophic and critical event, resulting in
death or resources destroyed. There is no redo, reboot, or retraining of an AI function that fails
in this scenario. Software safety engineering and test and evaluation efforts to ensure fidelity
include data-related elements such as process flow, code level, and data structure analysis.
These flows, for example, are similar to the use of blockchain (BC) in supply chains used in our
previous research, the Navy supply chain process, which we believe can be adapted for system
safety and software integrity.

AI/machine learning (ML), the training sets, algorithms, and associated software
supporting weapons systems are targets for increasingly sophisticated adversarial machine
learning attacks, which attempt to fool models through malicious input into the system such as
AI poisoning and other attacks. Athalye et al. (2017) showed that it is even possible to fool an AI
into having it identify a turtle wrongly as a rifle. BC could be used as a countermeasure to
prevent such poisoning as well as safeguard system integrity. BC, specifically Hyperledger
Fabric (HLF), is a tamper-resistant decentralized trusted ledger that provides proof of
transaction where trust is implemented through distributed consensus to ensure that only
authorized people can modify the code base, AI algorithm, or training set and that the
modification is traceable and transparent. Distributed ledgers provide system safety through BC
provenance and policy enforcement through a feature called smart contracts, which imbed
logical code. Data in support of AI and software development can also suffer not only from
deliberate sabotage or ruse but also from human error.

Machine learning increasingly requires complex data sources from repositories and
sensors down to the edge for training sets supporting AI development. Getting the right and
accurate data can be a complex process, and error or intentional manipulation is always a
concern. The number of sensors and Internet of Things (IoT) devices, such as smart
thermometers/oximeters to track COVID-19, has caused an explosion of data generation but not
an increase in safeguards to ensure system safety if these edge devices are used to control
machines or make life-critical decisions.

Centralized security and authentication controlling IoT devices could lead to a single
point of failure, a new target for cyberattack, and cause a bottleneck and high latency (Jia et al.,
2020). Typically, an ML project may require diverse data sources and modalities. One example
may be drones flying over an urban area, which requires its ML training set data on the region,
including crime rate, weather, and road conditions/constraints. For just this simple example,
data needed include Naval War College (NWC) wargaming, Naval Postgraduate School (NPS)
wargaming, Live Fire Event, Program of Record product performance specifications, contractor
specifications, test evaluation results, a diverse set of sensors, IoT devices, and so on. Once an
AI is trained, BC can be used to ensure the integrity of the data during operations. BC can be
used to find the right data, what is in it, who owns it, and how to get it with quick authorization.
Data scientists have long recognized that just getting the right data and permission to use it can
be an arduous and long process.
The Problem of System Safety

AI has the potential of creating a technological leap (Eden et al., 2013). That potential
leap, especially when dealing with weapon systems, needs scrutiny. This scrutiny focuses on
the specificity of the composition and size of the training data algorithm. This research describes

Acquisition Research Program
Graduate School of Defense Management - 211 -
Naval Postgraduate School

how an HLF architecture can be used to increase safety and confidence in the deployment of AI
functions. There must be confidence in the data and training sets and the algorithms, and there
must be confidence that they are tamper-proof and free from anomalies, intentional or by
accident. Acquisition communities cannot identify and certify operational constraints of an ML
algorithm for deployment without having confidence in the training data quality, including any
negative side effects (Everitt, 2018) that might result from the training process.

The system safety concept calls for a risk management strategy based on identification,
analysis of hazards, and application of remedial controls using a systems-based approach. This
is different from traditional safety strategies (Roland & Moriarty, 1990).

AI safety issues for naval weapon systems usually have not included consideration of
adversarial attacks that might affect functional performance. AI adversarial network attacks
using techniques like deepfakes, putting an image/video into another image/video for
miscategorization (Chauhan, 2018), will be considered within our BC discussion.

When assessing safety, the goal is to identify anything that might be safety-critical.
Safety-critical is “a term applied to a condition, event, operation, process or item whose mishap
severity consequence is either catastrophic or critical (e.g., safety-critical function, safety-critical
path, and safety-critical component)” (Defense Standardization Program Office, 2012).
Specifically, the publication MILSTD-882E (Defense Standardization Program Office, 2012)
helps software engineers determine the level of rigor (LOR), which specifies the depth and
breadth of software analysis and verification activities necessary to provide a sufficient level of
confidence that a safety-critical or safety-related software function will perform as required.
ML/AI usually falls into the system safety two highest software control categories: Level 1
(autonomous) and Level 2 (semiautonomous). We contend that BC could contribute to the
analysis and verification of software activities by ensuring data integrity and better accessibility
to the data.

Applying Successful BC Techniques to Ensure System Safety of AI Deployed
Weapon Systems:

Our previous research used the HLF BC to generate three general use cases for Navy
logistics, including financial and inventory transaction audit trails, serial number tracking, and
maintenance log integrity. We believe the BC network derived from these three use cases could
be adapted for system safety purposes since all our previous demonstrations dealt with the
integrity of the data supporting work processes and events. BC tracks food/parts items as
assets recorded on ledgers, and training data are assets and also created with similar work
processes and events. With HLF you can control who, what, and when and identify those who
have access to the logistics data representing assets as well through an immutable ledger
containing logistics data that cannot be tampered with. HLF is as transparent as needed but can
hide data from those without a need to know.

The data source flows of data and training sets supporting data scientists are similar to
previous BC research on Navy supply chains to improve transparency and the safety of the
related supply chain data and transactions, but there is a higher level of risk since they are often
at Level 1 or Level 2 autonomous systems. In a sense, training sets and analytical data are like
the tracking of parts and food since they point to resources represented by the information that
needs to be protected and distributed in a friction-free manner. Control of these sources during
the integration process to create training data and general analysis is vital to ensure the training
sets and AI algorithms are transparent to those who need them, controlled, and their validity
supported by an audit trail that BC provides. Training set alterations could go unnoticed within
the AI function build process but revealed during operation in hazards affecting unwanted
human death or resource destruction. Our previous research demonstrated how BC can provide

Acquisition Research Program
Graduate School of Defense Management - 212 -
Naval Postgraduate School

a needed data management technology through a tamper-resistant decentralized trusted ledger
that provides proof of transaction where trust is implemented through distributed consensus.
Only authorized people can modify the code base, AI algorithms, or training set modifications
that are detectable, traceable, and transparent. Distributed ledgers provide system safety
through BC provenance and policy enforcement through smart contracts.

HLF is a consensus-based network that the Department of Defense (DoD) can control
and has no “Proof of Work” protocol, which is a wasteful use of computer resources. HLF uses
channels to control who can see what data and through consensus; the DoD can control what is
allowed to be put on the BC ledger. Such technologies can not only be used in Navy supply and
logistics to streamline and improve effectiveness in terms of how workflow can be improved to
provide more rapid and secure distribution of material and two-way financial transactions but
can also be used on data transactions such as datasets requested by data scientists. Data
scientists have long recognized that obtaining “clean data” and the permission to use it has
been hampered by administrative friction, which can be caused by data owner’s requirements,
trust issues from generated data source transactions, and other administrative processes.

The benefits of BC technology described in this paper support system safety in terms of
providing objective quality evidence about data integrity, as well as test and evaluation teams in
terms of data management control. We believe elements of BC, such as smart contracts, could
contribute to all acquisition groups involved. We will discuss our previous logistics use case as
well as new use cases specifically for software safety.
The Hyperledger Fabric Blockchain Solution

HLF provides proof of transaction where trust is implemented through distributed
consensus and not centralized policy enforcement. The specific version of BC we used is HLF,
which is open-source from the Linux Foundation. HLF is a permissioned, distributed ledger that
works on the consensus model that is an integral component of the “trust system” in the BC.
Essentially, the Fabric environment provides the “common logging” and service management
components on the platform, and the containerized infrastructure allows developers to build a
BC network where data is recorded on distributed ledgers where the data written can be trusted,
and transactions are immutable and tamper-proof. Smart contracts can embed legal knowledge,
laws, and regulations, and enforce Navy data policy. BC/HLF can also provide “provenance” of
an item, such as food or a part, and trace back to the source of that part or food item in case of
contamination or counterfeit/defective parts as well as other times such as blocks of data in
support of AI.

BC can be used for cyber currency such as bitcoin; cyber currency is not a part of this
study, and a semiprivate BC in support of data integrity needs a specific set of BC features
other than Everledger or Ethereum, which uses an inefficient way to verify blocks called Proof of
Work (PoW) instead of the more efficient consensus algorithm such as Proof of Stake.

With our previous research questions—Could BC simplify and enable access and
identity management for the Navy supply and logistics systems in a cost-effective manner to
reduce this friction? How could BC improve Navy logistics to the last tactical mile?—we
demonstrated the feasibility in previous research of using IBM and Oracle versions of HLF to
track assets such as food items. Tracking and moving assets could be applied to data assets
and adapted for software safety use because in both cases we care about the integrity of the
data generated. There have been planned pilot projects in the DoD, usually supply chain
scenarios (Simerly & Keenaghan, 2019).

Although HLF is a Linux open-source project, several software companies have adapted
HLF as its core BC enterprise solutions and have added additional value through add-ons, cloud
support, and company expertise that goes beyond the plain vanilla HLF. This is common with

Acquisition Research Program
Graduate School of Defense Management - 213 -
Naval Postgraduate School

open-source products as you pay for more capability and support. We compared to enterprise
versions of HLF, the IBM, and the Oracle HLF BC platforms and evaluated their ability to
maintain an efficient, streamlined, and accurate ledger of all shipment transactions during
transportation. Additionally, the team developed a ledger serialization function in the smart
contracts for synchronized connection on ships and bases to the HLF Framework. The
characteristics of enterprise BCs include

• Permissioned architecture
• Highly modular
• Pluggable consensus
• Open smart contract model—flexibility to implement any desired solution model.
• Low latency of finality/confirmation
• Flexible approach to data privacy: data isolation using “channels,” or share private data

on a need-to-know basis using private data collections
• Multilanguage smart contract support: Go, Java, JavaScript
• Designed for continuous operations, including rolling upgrades and asymmetric version

support
• Governance and versioning of smart contracts
• Flexible endorsement model for achieving consensus across required organizations
• Queryable data (key-based queries and JSON queries)
• Uses X.509 public key infrastructure (PKI), which is quite familiar to the DoD for a signed

data structure that binds a public key to a person, computer, or organization. Certificates
are issued by certification authorities (CAs)

• Cloud support and SaaS (Software as a Service)

Figure 1 is an example of a very simple BC ordering network. A1, A2, and A3 are
different “off-chain” applications that could be on IoT devices or web browsers on computers or
smartphones. These applications connect the on-chain world with the BC network/database.
These client applications represent the “last mile” and could include legacy programs pre-BC.
The blue-shaded background represents the BC logical infrastructure layer—not whatever
physical layer infrastructures might be used, such as satellite or fiberoptics. O4 is an ordering
service. Network configuration (NC4) gives administrative rights to organizations R1 and R4.
At the network level, Certificate Authority CA4 (DoD certs can be used) is used to dispense
identities to the administrators and network nodes of the R1 and R4 organizations.
Certification authorities CA1 and CA4 provide entity validation, as well as other CAs shown
in the diagram. In this example, there are two consortiums (common interest parties),
represented by R1 and R4 entities who set network configuration policies, seen CC1 and CC4
which set up channels. Channels are ways to decide who gets to see what ledgers. There are
three peers: P1, P2, and P3. On the left, P1 has S5, which is a smart contract that provides the
rules for the ledger L1. Only those who have access to Channel 1 (C1) have access to the
ledger L1. You see that if you have access to A1 or A2 you have access to C1, but the A2
application has access to both C1 and C2 and, therefore, access to ledgers L1 and L2, which is
set by configuration control (CCL).

Acquisition Research Program
Graduate School of Defense Management - 214 -
Naval Postgraduate School

Figure 1. Generic HLF BC Network

Methodology
Our methodology involves two sets of use cases. The first set (original cases) were used

in our previous research in Navy logistics, which we believe can also demonstrate BC use for
system safety if modified, as both sets of use cases track assets—one tracks food items and the
other tracks datasets as assets. The key for repurposing a supply chain for use in software
safety support is through the addition of off-chain application programming interface (API), such
as Representational State Transfer (REST, or many others), which provides an interface
between the BC and the outside world and to what is called “the last mile,” which in most of our
use cases is a web client. In our first set of use cases (the original use cases) we built two
demos (Oracle and IBM cloud versions) illustrating the Navy logistics/supply chain. We
demonstrated how BC can document and authenticate transactions along the supply chain,
which would be similar to a data supply chain used for data system safety. We worked with both
Oracle and IBM enterprise BCs to demonstrate the first set of use cases. In a work in progress,
we have an additional set of use cases (labeled new cases) specifically for use with system
safety using the open-source version of HLF (https://www.hyperledger.org/).
Blockchain Use Case Examples for the Navy Logistics/Supply Chain

Working with our Navy sponsor (Navy Logistics N4) we looked at three general use
cases to apply BC technology using both cloud versions of IBM and Oracle BC platforms: (1)
financial and inventory transaction audit trails; (2) serial number tracking, and (3) maintenance
log integrity. Maintenance log integrity involves the same issues as AI dataset integrity. The
three examples are
• Original Case 1: Financial and inventory transaction audit trials. An investigatory inventory

and financial transactions via audit trails can be a costly and timely process, and the audit
trails could encompass different systems throughout a vast network in such an organization
as the Navy. The questions to be answered might include what, where, and who—where a
distributed ledger would be able to track “what” through immutable data blocks that make
up the ledger. One of the BC strengths is identity verification and management, which
would be able to verify and track the “who” in any financial and inventory transactions on
the BC.

• Original Case 2: Serial number tracking/BC tracking can also be applied to the tracking of
specific items in the supply chain, such as serial numbers. Also, the tracking could include a
visual identification of the item by an individual, which would automatically be identified as a
trusted agent to make that verification along with the where and the when.

• Original Case 3: Maintenance log integrity/maintenance repairs—such as on naval aircraft,
ground, or ship systems—typically generate data on various transactional databases, which
in turn may be sourced to other databases or repositories such as data warehouses’

https://www.hyperledger.org/

Acquisition Research Program
Graduate School of Defense Management - 215 -
Naval Postgraduate School

Enterprise Resource Planning (ERP) systems. Our past research on aviation and ground
maintenance systems databases shows that there are errors in the databases, and often
information is not updated. At the tactical and operational levels, this could have an impact
on the effective efforts to ensure maximum mission readiness. Smart contracts, which are
integral to HLF, are code that can check, enforce, or flag bad data. Certainly, relational
databases can have triggers to check for illogical data entries, but it isn’t always being
done, and typically several databases and sources may be involved in a maintenance
information system to make such error checking costly or not practical. While some minor
errors may be acceptable in transactional databases, these errors could have an impact on
data analysis and ML/AI if the data in these systems are used as training datasets. BC
could use smart contracts to flag errors over a diverse set of data sources and provide
basic provenance.

Blockchain Use Case Examples for System Safety
In our second set of use cases, we specifically address three software system safety use

cases applied to the open-source HLF:
• New Case 1: A researcher/data scientist needs to manage data or training sets for

research or ML to process text or binaries (images, RFI signals), structured and
unstructured.

• New Case 2: A data scientist needs to derive metrics on a dataset but is not allowed to
see raw data.

• New Case 3: BC is used as a database for relatively small source code.
Figure 2 is a simplified HLF BC network that could support our three scenarios for

software safety in the blue background square on the right (see https://www.hyperledger.org/).
This is the BC. This BC is supported by a physical network that could be cloud-based and
supported by the internet. The “off-chain” applications, IoT, and storage are shown outside of
the square. These are applications developed in a normal way and not a new technology. The
applications use standard APIs such as REST to interface between the user, databases, and
the outside world to connect to the BC. They are called off-chain because while they interface
with the BC, they are not part of the BC. From left to right are the identify certificates--CAs such
as CA1, CA2, CA3 in our example to identify those who have access. BC is good at leveraging
existing technologies, and CA is old technology using X.509 Public Key Infrastructure (PKI),
which used to encrypt and sign email. A1, A2, A3, and so on are off-chain client applications
that have access to various ledgers (our database) which are controlled through CC1 and CC2
(CCL), which sets up channels and their access. P1 and P2 are peer nodes that in the example
host ledgers L1 and L2 for P1, and L3 for P2. Each ledger is supported by smart contracts (S5,
S6, S7) that determine the business rules and logic of how the ledger is to be written and who
can write on it. C1 and C2 are channels to determine what applications or entities are allowed to
see what ledger, which makes Hyperledger very powerful as you can control who sees and
changes what—such as Navy personnel and contractors having access to different data.

Off-chain A1 is an application that administers access to the repository and writes to the
ledger, which records the metadata in each dataset and provides a digital signature/hash value.
CCL provides access to Channels 1 and 2 and, as shown, access to all ledgers. For structured
data in the repository (maybe more than the one shown in the diagram), Al would post/write the
metadata of a dataset of interest including, if practical, all of the data fields, DTG, and record a
hash value or signature. This would be entered either in L1, L2, L3, or other ledgers created. It
is not practical to record/post large datasets on a BC ledger, but metadata and pointer/anchors
to the data could be provided through URLs. It is possible that through the administrator
interfacing with a peer node, the BC could store some small datasets through CouchDB, which
would provide the current information/state of an asset such as a dataset.

https://www.hyperledger.org/

Acquisition Research Program
Graduate School of Defense Management - 216 -
Naval Postgraduate School

New Case 1: Figure 2 shows application A2, which could be a customer/client such as a
data scientist that is interested in datasets or training sets for an AI project. This customer per
the diagram (set up by CC) has access to Channels 1 and 2, which means he can view Ledgers
1 through 3, which would be information about various datasets that can be accessed. In one
scenario, the person using A2, the web application, for example, could search for a specific
dataset or topic and then request that dataset through the application, which would check the
smart contract—let’s say for L2—to see if the system allows read access to the repository.
Existing off-chain software would complete the task and send an anchor or link (URL) to retrieve
that dataset. The customer could later check back and see if the data have changed/been
tampered with, or if the data were given to another user. Also, the client would be provided the
provenance and metadata and even points of contact, including subject matter experts and the
owner of the data. The client can check to see if the dataset has changed and who changed it,
since any changes to the repository would be recorded in the appropriate ledger as to who,
when, and what. Smart contracts could also provide some prefiltering through smart contracts to
reduce unintentional errors. In the past, this has been done pre-analysis but by using smart
contracts this would only need to be done once and not by each researcher or customer. This AI
system safety idea is similar to the IBM concept (Sarpatwar et al., 2019), where the authors
sought a trusted AI environment through provenance with a BC library exposed by REST or
Python APIs that provided support for “immutable recording of the AI process, querying for
traceability and audit, fair value attribution, etc.” We take it a further step to suggest that BC can
be part of a smart repository solution that allows clients to search and find trusted datasets and
safeguard them. A variation of this use case is a federated learning (FL) scenario that uses a
collaborative ML technique whereby the devices collectively train and update a shared ML
model while preserving their datasets. Even in a trusted military network using a private BC,
some devices on the edge may prove untrustworthy, and ur Rehman et al. (2020) propose a
reputation-aware FL that enables trust through BC consensus and trust algorithms through BC
smart contracts.

New Case 2: A user wants to compile metrics but is not allowed access to the raw data
because of security or cross-domain restrictions. Lampropoulos et al. (2019) proposed a similar
scenario, where one Telco A holds private datasets and internally processes a data request by
another Telco B, and Telco A only returns the results to Telco B and not the raw sensitive data.
The whole process is performed with transparency, ensuring the quality of the results and the
privacy of the processed data. A3 in Figure 2 is an application that only has access to Channel
2. The user then picks the dataset to use and looks at the metadata and fields; then the smart
contract (S7) executes the query through A1 and post the results in the ledger L3. This use case
could also be used for a cross-domain solution setting up rules when a user could have access
to a different domain, the raw data, or just the results.

New Case 3: Our last scenario is the data are not stored off-chain but in the BC itself.
HLF has the option of using CouchDB that can use standard JSON queries to get the “World” or
current state of an asset (like a dataset). Perhaps this use case would apply to IoT devices
where you want real-time data from sensors but still want to ensure software safety. The data
would be immutable but replicated throughout the network.

Acquisition Research Program
Graduate School of Defense Management - 217 -
Naval Postgraduate School

Figure 2. HLF Scenarios

Figure 3 summarizes the flow in our simple scenarios. First, the “customer”—a data
scientist or developer—wants to access data such as for training sets in ML, or a developer
wants access to code. The customer wants to find the right data quickly, know who owns it, and
know that it can be reasonably trusted. In our example, this data resides in a repository that may
include both structured data (relational databases) and semistructured and unstructured data
such as in the form of .JSON files, text, or graphics. The customer starts a request for the data,
and an answer comes back with the metadata, data fields, a date–time group, and a hash value
of the set. This information is in a ledger in addition to an encrypted link to access the dataset.
The customer can also see the complete history of changes to the data and can verify that the
training set, data, or code has not been tampered with through the hash code both in the
metadata and the ledger on the BC. Only those authorized can add to the chain, and it is
immutable.

Figure 3. Summary of New Use Cases (adapted from Oracle diagram)

Acquisition Research Program
Graduate School of Defense Management - 218 -
Naval Postgraduate School

Use Cases Using Three Hyperledger Fabric Versions
We discuss our results using the IBM, Oracle, and Linux Foundation versions of HLF

and their application to system safety scenarios. Figure 4 provides a simplistic view of the
system safety scenario where the data scientist is looking for training sets or related data.

Figure 1. Data Scientist Use Case Example and Smart Repositories

The data scientist (the client) uses a web browser, enabled by Rest API or other
development interfaces, and searches for a dataset or training set through the BC which,
through certificates (x.509) and smart contracts, knows who the client is. Based on governance,
the BC and smart contract will decide if that data scientist has the authority to retrieve the data.
If so, the client will be sent a link to access the repository or even an IoT device or a BC
repository with frequently used datasets. Through x.509 certificates, which will have the identity
verified by the BC, as well as the sending to the client hash value making sure the dataset
hasn’t been tampered with. The smart contract may do some initial cleaning up and filtering of
the data. What normally takes months to get the data may only take a day and comes with
assurance that the data had not been tampered with through an immutable BC. Such forms as
in Figure 5 or other members of understanding could be eliminated.

Acquisition Research Program
Graduate School of Defense Management - 219 -
Naval Postgraduate School

Figure 2. SAAR-N Form

Successful Applications of Blockchain for Naval Supply Chain Tracking
As discussed, our previous research investigated how BC could simplify and enable

access and identity management for the Navy supply and logistics systems in a cost-effective
manner to reduce administrative friction and how BC could improve Navy logistics to the last
tactical mile. In our scenario, the first destination transportation (FDT) refers to the movement
and cost of moving shipments from free on board (FOB) points of origin to the location at which
the shipment is first received for use or storage. As naval regulations apply, the first checkpoint
of where a shipment is received, whether within the United States (CONUS) or outside
(OCONUS), begins with a supplier outside of the DoD supply system or industrial activity that
creates the shipment. The labor and transportation charges, including freight drayage, cartage,
port handling, and other in-transit costs, are processed at the FDT. Freight cartage refers to any
inland transit of cargo between locations, which serve as the “checkpoints” in the BC network.
When a location is assigned responsibility for “cartage of consignments” to land-based activities,
ships, or other transport units, the charges of transportation are given to the location of assigned
responsibility, which acts as a peer node checkpoint in the network. At this point, the initial entry
in the ledger may be created and committed by the peer node belonging to the FDT and the
orderers. It is important to note that FDT does not only include shipments of equipment but also
the initial transportation of Navy-owned materials that are provided to a contractor for research.
This indicates that the charges of a shipment from a contractor’s facility to its final destination
point are paid by the government. However, to maintain the legitimacy of a decentralized ledger
in this research study, the network for which the ledger is maintained consists of only
contractors, supply facilities, and the final base destinations. Essentially, tracking responsibility
is passed down from supplier to checkpoint. The checkpoint managers responsible for the
charges in a shipment delivery may create and commit the transaction over the BC network,

Acquisition Research Program
Graduate School of Defense Management - 220 -
Naval Postgraduate School

and the next checkpoint manager may agree or disagree about the condition and extraneous
details of the shipment that the previous manager signed. Currently, the DON uses service-wide
transport (SWT) as a clearinghouse, which is a centralized operations and maintenance
manager created to provide transportation funds for naval shipments and mail. Since naval
cargo and the movement of mail to bases is not a responsibility of a destination location, the
SWT was created to pay for the movement of material, such as aircraft engines, mission module
packages, catapult and arresting gear, propellers, shafts, civil engineering support equipment,
safety equipment, drones, overseas mail, and Navy Exchange Service Command (NEXCOM)
merchandise shipped from within the United States to international locations.

For disconnected operations, to maintain an accurate ledger with the consensus
algorithm, the peer nodes must be connected to the Fabric environment unless the peer node
decides to save the ledger as a .JSON file and re-upload the ledger as a .CSV file once back
online. The ledger is automatically updated after the node reconnects following disconnections
due to shipboard communications. The Fabric environment will make BC technology a more
viable option for all naval transportation activities.

The Navy requires a multifunctional and secure platform that enables personnel to track
multiple shipments from production facilities to bases and a secure ledger of inventory that can
only be modified with either an undisputed consensus or access to the smart contract. Once a
peer node administrator or user in the network has access to their smart contract, they can
modify the transaction protocol that occurs on transactions in the network. However, the
network will not instantiate a new version until there is an agreement with the channel creator or
the majority of the channel members.
 In this simplified logistics BC network, the smart contract contains six methods that carry
out the protocol for each transaction on the ledger: foodAssetExists, createFoodAsset,
readFoodAsset, updateFoodAsset, trackFoodAsset, and deleteFoodAsset. The method of using
names indicates that each shipment is checked to verify if it already exists at a location denoted
by a string. After checking for duplication, the asset is created in the ledger using a key-value
pair, such as “001: a shipment of supplies.” Once the asset is created, it is always a good
practice to read the asset’s details into the ledger so that users further down the network have a
detailed understanding of what a package is supposed to contain. Also, if a shipment is
changed—say, a package is redirected to a base that requires supplies urgently—the
shipment’s location is updated within the ledger and deleted once the shipment arrives.
 A multifunctional and secure platform that enables personnel to track multiple shipments
from production facilities to bases or ships in transactions involving money, items, material, and
history should be trusted, transparent, and traceable back to the origin of the item. These
transactions involving information, money, or physical items such as food or parts usually
involve the enforcement of policy, technical, or legal requirements that require the enforcement
of business rules. BC can maintain a secure ledger of inventory (or transactions involving data
or information) that can only be modified with either an undisputed consensus or access to the
smart contract, which can enforce business rules and flag “violations.” Once a peer node
administrator or user in the network has access to their smart contract, they can modify the
transaction protocol that occurs on transactions in the network. However, the network will not
instantiate a new version until there’s an agreement with the channel creator or the majority of
the channel members.
 Based on the above process, we showed how a food or item tracking scenario would
work using both IBM and Oracle cloud versions of HLF (see Figure 6). In these BC networks we
set up, the smart contracts contain six methods that carry out the protocol for each transaction
on the ledger: foodAssetExists, createFoodAsset, readFoodAsset, updateFoodAsset,

Acquisition Research Program
Graduate School of Defense Management - 221 -
Naval Postgraduate School

trackFoodAsset, and deleteFoodAsset. In our food/item tracking scenario, the method of using
names indicates that each shipment is checked to verify if it already exists at a location denoted
by a string. After checking for duplication, the asset is created in the ledger using a key-value
pair, such as “001: a shipment of supplies.” Once the asset is created, it is always a good
practice to read the asset’s details into the ledger, so that users further down the network have
a detailed understanding of what a package is supposed to contain. Also, if a shipment is
changed, say, a package is redirected to a base that requires supplies urgently, the shipment’s
location is updated within the ledger and deleted once the shipment arrives.

Figure 3. Sample Ledger of Shipments That Are Added and Updated (Contents/Location)

Blockchain Use Case Examples for the Navy Logistics/Supply Chain
Using IBM BC Platform™: To use the IBM BC Platform, users are required to install four

vital components: (1) the Virtual Studio Code environment, (2) Node.js, (3) Docker, and (4)
Kubernetes. The Virtual Studio Code environment is the offline integrated development
environment (IDE), where developers create smart contracts using the open-source
programming language Typescript, which was developed by Microsoft.

Smart contracts serve as the fundamental basis of all enterprise BCs because they give
certified users the ability to create new transactions and assets, as well as other functions
specific to a project. In this project, the team’s main goal was to create a consensus network
that has the power to create food shipment assets, update or delete them from the ledger when
required, and track their location using the “foodId” string, which may be replaced by radio-
frequency identification (RFID).

The HLF (from the Linux Foundation) is the basis of both IBM and Oracle platforms. Its
components are created in a Kubernetes cluster usually within the IBM Cloud. A Kubernetes
cluster contains a set of working machines (nodes) that run containerized applications. The
nodes within the cluster host the components of the application workload. Within the cluster, the
control plane manages the nodes and workloads that run across multiple machines, as shown in
Figure 7:

Acquisition Research Program
Graduate School of Defense Management - 222 -
Naval Postgraduate School

Figure 4. Visual Representation of the Interaction Between Kubernetes and Cloud

Figure 8 illustrates the ordering service. When the Fabric environment is running, you
can create the ordering service. The ordering service is a group of orderers that accepts
approved transactions endorsed by the peer nodes based on the smart contracts and organizes
the transactions in the appropriate order in the ledger blocks based on the consensus algorithm.

Figure 5. Visual Representation of the Integration of Security and Nodes in a BC Channel

The peer nodes host ledgers and smart contracts—the backbone of the BC network.
The smart contract—the transaction protocol—automatically executes, controls, and documents
transactions or events occurring on the network.

Like all BC frameworks, the network’s integrity is upheld by the consensus algorithm.
Each node in the network reviews the entire BC and checks that all previous blocks are valid so
that a new transaction may be initiated into the network. However, alternatively, in a
permissionless public BC, the consensus algorithm is replaced by the PoW, which creates a
hash system of all of the transactions.

In a PoW system, miners constantly attempt to solve the algorithm so that they may
mine new blocks and be the first to extend their BC. HLF doesn’t use the wasteful PoW but uses
a system closer to the “Proof of Stake” as a consensus mechanism. Essentially, decisions are
authorized by users who are permitted to join the system and specific channel, as not everyone
can join the network. Unlike PoW, computational power is not required, since there are no
puzzles needed to obtain “currency.” In a “Proof of Stake” system, “validators” are discouraged
from creating faulty empty blocks because they have the motivation to incorporate a maximum
number of transactions for gains.

To ensure security, the hash must be solved by all the peer nodes in the network so that
the new transactions may be approved for the network. While this alternate approach is viable, it

IBM
Blockchain

Acquisition Research Program
Graduate School of Defense Management - 223 -
Naval Postgraduate School

is also time-consuming because ensuring that the ledger is tamper-free requires each ledger
copy in the nodes to be changed and hashes to be solved.

Developers should install Node.js and Docker unless the developer exports both items
into a .JSON file and re-uploads both the files onto the peer nodes as a .CSV file. Docker
serves as an OS-level platform to package containers and bundled software, libraries, and
configuration files.

Figure 9 shows that using well-defined channels within the software, these containers
communicate with each other to allow the user to connect to the Fabric environment and add to
or change the ledger. Finally, the Kubernetes system, which was designed by Google and
maintained by the Cloud Native Computing Foundation, is the main system that allows the IBM
BC Platform to package, install, deploy, and manage the multiple peer nodes in the platform.

Figure 6. Visual Representation of the Interaction Between the External Software and the HLF

Environment

Figure 10 provides an overview of how you would manage the offchain (UI[2]) and the actual BC
network consisting of three Fabric components: CA(4), the peer nodes, and the ordering
service. Compare Figure 8 to Figures 1 and 2.

Acquisition Research Program
Graduate School of Defense Management - 224 -
Naval Postgraduate School

Figure 10: High-Level Representation of IBM Blockchain Platform Architecture

Using the Oracle Blockchain Platform: On both Oracle and IBM platforms, we were able

to set up a BC network with peer nodes (stakeholders) with smart contracts that set up the rules
for transferring and tracking assets such as food items discussed previously. More work needs
to be done on enhancing the network to accurately represent this aspect of the supply chain.

The team set up the network using an Oracle cloud with four peer nodes set up over a
single channel and used Oracle Identify Management for role-based access. Separate roles are
required for adding users to a role with BC provisioning entitlement, which requires tenancy
admin. Additionally, the cloud platform was used instead of the software package due to the
amount of storage memory required to host the software appliance VM packages on a local
computer. However, the fundamental concepts of using an HLF environment and consensus
algorithm remained the same for both platforms to build a BC network.

Oracle Blockchain Platform also provides wizards to simplify joining multiple instances to
the network, creating new channels, and deploying chaincodes. Implementation of smart
contracts is through Typescript (see Figure 11). These and other DevOps functions are also
available via extensive REST APIs for off-chain applications to interface the BC network.

Figure 11. Sample Smart Contract for Tracking Food Shipments (Language: Typescript).

Acquisition Research Program
Graduate School of Defense Management - 225 -
Naval Postgraduate School

Oracle offers both a managed Cloud version (Oracle Blockchain Platform) of OBP
(Blockchain-as-a-Service) and a customer-managed OBP Enterprise Edition for on-premise (or
3rd party cloud) deployment, and nodes can be deployed using both for a hybrid network
deployment (see Figure 12). The Cloud SaaS version was used for this project. To access this
platform, users must log in with authenticated credentials in Oracle Cloud Infrastructure. Once
logged in, users can provision an instance, which comes with a default channel and participant
nodes, along with “orderers” that are responsible for maintaining the order of the ledger. An
operations Console is provided, and users are not required to download any external software
to work with the platform, other than an Integrated Development Environment (i.e., Visual Studio
Code) to develop the chaincode and the REST API Testing tool, such as Postman and/or HLF
Software Development Kit, which is downloadable from the OBP Console under the Developer
Tools tab.

Figure 7. Oracle Blockchain Platform Cloud Service Architecture

 The Oracle Blockchain Platform (see Figure 10) comes with an API Gateway that
supports REST API so that developers can invoke a transaction, invoke a query, subscribe
events with a registered callback, and view the status of a transaction within the ledger as well
as a set of DevOps REST APIs for administration, configuration, and monitoring tasks.1
Current Use Cases Using Linux version of HLF for System Safety

While both IBM and Oracle are HLF-based, their complete solutions use their respective
cloud services are enhanced by their specific products. For our new set of system safety use
cases (a work in progress), we installed HLF on a Naval Postgraduate School virtual Red Hat
server and installed HLF from the Linux open-source foundation, which provides all the needed
images and tools to set up a BC. Unix tools include the Git client, CURL, and Docker with
Docker-Compose without Kubernetes, which are key components to build the BC network in a
rapid manner. This model suits the researcher who wants to study and test out the concepts
before moving to production, at which point a vendor-supported option can better address the
challenges. Typical enterprise BC platforms provide dashboards for BC management such as
the status and health of the HLF network. In the case of the open-source version, no such tools
are provided; instead, everything is done via command; thus one has to have a good idea of
Unix command line tools and scripting languages like BASH. Both IBM and Oracle allow you to
use an IDE to build the applications. All three platforms offer interfaces via APIs to programming
languages like JavaScript, Java, Microsoft Visual Studio, and others. For most production
instances, we think a cloud-based BC is usually the right way to go for maintainability, support,
ease of use, and security.

1 The team was given access to the Oracle Cloud Platform thanks to the NPS liaison relationship with the
Oracle Blockchain team.

Acquisition Research Program
Graduate School of Defense Management - 226 -
Naval Postgraduate School

For the Linux Foundation version of HLF, the complete install includes commands to set
up an HLF network, issue certificates, set up the ledger, create channels, install chaincode, and
more. A sample BASH script is provided that goes over all these steps and can be customized
for new projects such as for our three system safety use cases. The Docker container-based
platform allows one to have several HLF projects to coexist. The test network is shown in Figure
13 with two organizations, R1 and R2. Organization R0 owns the ordering service (O) of
channel C1. A copy of the ledger L1 is on all nodes. The root CA issues the certificates CA0,
CA1, and CA2 for the three organizations.

Figure 13. Initial Blockchain Network on Open-Source HLF

Use Case 1: First a channel is created, and member organizations are added into the

channel. The ledger contains the needed URLs to access the different binaries. Using APIs,
depending on the requester, the chaincode will craft a unique response to be sent back. When
the response is received, the URL and text are preprocessed; this happens in a middleware
server outside the HLF, thus a custom webpage is created and served to the end user. This
webpage has links to authenticated repositories (database back end). Once authenticated
access is granted to the data scientist (data and training sets used in research and stored in a
database), an encrypted anchor or URL may be sent to the data scientist to download the
dataset.

Use Case 2: When a member organization needs to see a part of the ledger, then
channels have to be created. Membership to a channel is restricted to a subgroup of the
organizations. Using chaincode, the metrics part of the ledger is provided to members of the
metrics channel. There exists another channel where members can see the raw data using
queries—again dictated by the chaincode. Membership to the two channels is a different set of
organizations. Similar development methods used in Use Case 1 apply to Use Case 2.

Use Case 3: In this scenario again, a channel is created for a certain member
organization (not all). These members will be able to access the data in CouchDB via API
queries. Chaincode will decide which source code (stored in the CouchDB) is provided as a
returned result of the query. The database is replicated on every node, which might be an
advantage on the edge and an I/O to IoT devices on the edge. Specific use cases for this
capability haven’t been developed.

Summary and Conclusions
From our work, the following lessons learned can be applied to protecting datasets such

as training sets for AI:
1. Various versions of HLF will work adequately, but due to complexity, we recommend not

using open-source but software vendors such as Oracle, IBM, Microsoft Azure BC, and
others. BC is not a DoD core competency; therefore, contractor support is needed.

Acquisition Research Program
Graduate School of Defense Management - 227 -
Naval Postgraduate School

2. HLF or other BCs alone are not the entire solution, since BC is an enabling or general
purpose technology (GPT)—so in itself, it is not a solution. You must use a BC protocol
within an integrated network infrastructure that also provides for the last mile to bring the
data to the user, and this is through APIs. We recommend, ceteris paribus, that you
consider using the same company that runs your relational databases or ERP, as your team
will be familiar with that architecture.

We used a qualitative methodology that included three general logistic use cases: (1)
financial and inventory transaction audit trails, (2) serial number tracking, and (3) maintenance
log integrity. These were used in consultation with the topic sponsor. We created simple
scenarios where items were tracked through a BC network, and smart contracts would check for
certain conditions that would simulate quality control and tracking. We selected two enterprise
HLF platforms, Oracle and IBM, and evaluated them in terms of functionality, development
ease, and security.

We found that both the IBM and Oracle BC platforms may be used to create a secure
network of peer nodes and a consensus for the legitimacy of the shipment ledger, which can
only be modified using smart contracts. A special concern with Navy logistics is the possibility of
unreliable networks, especially from shore to ship. The BC protocol creates a multitude of
copies of the blocks (the public ledger) and if connectivity is lost, the blocks will be updated
once the network node communications are reestablished. Both IBM and Oracle BC platforms
were accessed through the cloud, but the option is for the Navy to put either platform on its
implementation of the cloud or servers.

There were differences between IBM and Oracle implementation of HLF, such as how the
whole network infrastructure was implemented, user interfaces, the developer tools and
application programming interfaces provided, and how the implementation would connect to the
Navy’s legacy systems to reach the last mile—such as on the ship. These were real value-
added capabilities since HLF alone cannot make an enterprise BC system that supports the
existing logistics information system.

BC technologies offer the potential to reduce costs and logistical friction by providing a
trusted ledger in support of logistic transactions and processes. Errors can be reduced through
smart contracts, as demonstrated in both IBM and Oracle BC platforms. BC tracks assets, and
therefore, BC can track data assets just as well as a partial solution to software safety.
Intermittent Communications

The Navy primarily operates at sea, which means the communications infrastructure
supporting the BC network may not always be available or reliable, or provide bandwidth. A
significant concern when implementing BC technology in cargo shipments is its dependence on
a continuous connection to the Fabric environment. However, HLF is a robust distributed
database (ledger) that has many copies of itself.

The BC platform does require you to be connected to the Fabric environment at all times
or to consistently re-upload the ledger to the peer nodes to have a constant accurate ledger. BC
provides an update method that if a node is offline, it will have an update of its BC once reliable
network is reestablished.
The Issue of Governance
 Figure 4 showed a simple notational circle labeled “Governance,” but this issue is far
from simple and is the key to any implementation of BC in support of data. While a detailed
discussion of governance is beyond the scope of this paper, Gaur and Gaur (2018) presented a
variety of frameworks, some of which would apply to permissioned BC networks. Previous
discussions of BC governance tended to be about public BCs supporting cyber currencies. They

Acquisition Research Program
Graduate School of Defense Management - 228 -
Naval Postgraduate School

noted that while BC is about decentralization, there will have to be some aspects of centralized
governance—especially ones involving policy and legal aspects in the storage and use of data.
For example, governance could include safeguards through smart contracts that could flag
possible AI bias, especially ones used for human resources. Governance can consist of
different layers, and one classification recognizes the different levels the data serves and
classified as strategic, operational, and tactical governance. Since BC is decentralized by
nature, the governance should be at the lowest level if diversity and flexibility are important.
Ziolkowski et al. (2020) looked at governance that includes demand and data management,
system architecture design and development, membership, and data ownership. Each one
represents a possible off- or on-chain solution that involves technical and policy
considerations—both of which may include smart contracts as solutions and resources (Feagan,
2020). System architecture design and development are not trivial tasks and are based to a
great extent on governance and policies. To resolve this, IT network engineers must work as
part of a consortium to determine the appropriate way to expose their peers to other
organizations to receive transaction endorsement proposal/simulation requests while minimizing
an attacker’s ability to gain access to sensitive information stored in the simulating peer’s
database (Feagan, 2020). The level of rigor is ultimately determined by the policies derived by
governance. Data accessibility is also a key, so governance should have policies that allow
scientists working for the DoD to find data not through randomness but structure, without undue
delay, and data that complies with software safety. BC supporting “smart repositories” may
facilitate this goal. The default should be to allow our data scientists and analysts timely access
to data unless there is a good reason not to. Our adversaries work for AI superiority, and
withholding data from their researchers is something they avoid. We refer to unclassified and
non-PII/medical data.
Findings

We demonstrated through IBM and Oracle examples that HLF could meet logistics/audit
and security requirements through smart contracts and the inherent trust systems with
embedded certificates. Data entry errors could be reduced through smart contracts, which is an
inherent feature of HLF. We believe a consortium BC through HLF would be a way to go to be
able to share information (through the ledger) with suppliers and other third parties but also
have the capability not to share when appropriate. BC could add the capability for secure
transactions through certificates and the immutability of the transactions on the BC. The
additional capability of BC on Navy logistics and supply would be able to catch some data entry
errors, to trace back to the source, and basically to better know the what, the who (verified), and
the where of various transactions generated by the supply chain.

We found that both the IBM and Oracle BC platforms may be used to create a secure
network of peer nodes or naval hotspots that can generate a consensus for the legitimacy of the
shipment ledger, which can only be modified using smart contracts. Since a key component of
both platforms is maintaining accuracy and security of the ledger, all users must consistently
export and import the smart contracts and ledgers onto their respective peer nodes every time
an update is made on the ledger or if the transaction protocol on the smart contract is changed.
A special concern with Navy logistics is the possibility of unreliable networks, especially from
shore to ship. The BC protocol creates a multitude of copies of the blocks (the public ledger),
and if connectivity is lost, the blocks will be updated once the network node communications are
reestablished. Both IBM and Oracle BC platforms were accessed through the cloud, but the
option is for the Navy to put either platform on its implementation of the cloud or on servers.

There were differences between IBM and Oracle implementation of HLF—such as how
the whole network infrastructure was implemented, user interfaces, the developer tools and
application programming interfaces provided, and how the implementation would connect to the

Acquisition Research Program
Graduate School of Defense Management - 229 -
Naval Postgraduate School

Navy’s legacy systems to reach the last mile, such as on the ship. These were real value-added
capabilities, since HLF alone cannot make an enterprise BC system that supports the existing
logistics information system.

We found a “consortium BC” with a BC consensus network to be the best fit for the use
cases. A consortium allows both private and public users to use the BC while control is
maintained by the private users (the Navy) through a consensus network, which means by the
consensus of trusted Navy entities. This is contrasted by PoW BC networks used in cyber
currency, which are inefficient and not appropriate for a government entity. BC technology has
the potential for revolutionizing the logistics process by ensuring the quality and trustworthiness
of logistical generated data as well as providing provenance of parts and food, but it is new and
risky.

The team also compared the IBM and Oracle BC platforms on efficiency and
maintainability of a ledger of shipments and discovered that it was easier to use the IBM
platform to create and export smart contracts and ledger; however, in September 2021, Oracle
will provide similar capabilities for developing and deploying smart contracts. The IBM platform
required users to develop their smart contract on the Visual Studio Code environment, export
the contract as a .JSON file, log in to the online BC network, and import the contract and ledger
as a .CSV file using a converter.

The Oracle Blockchain Platform, on the other hand, allowed users greater flexibility to
join ledgers more cohesively. The Oracle platform allowed users to log in to the Oracle cloud
after they were approved by an administrator and used simple software like IDE and the
Software Development Kit. Furthermore, the Oracle Blockchain Platform employed chaincode
as a smart contract for transactional protocols in the network. A chaincode is written in either
Java, Node.js, or Go and packaged into a ZIP file, which can be installed on the network. This is
similar to how smart contracts are exported as .JSON files and uploaded on the IBM network as
.CSV files. More specifically, chaincodes outline the structure of the ledger, initialize it, create
updates (such as reading or updating entries), and respond to queries.

Should HLF be used for software safety for ML and AI development? BC is general
purpose technology (GPT) like the Internet, so BC isn’t a solution in and of itself, but it acts as
an enabler that provides a trusted, distributed ledger that could be used for smart repositories
and software safety. If other technologies are better, then why aren’t they commonplace? BC
isn’t the solution but, along with off-chain technology, may be a technology that enhances
existing business processes.

References
Athalye, A., Engstrom, L., Ilyas, A., & Kwok, K. (2017). Synthesizing robust adversarial

examples.
Chauhan, G. (2018, September 14). AI safety. Towards Data Science.

https://towardsdatascience.com/ai-safety-
9aeb9ca42907#:~:text=AI%20Safety%20is%20collective%20termed,of%20real%2Dworl
d%20AI%20systems

Defense Standardization Program Office. (2012). System safety (MIL-STD 882E). Pentagon.
Eden, A. H., Moor, J. H., Soraker, J. H., & Steinhart, E. (2013). Singularity hypotheses: A

scientific and philosophical assessment. Springer.
Everitt, T. (2018). Towards safe artificial general intelligence [Doctoral thesis, Australian

National University]. https://www.tomeveritt.se/papers/2018-thesis.pdf

https://towardsdatascience.com/ai-safety-9aeb9ca42907#:%7E:text=AI%20Safety%20is%20collective%20termed,of%20real%2Dworld%20AI%20systems
https://towardsdatascience.com/ai-safety-9aeb9ca42907#:%7E:text=AI%20Safety%20is%20collective%20termed,of%20real%2Dworld%20AI%20systems
https://towardsdatascience.com/ai-safety-9aeb9ca42907#:%7E:text=AI%20Safety%20is%20collective%20termed,of%20real%2Dworld%20AI%20systems
https://www.tomeveritt.se/papers/2018-thesis.pdf

Acquisition Research Program
Graduate School of Defense Management - 230 -
Naval Postgraduate School

Feagan, L. (2020, April). Hyperledger fabric myths and reality. Object Computing.
https://objectcomputing.com/resources/publications/sett/april-2020-hyperledger-fabric-
myths-and-reality

Gaur, N., & Gaur, N. (2018). Hands-on blockchain with Hyperledger: Building decentralized
applications with Hyperledger fabric and composer (1st ed.). Packt Publishing.

Jia, X., Hu, N., Yin, S., Zhao, Y., Zhang, C., & Cheng, X. (2020). A2 chain: A blockchain-
based decentralized authentication scheme for 5G-enabled IoT. Mobile Information
Systems, 2020. https://doi.org/10.1155/2020/8889192

Lampropoulos, K., Georgakakos, G., & Ioannidis, S. (2019). Using blockchains to enable big
data analysis of private information. IEEE 24th International Workshop on Computer-
Aided Modeling and Design of Communication Links and Networks, 2019, 1–6,
https://doi.org/10.1109/CAMAD.2019.8858468

Roland, H., & Moriarty, B. (1990). System safety engineering and management (2nd ed.).
Wiley.

Sarpatwar, K., Vaculin, R., Min, H., Su, G., Heath, T., Ganapavarapu, G., & Dillenberger, D.
(2019). Towards enabling trusted artificial intelligence via blockchain. In S. Calo, B.
Seraphin, & D. Verma (Eds.), Policy-based autonomic data governance (1st ed., pp.
137–153). Springer International Publishing. https://doi.org/10.1007/978-3-030-
17277-0_8

Simerly, M. T., & Keenaghan, D. J. (2019). Blockchain for military logistics. Army
Sustainment, 51(4), 48–49.

ur Rehman, M., Salah, K., Damiani, E., & Svetinovic, D. (2020). Towards blockchain-based
reputation-aware federated learning. IEEE Conference on Computer
Communications Workshops, 183–188.
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163027

Ziolkowski, R., Miscione, G., & Schwabe, G. (2020). Decision problems in blockchain
governance: Old wine in new bottles or walking in someone else’s shoes? Journal of
Management Information Systems, 37(2), 316–348.
https://doi.org/10.1080/07421222.2020.1759974

https://objectcomputing.com/resources/publications/sett/april-2020-hyperledger-fabric-myths-and-reality
https://objectcomputing.com/resources/publications/sett/april-2020-hyperledger-fabric-myths-and-reality
https://doi.org/10.1155/2020/8889192
https://doi.org/10.1109/CAMAD.2019.8858468
https://doi.org/10.1007/978-3-030-17277-0_8
https://doi.org/10.1007/978-3-030-17277-0_8
https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9163027
https://doi.org/10.1080/07421222.2020.1759974

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Abstract
	Introduction
	The Problem of System Safety
	Applying Successful BC Techniques to Ensure System Safety of AI Deployed Weapon Systems:

	The Hyperledger Fabric Blockchain Solution

	Methodology
	Blockchain Use Case Examples for the Navy Logistics/Supply Chain
	Blockchain Use Case Examples for System Safety

	Use Cases Using Three Hyperledger Fabric Versions
	Successful Applications of Blockchain for Naval Supply Chain Tracking
	Blockchain Use Case Examples for the Navy Logistics/Supply Chain
	Current Use Cases Using Linux version of HLF for System Safety

	Summary and Conclusions
	Intermittent Communications
	The Issue of Governance
	Findings

	References

