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Abstract  
Traditional learning curve theory assumes a constant learning rate regardless of the number of 
units produced; however, a collection of theoretical and empirical evidence indicates that learning 
rates decrease as more units are produced in some cases. These diminishing learning rates 
cause traditional learning curves to underestimate required resources, potentially resulting in cost 
overruns. A diminishing learning rate model, Boone’s Learning Curve (2018), was recently 
developed to model this phenomenon. This research confirmed that Boone’s Learning Curve is 
more accurate in modeling observed learning curves using production data of 169 Department of 
Defense (DoD) end-items. However, further empirical analysis revealed deficiencies in the 
theoretical justifications of why and under what conditions Boone’s Learning Curve more 
accurately models observations. This research also discovered that diminishing learning rates are 
present but not pervasive in the sampled observations. Additionally, this research explored the 
theoretical and empirical evidence that may cause learning curves to exhibit diminishing learning 
rates and be more accurately modeled by Boone’s Learning Curve. Only a limited number of 
theory-based variables were useful in explaining these phenomena. This research further justifies 
the necessity of a diminishing learning rate model and proposes a framework to investigate 
learning curves that exhibit diminishing learning rates.  

Introduction 
The Budget Control Act of 2011 subjected the Department of Defense (DoD) to a more 

fiscally constrained and financially conscious environment than ever before, contrasted with a 
demand for new acquisition programs of almost every type. As an increasing number of 
programs are terminated, managers at every level in the DoD are expected to ensure the DoD’s 
shrinking budget is being used in the most cost-effective way. The increased scrutiny adds 
greater emphasis on the accuracy of program office cost estimates given that an approved 
program cost estimate supports every major acquisition program funded by the DoD.  

In order to obtain reliable cost estimates, cost estimating models and tools within the 
DoD must be evaluated for their relevance and accuracy. The current learning curve methods 
used within the DoD’s cost estimating procedures are from the 1930s (Wright, 1936). As 
automation and robotics increasingly replace human touch-labor in the production process, the 
current 80-year-old model may no longer be appropriate for accurate learning curve (and cost) 
estimates. Robotics and automation machines do not learn; however, they are inevitably a part 
of future production. New learning curve methods that incorporate automated production should 
be examined as a possible tool for cost estimators in the acquisition process. Additionally, we 
examine the flattening effect that occurs toward the end of the acquisition process and the 
impact this has on different learning curve formulas. Originally published by Badiru (2012), the 
half-life of a learning curve is the incremental production level required to reduce cumulative 
average cost per unit to half its initial level. Conversely, a half-life forgetting curve is the amount 
of time it takes for performance to decline to half of its initial level. A model that more accurately 
reflects true cost is critical for planning, especially over the long-term when there are hundreds 
of millions of dollars involved. The results of this research will inform the acquisition community 
as well as provide a tool that has the potential to significantly outperform the cost estimation and 
learning curve models currently in use.  
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The purpose of this research ultimately is to investigate new learning curve methods, 
develop learning curve theory within the DoD, and pursue a more accurate cost estimation 
model.  

Research Approach (Methodology) 
The premise of this research is to apply a new learning curve in such a way that the 

estimated learning rate is modeled as a decreasing function over time as opposed to the 
constant learning rate that is currently in use with Wright’s Learning Curve. The current model in 
use today mathematically states that for every doubling of units there will be a constant gain in 
efficiency. For example, if the manufacturer observed a 10% reduction in man-hours in the time 
to produce unit 10 from the time to produce unit 5, then they should expect to see the same 
10% reduction in man-hours in the time to produce unit 10 to the time to produce unit 20. 
Unfortunately, in real world situations this constant rate of decay is rarely the case. We propose 
that more accurate cost estimates could be made if a decay factor was taken into consideration. 
The proposed modification may take this form:  

 

( )Cos ( ) f xt X aX=  

Where:  
Cost(X) = the cumulative average time (or cost) per unit  
X = the cumulative number of units produced  
A = time (or cost) required to produce the first unit  
F(x) = the learning curve slope represented as a function of units produced  

 

The specific function used for the slope is what this research will attempt to understand. 
Figure 1 shows the phenomena this research will attempt to model, where the black (flatter) line 
depicts the traditional curve used to model learning, the red (steeper) line represents the 
hypothesized learning structure, and the blue line represents actual data.  

 

 
Figure 1. Learning Curve Comparison 
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Learning Curve Background 
The concepts of learning and learning curves are intuitive: as a worker repetitively 

performs tasks to assemble a product, the worker will gain efficiencies. These efficiencies 
should decrease the time the worker spends on each unit as more units are produced. These 
efficiencies translate to a continuous reduction in labor hours and cost savings over time. The 
GAO Cost Estimating and Assessment Guide (2009) lists four reasons for these gains in 
efficiency that broaden the scope of learning. First, as more units are produced, workers tend to 
become “more physically and mentally adept” at performing tasks, and supervisors become 
more efficient at utilizing workers. This aspect of learning is considered to be learning-by-doing 
at the laborer level and is termed autonomous learning (Levy, 1965). Second, the work 
environment is improved to include the “climate, lighting, and general working conditions” 
(Leonard, 2009). Third, the production process is changed to “optimize the placement of tools 
and material and simplify tasks.” Lastly, market forces in the competitive business environment 
will require suppliers to improve efficiency to survive. These last three aspects of learning are 
considered to be organizational learning by continuous improvement efforts termed induced 
learning (Levy, 1965; Dutton & Thomas, 1984). 

Several terms are used to describe learning curves that include cost improvement curve, 
cost/quantity relationship, manufacturing process function, experience curve, and product 
improvement function (International Cost Estimating and Analysis Association [ICEAA], 2014, p. 
7). The original and most generalized term learning curve will be used in this research. Although 
learning curves are used most popularly in aircraft manufacturing, the concept can be applied to 
“relatively large and complex products that require various types of fabrication and assembly 
skills” (Asher, 1956, p. 5). The Air Force Cost Analysis Handbook includes several specific 
situations in which learning curves apply that include “the manufacture of a complex end-item, 
limited changes to product characteristics or technology, continuous manufacturing process, 
constant management pressure to improve, and consistent production rates” (Department of the 
Air Force, 2007, pp. 8-1–8-2). The Handbook also includes other criteria, including “a high 
proportion of manual labor, labor efficiency/job familiarization, standardization, specialization, 
and methods improvements, improved materiel flow and reduced scrap, improved production 
procedures, tools, and equipment, improved workflow and engineering support, and product 
redesign improvements” (Department of the Air Force, 2007, pp. 8-1–8-2). These situations 
describe aspects of the manufacturing process that enable organizational learning and allow for 
labor efficiencies, although learning can occur without all criteria being present.  
Cumulative Average Learning Curve Theory 

The concept of a learning curve was first formally recorded by Theodore Paul Wright in 
1936 in his work “Factors Affecting the Cost of Airplanes.” Wright identified the learning curve 
concept in a pre-World War II production environment of a small two-seater aircraft (ICEAA, 
2014, p. 16). He observed that as a worker repeatedly performs the same task, the time 
required to complete that task will decrease at a constant rate. More specifically, Wright 
formulized that as the number of aircraft produced doubles, the cumulative average labor cost 
would decrease at a constant rate (Wright, 1936). This relationship is described in Equation 1 
and is the Cumulative Average Theory widely in use. When learning curves utilize this 
Cumulative Average Theory, they are frequently called “Wright Curves” (ICEAA, 2014, p. 16).  
 
Equation 1 

𝑌𝑌� = 𝐴𝐴𝑥𝑥𝑏𝑏 (1)  
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where Y  ̅is the cumulative average cost of the first x units, A is the theoretical cost to produce 
the first unit, x is the cumulative number of units produced, and b is the learning curve slope 
(LCS) divided by the natural logarithm of 2.  

The learning curve slope in the learning curve exponent “b” of Equation 1 defines how 
each doubling of produced units reduces cumulative average costs. For example, Wright used 
his empirical data to calculate a learning curve slope of 80%. Therefore, as the cumulative 
number of units doubles, the cumulative labor cost of the doubled units would be 80% of the 
original undoubled amount, resulting in a 20% cumulative average reduction in labor cost 
(Wright, 1936). This 20% cumulative average reduction can also be called the rate of learning. 
Higher rates of learning lead to greater reductions in labor costs. Although Wright’s model cited 
80% as a universal learning curve slope, learning curve theory evolved to realize that other 
slopes are possible based on an end-item’s unique manufacturing characteristics (Jaber, 2006).  

Wright’s Cumulative Average Learning Curve is cumbersome to use because cumulative 
average costs are calculated in place of the unit cost. Figure 2 depicts Wright’s Learning Curve 
with an 80% learning curve slope based on a first unit cost of 100. Figure 2 shows that as the 
cumulative number of units produced doubles, the cumulative average cost decreases by 20%. 
The corresponding unit cost is also displayed to highlight how the cumulative average cost 
differs from the unit cost. The unit cost is calculated by summing the cumulative costs up to but 
not including the unit number and subtracting it from the total cost. In Figure 2, the first unit cost 
for both cumulative average cost and unit cost is 100. For unit two, the cumulative average cost 
of the first two units is 80; this is a 20% reduction due to an 80% learning curve slope. The total 
cost of the first two units is 160. Because the first unit cost is known to be 100, the second unit 
cost can be calculated from the difference to be 60. These same calculations can be used to 
obtain the unit costs for the remaining units.  
 

 
Figure 2. Wright’s Cumulative Average Theory at an 80% Learning Curve Slope 

 

Wright illustrated Equation 1 using a graph with vertical and horizontal axes displayed in 
logarithmic rather than linear scale. Wright illustrated his equation on this logarithmic graph in 
order to highlight the straight line representing a constant rate of learning (Wright, 1936). The 
same function can be graphed in linear scale by transforming Equation 1 into a log-linear form 
by taking the natural logarithm of both sides. This log-linear transformed equation is shown in 
Equation 2. The parameter definitions for Equations 1 and 2 are the same.  
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Equation 2 

𝑙𝑙𝑙𝑙 𝑌𝑌� = 𝑙𝑙𝑙𝑙𝐴𝐴 + 𝑏𝑏 𝑙𝑙𝑙𝑙 𝑥𝑥     (2)  
 
Equation 2 also allows analysts to apply linear regression analysis in order to estimate the 
parameters A and b from a set of cumulative average cost data (Mislick & Nussbaum, 2015, p. 
185). Figure 3 displays Wright’s Cumulative Average Theory at an 80% learning curve slope 
transformed into a log-linear form. The parameters are identical to the parameters of Figure 2 
with a first unit cost of 100. The constant learning curve slope indicated by the linear slope in 
Figure 3 is a crucial concept of this traditional learning curve theory. 
 

 
Figure 3. Wright’s Cumulative Average Theory at an 80% Learning Curve Slope in Log-Linear Form 

 Unit Learning Curve Theory  
Several years following Wright’s Cumulative Average learning curve theory, J. R. 

Crawford formulated the Unit Learning Curve Theory, formally written in 1944. Together, these 
theories form the basis of the traditional learning curve theory. Crawford proposed his Unit 
Theory first in an undated manual prepared for Lockheed Aircraft Company personnel after 
realizing the difficulty of calculating unit costs from Cumulative Average Learning Curve Theory 
equations (Asher, 1956, pp. 21–22). As shown in Equation 3, Crawford’s Learning Curve yields 
an estimated unit cost given the unit’s sequential unit number within the production line, a 
learning curve slope, and a theoretical first unit cost. Crawford’s Unit Theory is the same as 
Wright’s aside from these differences in variable interpretation. Learning curves are often called 
“Crawford Curves” when they utilize Crawford’s Unit Theory (ICEAA, 2014, p. 31).  
Equation 3 

 𝑌𝑌 = 𝐴𝐴𝑥𝑥𝑏𝑏 (3)  
 

where Y is the individual cost of unit x, A is the theoretical cost of the first unit, x is the unit 
number of the unit cost being forecasted, and b is the LCS divided by the natural logarithm of 2.  

Using Crawford’s Unit Theory with a learning curve slope of 80% and a first unit cost of 
100 labor hours, the cost of the second unit is 80 labor hours. This 20% reduction in labor hours 
or rate of learning is due to the 80% learning curve slope. Figure 4 illustrates Crawford’s Unit 
Theory using the same parameters from Wright’s Cumulative Average Theory shown in Figures 
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2 and 3. The cumulative average costs are not shown in Figure 4 because these are not 
germane to Unit Theory.  
 

 
Figure 4. Crawford’s Unit Theory at an 80% Learning Curve Slope 

 

Crawford’s Unit Theory Learning Curve is transformed into a log-linear form using the same 
methodology used to derive Equation 2. Crawford’s Learning Curve in log-linear form is shown 
in Equation 4 using the same parameter definitions from Equation 3.  
 

Equation 4 

 𝑙𝑙𝑙𝑙 𝑌𝑌 = 𝑙𝑙𝑙𝑙𝐴𝐴 + 𝑏𝑏 𝑙𝑙𝑙𝑙 𝑥𝑥     (4)  
 

Crawford’s Unit Theory Learning Curve is shown in logarithmic scale in Figure 5. Similar 
to Cumulative Average Theory, the constant learning indicated by the linear slope in Figure 5 is 
a vital concept of this theory: the rate of learning remains constant as the units double 
regardless of the number of units produced.  
 

 
Figure 5. Crawford’s Unit Theory at an 80% Learning Curve Slope in Log-Linear Form 
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 Crawford’s Unit Theory parameters are straightforward to estimate when data are 
available by each unit (also called unitary data); however, manufacturers generally report cost 
data in the form of production lots that include the total lot cost and the number of units in that 
lot (Mislick & Nussbaum, 2015, p. 191). Unlike Wright’s Cumulative Average Theory, Crawford’s 
Unit Theory must utilize lot midpoints to estimate parameters when unitary cost data is 
unavailable. The algebraic lot midpoint is defined as “the theoretical unit whose cost is equal to 
the average unit cost for that lot on the learning curve” (Mislick & Nussbaum, 2015, p. 192). In 
other words, the lot midpoint is the unit that will divide the area under the learning curve evenly 
within the lot (Mislick & Nussbaum, 2015, p. 192). This lot midpoint is used in the Unit Theory 
learning curve formula as the sequential unit number or independent variable “x” in Equations 3 
and 4. The lot midpoint supplants using sequential unit numbers because sequential unit 
numbers are unavailable when using lot cost data. When the lot midpoint is the independent 
variable in Equation 3, the dependent variable will yield the average lot cost. The average lot 
cost results because this x-coordinate is the most representative point for the lot (ICEAA, 2014, 
p. 40).   

Lot midpoints are calculated in a two-step approach due to the lack of a closed-form 
solution. A closed-form solution does not exist because the lot cost is a function of the learning 
curve exponent b from Equations 3 and 4 used to estimate the lot midpoint. However, the lot 
midpoint is also used to estimate the learning curve exponent “b.” The first step in calculating a 
lot midpoint utilizes a parameter-free approximation formula to estimate the lot midpoint. These 
lot midpoint estimates are then used to estimate the learning curve exponent “b.” The second 
step is to use a lot midpoint formula that includes an estimate of the learning curve exponent “b” 
and iterate until successive values of the estimated lot midpoints and “b” are sufficiently small 
(Mislick & Nussbaum, 2015, pp. 200–201). The parameter-free lot midpoint approximation is 
shown in Equations 5 (Mislick & Nussbaum, 2015, p. 193).  

 

Equation 5 

 Lot Midpoint (LMP) = 𝐹𝐹+𝐿𝐿+2√𝐹𝐹𝐿𝐿
4

  (5)  
 
where F is the first unit number in a lot and L is the last unit number in a lot. These lot midpoint 
estimates are then used to estimate the learning curve parameters for Crawford’s model 
(Equation 3) using the GRG non-linear optimization algorithm.  
 Several parameter lot midpoint approximations exist, but a simple and popular lot 
midpoint approximation is Asher’s Approximation shown in Equation 6. The same parameter 
definitions presented in Equation 5 also apply to Equation 6, and the learning curve exponent 
“b” is the same as shown previously in Equations 1–4 (Mislick & Nussbaum, 2015, p. 201).  
 

Equation 6 

Lot Midpoint ≈ �
�𝐿𝐿+12�

𝑏𝑏+1
−�𝐹𝐹−12�

𝑏𝑏+1

(𝐿𝐿−𝐹𝐹+1)(𝑏𝑏+1) �
�1𝑏𝑏�

   (6)  

 
where F is the first unit number in a lot, L is the last unit number in a lot, and b is the estimated 
value from Equation 1.  
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Comparison of Cumulative Average and Unit Theory  
Cumulative Average Theory and Unit Theory will produce different predicted costs 

provided the same set of data despite all predicted costs being normalized to unit costs. Figure 
6 demonstrates this point where Unit Theory was used to generate data using a first unit cost of 
100 and a learning curve slope of 90%. The original Unit Theory data was converted to 
cumulative averages in order to estimate Cumulative Average Theory Learning Curve 
parameters. Cumulative Average Theory estimated a learning curve slope of 93% and a first 
unit cost of 101.24. These Cumulative Average Theory parameters were then used to predict 
cumulative average costs. These predicted costs were then converted to unit costs. This 
conversion allows for the Cumulative Average predictions to be directly compared to the original 
Unit Theory generated data.  
 

 
Figure 6. Cumulative Average and Unit Learning Curve Theory Comparison 

 

As shown in Figure 6, the Cumulative Average Learning Curve predictions first 
overestimate, then underestimate, and ultimately overestimate the generated Unit Theory data 
for all remaining units. A similar case would occur if Cumulative Average Theory were used to 
generate data and Unit Theory learning curve parameters were estimated from this data. Figure 
6 highlights that these two theories are inherently different due to differences that occur when 
estimating learning curves parameters using unit costs or cumulative average costs. Several 
factors can assist an analyst in deciding which theory to apply; however, solely relying on 
goodness-of-fit statistics will likely bias the decision toward Cumulative Average Theory (Mislick 
& Nussbaum, 2015, p. 215; Cullis et al., 2008). Frequently goodness-of-fit statistics to include 
the coefficient of determination (R2) and standard error are used to determine which model best 
explains variation in a dataset. The coefficient of determination is the total variation of the 
dependent variable explained by the independent variable (Hilmer, 2014, p. 90). The standard 
error is the measure of how far on average the data tend to fall from the predicted learning 
curve (Hilmer, 2014, p. 91). These goodness-of-fit statistics can be used when comparing 
models of the same units, which is not the case when comparing Cumulative Average and Unit 
Theory learning curves.   
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Researchers investigated this Cumulative Average Theory goodness-of-fit statistic bias 
and presented at a Society of Cost Estimating and Analysis (SCEA) conference (Cullis et al., 
2008). The researchers used a methodology similar to that used to produce the example 
illustrated in Figure 6. Cumulative Average data were first generated, and a Unit Theory learning 
curve was fit to this data. Unit Theory data were then generated, and a Cumulative Average 
learning curve was fit to this data. The goodness-of-fit statistics reliably indicated the correct 
learning curve theory to model these perfect data. Next, artificial variation was injected into the 
generated data, and the researchers repeated the process. When the researchers injected 
variation or error in the data, the goodness-of-fit statistics overwhelmingly favored selecting 
Cumulative Average Theory over Unit Theory even with small amounts of variation in the data 
(Cullis et al., 2008). In other words, Cumulative Average Theory Learning Curves will tend to 
have a higher coefficient of determination and lower standard error when compared to Unit 
Theory learning curves. This bias in the goodness-of-fit statistics is because Cumulative 
Average Theory is a cumulative running average, so the curves are generally smoother and 
closer to the data points (Mislick & Nussbaum, 2015, p. 215). Therefore, bias exists in favor of 
Cumulative Average Theory, so more subjective judgments are warranted to determine which 
learning curve theory to utilize.   

The GAO Cost Estimating and Assessment Guide (2009) provides factors to consider 
when choosing which learning curve theory to model data. Analysts should review which 
theories were applied to analogous systems that are similar in form, fit, or function to the current 
system being considered (GAO, 2009, p. 369). Next, some industries have standards that prefer 
one theory over the other (GAO, 2009, p. 369). Experience should also be considered by 
reviewing which theory has been applied to the contractor in the past (GAO, 2009, p. 369). 
Lastly, some aspects of the production environment can indicate which theory is best to apply 
(GAO, 2009, p. 369). For example, Cumulative Average theory is best when “the contractor is 
starting production with prototype tooling, has an inadequate supplier base, expects early 
design changes, is subject to short lead times,” or where there is a risk of concurrency between 
development and production phases (GAO, 2009, p. 369). In contrast, Unit Theory is more 
suited for contractors that are well-prepared to begin production (GAO, 2009, p. 369).   

Other factors must be considered when deciding which learning curve theory to use. 
Cumulative Average learning curve theory will provide more conservative estimates and is less 
responsive to trends than the Unit Learning Curve theory (Mislick & Nussbaum, 2015, p. 215). 
For these reasons, Unit Learning Curve theory is frequently favored by government negotiators 
when negotiating contracts (Mislick & Nussbaum, 2015, p. 215). Cumulative Average Learning 
Curve theory also relies on continuous data and is unable to be calculated with missing prior 
data using traditional estimation techniques.   

Finally, when ordinary least squares (OLS) regression is used to estimate Cumulative 
Average learning curve parameters, the cumulative averaging technique violates the OLS 
regression assumption of independence. For OLS regression to provide an unbiased estimator, 
the data must be obtained through independent random sampling (Hilmer, 2014, pp. 111–112). 
In other words, the unit labor cost and its associated unit number cannot be statistically related 
to other observations of unit labor cost and their associated unit numbers. This assumption is 
violated due to the costs of earlier observations being a function of the costs of later 
observations from cumulative averaging calculations. This violation biases the learning curve 
parameters to produce expected values that are not equal to the population parameter being 
estimated (Hilmer, 2014, p. 109). Despite this violation, Cumulative Average Learning Curves 
estimated using OLS regression are widely used and remain a valid method for estimating 
learning curves.  
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Cost Accounting for Learning Curves  
The fundamental aspects of traditional learning curve theory apply only to a subset of 

total program costs. Hence appropriate costs must be considered when applying the theory to 
yield viable parameter estimates and predictions. In a complex program, costs can be presented 
in units of hours or dollars and organized as recurring and non-recurring for various cost 
elements of the end-item or the program as a whole. For each cost element, labor costs are 
also categorized into further groups. The analyst must select the applicable subset of costs and 
consider their units when utilizing learning curve theory.   

Costs are generally categorized as recurring and non-recurring costs. Non-recurring 
costs are one-time costs that are not directly attributable to the number of end-items being 
produced (Mislick & Nussbaum, 2015, p. 26). Recurring costs are costs that are incurred 
repeatedly for each unit produced (Mislick & Nussbaum, 2015, p. 26). At the basis of learning 
curve theory is the idea that costs vary as more units of an end-item are produced. Therefore, 
non-recurring costs are excluded from learning curve analysis due to the inability to relate these 
costs with the number of units produced (Mislick & Nussbaum, 2015, p. 180). Traditional 
research also has limited insight into how learning applies to nonrecurring costs. For these 
reasons, learning curve analysis focuses solely on recurring costs in estimating learning curve 
parameters and predicting recurring costs (Mislick & Nussbaum, 2015, p. 180).   

Manufacturing program costs are also organized broadly as labor, material, and 
overhead. T. P. Wright initially claimed that all these categories vary with the number of units 
produced, although he specifically focused on labor hour costs when forming his seminal theory 
(Wright, 1936). Due to this focus and the intuitive idea of learning at the laborer level, 
researchers have since focused solely on labor costs, including J. R. Crawford. Crawford 
exclusively studied labor learning and elaborated at length on how learning occurs from the 
laborer’s perspective (Asher, 1956, p. 24). Both fundamental theorists also focused on the 
laborers who manufactured the aircraft by considering touch labor (Asher, 1956, pp. 16, 21). 
Additionally, cost estimating standard practice and guidance concerning learning curves also 
provides the basis for considering touch labor costs only (ICEAA, 2014, p. 7; Department of the 
Air Force, 2007, p. 8-1).   

Defense contractors are often contractually required to submit costs incurred when 
producing large, complex end-items for the U.S. government. These costs have historically 
been submitted on the Defense Department (DD) Form 1921 report series to include the 
Functional Cost-Hours Report DD Form 1921-1 and Progress Curve Report DD Form 1921-2. 
The DoD transitioned to using the Cost and Hour Report “FlexFile” and Quantity Data reports on 
May 15, 2019 (Burke, 2019). However, historical program data will likely remain in the legacy 
1921 series forms, and “FlexFile” and Quantity Data reports can easily be manipulated to legacy 
1921 forms. The 1921-1 form is organized by work breakdown structure (WBS) elements that 
include various functional cost categories both in units of hours and dollars. Three broad 
functional cost categories: labor, material, and other costs are included in both forms of 
recurring and non-recurring costs. This form also has four functional labor categories that 
include manufacturing, tooling, engineering, and quality control labor. These four labor category 
costs, when summed with the material costs and other costs, comprise the total cost for each 
WBS element for recurring and non-recurring costs. This total cost is provided in units of dollars 
due to the underlying units of material and other costs. A document accompanies the 1921-1 to 
describe the elements of the form called a 1921-1 Data Item Description (DID). The 1921-1 DID 
defines these various functional cost categories to include the four labor categories whose 
definitions are useful in determining which categories pertain to learning curve analysis.   

The definition for the manufacturing labor cost category most clearly aligns with the 
extant literature to be the focus as the pertinent labor cost category for learning curve research. 
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According to the 1921-1 DID, the manufacturing labor category “includes the effort and costs 
expended in the fabrication, assembly, integration, and functional testing of a product or end-
item. It involves all the processes necessary to convert raw materials into finished items” (1921-
1 Data Item Description, p. 12). This manufacturing labor category aligns with the categories 
examined by Wright (1936), which he called “assembly operations” (p. 124), along with those 
cost categories Crawford studied, which he called “airframe-manufacturing processes” (Asher, 
1956, p. 21). A RAND learning curve study also defined the direct labor used in the study as 
“those expended to manufacture the airframe and install the equipment required to transform 
the airframe into a complete, flyable airplane” (Asher, 1956, p. 49). Therefore, the 
manufacturing labor cost category as defined by the 1921-1 DID is associated with the types of 
labor costs studied by traditional learning curve theorists and succeeding research. However, 
data availability can prompt analysts and researchers to use total costs instead. Although these 
curves remain valid according to Wright (1936), they are composite learning curves with caveats 
to be discussed later.  The 1921-1 is organized into WBS elements defined for each program. A 
WBS element is a method to display, define, and organize the overall end-item into sub-
products while maintaining their relationship with the end-item and other sub-products (DoD, 
2018, p. 4). For example, WBS elements for an aircraft program could include the airframe, 
wings, and engines, among other elements. These WBS elements are comprised of lower-level 
elements as well. For example, the airframe element may include elements such as the forward, 
middle, and aft airframe. WBS elements can also comprise activities instead of physical 
components such as testing the aircraft. Although some of these activities may experience 
efficiencies over time, traditional learning curve theory focuses exclusively on the production of 
physical components. WBS elements are frequently organized into various cost categories that 
can comprise elements suitable and unsuitable for learning curve analysis.  

WBS elements are organized into various cost categories to include procurement costs, 
weapons system costs, and flyaway/rollaway/sail-away costs among others. Not all WBS 
elements and their respective cost categories are pertinent for learning curve analysis. The 
group of WBS elements in which learning is relevant is prime mission equipment and its sub-
elements. Prime mission equipment is all hardware and software WBS elements installed on the 
weapon system such as “propulsion equipment, electronics, armament, etc.” (Flyaway Costs, 
n.d.). The prime mission equipment WBS aligns with those elements that experience learning 
according to the traditional learning curve theorists. The prime mission equipment WBS group 
excludes elements such as systems engineering and program management (SE/PM) and 
system test and evaluation (STE); these costs are instead included in flyaway costs (Flyaway 
Costs, n.d.). These latter elements are activities tangentially related costs that may not 
experience learning as theorized by the traditional learning curve literature.  

Recent learning curves research has considered equivalent WBS elements. Moore et al. 
(2015) scoped their research to consider airframe costs, which is a sub-element of prime 
mission equipment due to the homogeneity of the programs they analyzed. Honious et al. 
(2016) also used airframe costs. Boone used prime mission equipment WBS elements to 
perform analysis due to the wide variety of programs researched (Boone, 2018, pp. 22–23).   

Another cost accounting item to consider is whether to use hours or dollars as the units 
for labor cost. The total cost for each WBS element is provided in dollars due to material and 
other costs not having associated labor hours. Therefore, if the total WBS cost is used for 
analysis, units of dollars will be used. In contrast, the four labor categories to include 
manufacturing labor has both dollars and hours associated with each. Ideally, labor hours would 
be analyzed for a variety of reasons as discussed by the Air Force Cost Analysis Handbook 
(2007). First, labor dollars must be normalized to remove the effects of escalation (Department 
of the Air Force, 2007, p. 8-65). Escalation effects comprise economy-wide price changes as 
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well as industry-specific price changes. Normalization removes these price variations that allow 
for labor costs to be compared across different fiscal years. The escalation indices used to 
normalize data are estimates of the escalation that the industry experienced that year. 
Therefore, the use of escalation indices can inject error into the data. In contrast, if labor hour 
data were used, labor costs between years could easily be compared without normalization. 
Furthermore, changes in labor rates can also bias the labor cost learning curve. Senior 
personnel are brought on to a program initially due to the initial complexity (Department of the 
Air Force, 2007, p. 8-65). Once the program stabilizes and production increases, the program 
usually transitions to more junior labor (Department of the Air Force, 2007, p. 8-65). This labor 
rate effect, when combined with the effect of normal learning, artificially steepens the learning 
curve (Department of the Air Force, 2007, p. 8-65). Therefore, the slopes of learning curves 
utilizing labor dollars will likely be steeper due to the influence of declining average labor rates 
as the workforce builds towards full-rate production (Department of the Air Force, 2007, p. 8-
65). Although using labor cost data in dollars does not invalidate analysis and is frequently 
utilized due to data availability, labor hour data would ideally be used for these reasons.   

In summary, the literature indicates using direct, recurring, manufacturing labor costs in 
the form of hours. These costs should be considered only for the WBS elements that include 
prime mission equipment and its lower-level elements. Using these specific WBS costs in the 
form of hours ensures alignment with the original costs and elements considered to be affected 
by learning in the traditional models. Although this review exclusively examined the DD 1921-1 
form, the 1921-2 form reports the same cost data, albeit in a different format for specific use in 
learning curve analysis. The methodology on which WBS elements and costs to consider is 
translatable between the two legacy forms along with the current Cost and Hour Report 
“FlexFile” and Quantity Data reports.  
Variations to Traditional Learning Curve Theory  

The traditional learning curve models assume a constant learning environment 
comprised of a stable production line and invariable end-item design. Due to the realities of 
changing production environments and modifications to the end-item configuration, many 
researchers have investigated non-stable learning environments. These areas include 
production rate changes, changes to the end-item design during production, and breaks in 
production, among other topics.   

Production rates of end-items can vary as the program proceeds through the production 
life cycle. Researchers in a 1974 RAND report first formally proposed that production rate 
effects can alter unit costs (Large et al., 1974). The researchers hypothesized that as more units 
are produced, fewer costs would be allocated to each unit due to fixed costs within the 
manufacturing process (Large et al., 1974). When fixed costs are allocated over more units, 
each unit will be less expensive. The researchers also hypothesized that as more units are 
produced, the contractor may be able to take advantage of volume discounts, resulting in lower 
material costs per unit (Large et al., 1974). This modified learning curve equation, termed Unit 
Theory with Rate Adjustment, is shown in Equation 7.  

 

Equation 7 
 

 𝑌𝑌 = 𝐴𝐴𝑥𝑥𝑏𝑏𝑅𝑅𝑐𝑐     (7)  
 
Where:  
𝑌𝑌 = cost of the xth unit  
A = theoretical cost to produce the first unit (T1)  
x = sequential unit number of the unit being calculated  
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b = ln 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝐶𝐶𝐶𝐶𝐿𝐿𝐶𝐶𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿
𝑆𝑆𝐿𝐿

  
R = Annual production rate  
c = ln𝑅𝑅𝐿𝐿𝑅𝑅𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐿𝐿

ln2
  

 
Despite these logical hypotheses, the researchers rarely found the rate term to be 

statistically significant. Several factors can cause the rate term to be not statistically significant, 
such as how the contractor responds to the production rate changes. There are also statistical 
challenges when investigating rate effects due to the likely presence of multicollinearity. The 
independent variables “x” and “R” in Equation 7 do not make independent contributions to 
describe the dependent variable because there is no means to hold “x” constant while changing 
“R.” For these reasons, statistical analysis is unable to discern the effects that either variable 
has on the dependent variable. The presence of multicollinearity tends to cause one or both 
independent variables to be not statistically significant when using linear regression analysis 
(Department of the Air Force, 2007, pp. 8-31–8-32). Also, researchers have studied how 
production breaks alter the learning curve. Production breaks occur when the manufacturer of 
the end-item stops production for a period. During the time lapse between the completion of a 
unit and the start of another unit, a loss of learning can occur. This learning loss results in an 
increased cost for the first unit following a production break and all subsequent units (Honious et 
al., 2016).  

One popular method to assess the loss of learning and subsequent unit costs is the 
Anderlohr Method (1969). This method identifies five factors that when weighted appropriately 
account for the amount of learning lost during the production break. The amount of lost learning 
is used to regress up the original learning curve before production resumes. Once production 
resumes, the manufacturing process resets to the cost of a previously produced unit and 
progresses back down the revised learning curve at the original learning rate for all units 
produced after the production break (Anderlohr, 1969).   

The final area in which research has focused is changes to the end-item during 
production. These changes include additions, deletions, and substitutions of components of the 
end-item. These modifications can occur due to conventional engineering change orders to the 
configuration of the end-item or due to concurrency between development testing and 
production that reveals necessary design changes. The addition, deletion, and substitutions of 
components of an end-item during production can cause the following units’ costs to differ 
significantly from what is predicted using traditional learning curve theory (Department of the Air 
Force, 2007, pp. 8-50–8-56). Additionally, configuration changes can also affect the rate at 
which the manufacturing process learns, which alters and often steepens the original learning 
curve slope (Honious et al., 2016). The learning curve slope is especially affected during 
concurrency between development testing and production due to the continual flow of design 
changes, which tend to flatten the learning curve slope (Department of the Air Force, 2007, p. 8-
50–8-56).   

This research into production rates, production breaks, and changes to end-items 
demonstrates the importance of a stable production environment with a constant end-item 
configuration. Without these tenets, traditional learning curve analysis becomes challenging due 
to confounding variables. The influence of confounding variables obscures how unit costs are 
related to the number of units produced.  
Forgetting & Plateauing Phenomena  

An implicit assumption in the traditional learning curve theories is that knowledge 
obtained through learning does not depreciate (Epple et al., 1991). However, empirical evidence 
demonstrates that knowledge depreciates in organizations (Argote, 1993; Argote et al., 1990). 
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Argote et al. (1990) have shown that knowledge depreciation occurs at both the laborer level 
and the organizational level. Many variations of the traditional models make use of a concept of 
performance decay and forgetting to model non-constant rates of learning. Forgetting and its 
effects on lost learning can take many forms and is essential to consider in contemporary 
learning curve analysis. Forgetting is the concept that laborers and the organization as a whole 
will experience a decline in performance over time resulting in non-constant rates of learning. 
Badiru (2012) theorizes that forgetting and resulting performance decay is a result of factors 
“including lack of training, reduced retention of skills, lapse in performance, extended breaks in 
practice, and natural forgetting” (p. 287). According to Badiru (2012), these factors may be 
caused by internal processes, including training policy or external factors such as breaks in 
production.  

Badiru (2012) lists three cases in which forgetting arises. First, forgetting may occur 
continuously as a worker or organization progresses down the learning curve due in part to 
natural forgetting (Badiru, 2012). In other words, the impact of forgetting may not wholly eclipse 
the impact of learning but will hamper the rate of learning while performance continues to 
increase at a slower rate. Second, forgetting may occur at distinct and bounded intervals such 
as during a scheduled production break (Badiru, 2012). Third, forgetting may intermittently occur 
at random times and for stochastic intervals such as during times of employee turnover (Badiru, 
2012). Figure 7 illustrates this third case where intermittent periods of forgetting degrade the 
regular learning curve path to result in a degraded performance curve. In this illustration, the 
learning curve is shown as an increase in performance rather than a decrease in time or cost 
(Badiru, 2012). Others have expanded on the causes of forgetting and have drawn similar 
conclusions to Badiru (2012), such as Glock et al., 2019; Jaber, 2006; and Jaber & Bonney, 
1997.  

 
Figure 7. Effects of Forgetting on the Traditional Learning Curve 

This decline in performance decays the rate of learning that causes longer 
manufacturing times and higher costs than would be forecasted using traditional learning curve 
theory. Although forgetting is common when production breaks occur as previously discussed, 
forgetting can occur without interruptions to the production line as discussed by Argote et al. 
(1990) and Badiru (2012). Many contemporary learning curve models attempt to incorporate the 
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concept of forgetting. Models that incorporate variations to traditional learning curves—including 
rates of production, breaks in production, and configuration changes to end-items—attempt to 
model Badiru’s (2012) second case of forgetting. Badiru’s (2012) third case is challenging to 
model due to the stochastic nature of when and for how long forgetting will occur.   

The concept of forgetting and its impact on decaying and non-constant rates of learning 
has proven relevant in contemporary learning curve research. Several forgetting models have 
been developed to include the learn-forget curve model (LFCM; Jaber & Bonney, 1996), the 
recency model (RCM; Nembhard & Uzumeri, 2000), the power integration and diffusion (PID) 
model (Sikström & Jaber, 2002), and the Depletion-Power-Integration-Latency (DPIL) model 
(Sikström & Jaber, 2012) among others (Glock et al., 2019). However, these forgetting models 
focus solely on the phenomenon of forgetting due to interruptions of the production process and 
most directly model Badiru’s (2012) second case of forgetting (Glock et al., 2019; Anzanello & 
Fogliatto, 2011; Jaber, 2006). Jaber (2006) states that “there has been no model developed for 
industrial settings that considers forgetting as a result of factors other than production breaks” 
(p. 30-13) and mentions this as a potential area of future research. Although forgetting models 
have emerged after Jaber (2006), a review of the popular forgetting models cited confirms 
Jaber’s statement. Therefore, Badiru’s (2012) first case of forgetting along the learning curve 
and its effect on the curve should be investigated.   

A related concept to the forgetting phenomenon is the plateauing phenomenon. 
According to Jaber (2006), plateauing occurs when the learning process ceases. This ceasing 
of learning results in a flattening or partial flattening of the learning curve corresponding to rates 
of learning at or near zero. These near-zero rates of learning are in contrast to forgetting curves 
where rates of learning may become negative resulting in inverted learning curves. There 
remains debate as to when plateauing occurs in the production process or if learning ever 
ceases completely (Asher, 1956; Crossman, 1959; Honious et al., 2016; Moore et al., 2015). 
Jaber (2006) provides several explanations to explain the plateauing phenomenon that include 
concepts related to forgetting. Baloff (1966, 1970) recognized that plateauing is more likely to 
occur when capital is used in the production process as opposed to labor. According to some 
researchers, plateauing can be explained by either having to process the efficiencies learned 
before making additional improvements along the learning curve or to forgetting altogether 
(Corlett & Morcombe, 1970). According to other researchers, plateauing can be caused by labor 
ceasing to learn or management’s unwillingness to invest in capital to foster induced learning 
(Yelle, 1980). Related to this underinvestment to foster induced learning, management’s doubt 
as to whether learning efficiencies related to learning can occur is cited as another hindrance to 
constant rates of learning (Hirschmann, 1964).   

Li and Rajagopalan (1998) investigated these explanations and concluded that no 
empirical evidence supports or contradicts them while ascribing plateauing to depreciation in 
knowledge or forgetting. Jaber (2006) concludes that “there is no tangible consensus among 
researchers as to what causes learning curves to plateau” and alludes that this is a topic for 
future research (p. 30-9).  
Boone’s Learning Curve: Accounting for the Flattening Effect 

In an attempt to address the previous issues highlighted in constant learning rates, 
Boone (2018) developed a learning curve model with a rate of learning that diminishes as more 
units are produced. The traditional learning curve theories diminish the rate of cost reductions 
as more units are produced because costs will decrease at a constant rate only when the 
number of units produced doubles. Because the rate at which units double decreases as more 
units are produced, the rate of cost reductions will also decrease as more units are produced. 
However, the literature review cited various theoretical and empirical evidence indicating that 
the cost reductions that occur with each doubling of units may not be constant as the number of 
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units produced increases. Therefore, Boone (2018) sought to attenuate the cost reductions that 
occur with each doubling of produced units by reducing the amount that each doubled unit’s 
cost decreases as the number of units increases. This attenuation of cost reductions was 
accomplished by decreasing the rate of learning as the number of units increases.   

Boone (2018) began by formulating a model where the exponent of the traditional 
learning curve equation is a function of the number of units produced. This amendment was 
intended to vary the learning curve exponent with the independent variable “x” in order to alter 
the degree of cost efficiencies experienced as the number of units produced changes. He then 
devised a series of specific models that decreased the learning curve exponent “b” as the 
number of units produced “x” increased. Boone (2018) first created a model without an 
additional parameter that aimed to reduce the learning curve exponent “b” directly by the unit 
number. However, he claimed that it resulted in too drastic of changes to the exponent value 
and did not model data appropriately (Boone, 2018, p. 20). To temper the effect each additional 
unit has on the parameter “b,” a qualifier was added. This qualifier “c” was named Boone’s 
Decay Value with an initially studied value ranging from zero to 5,000 (Boone, 2018, p. 21). The 
resulting Boone’s Learning Curve is shown in Equation 8.  

 

Equation 8 

 𝑌𝑌� = 𝐴𝐴𝑥𝑥𝑏𝑏/(1+𝑥𝑥𝑐𝑐)      (8)  
Where: 
𝑌𝑌� = the cumulative average time (or cost) per unit  
X = the cumulative number of units produced 
a = time (or cost) required to produce the first unit  
b = slope of the function when plotted on log-log paper = log of the learning rate/log of 2  
c = Boone’s Decay Value (range can be anything except 0)  
 

Boone found this curve was not only flatter near the end of production but was also 
steeper in the early stages in comparison to the traditional theory learning curve (Boone, 2018, 
p. 21). Holding the cumulative number of units produced “x” constant, as Boone’s Decay Value 
approaches zero, the parameter “b” approaches zero representing a learning curve slope 
approaching 100%. As Boone’s Decay Values approaches infinity, the parameter “b” remains 
unchanged, and Boone’s Learning Curve simplifies to the traditional learning curve (Boone, 
2018, p. 23).   

Boone (2018) proceeded to test his model using Cumulative Average Theory against 
Wright’s model. Boone (2018) utilized prime mission equipment cost data in units of total dollars 
for fighter, bomber, and cargo aircraft programs along with missile and munition programs (p. 
21). He constrained his data to require at least five lots per program to prevent overfitting the 
data (Boone, 2018, p. 22). In total, 46 weapon system platforms were tested (Boone, 2018, p. 
23). The OLS regression method is unable to estimate the parameters for Boone’s Learning 
Curve because of the non-constant rate of learning; Boone’s Learning Curve is convex in 
logarithmic scale. Instead, Boone utilized Microsoft Excel’s Solver package to minimize the sum 
of squares errors (SSE) by iteratively adjusting the theoretical first unit cost “T1,” the learning 
curve slope “b,” and Boone’s Decay Value “c” (Boone, 2018, p. 24). The conventional OLS 
methodology was maintained to estimate the parameters for Wright’s Cumulative Average 
learning curve because this model remains linear in logarithmic scale (Boone, 2018, p. 24). 
Microsoft Excel’s Solver requires bounds for each parameter when solving for the combination 
of parameter values that minimize the SSE. Wright’s Learning Curve parameters informed these 
bounds to assist in estimating Boone’s Learning Curve parameters (Boone, 2018, pp. 24–25).  
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Boone’s theoretical first unit cost parameter minimum bound was equal to half of 
Wright’s theoretical first unit cost and twice the value of Wright’s first unit cost for the maximum 
bound (Boone, 2018, pp. 24–25). Boone’s “b” parameter bounds were set between -3 and 3 
times Wright’s “b” specific to each estimated learning curve (Boone, 2018, pp. 24–25). These 
two bounds’ values varied for each learning curve estimated due to their dependence on 
Wright’s Learning Curve parameters. Lastly, Boone’s Decay Value was bound from zero to 
5,000 for all estimated learning curves (Boone, 2018, pp. 24–25). The only limits that were 
found to be binding when solving for optimal values were the upper limit of Boone’s Decay 
Value (Boone, 2018, p. 25).   

Boone then estimated the parameters for his curve and Wright’s curve for each of the 46 
programs using Cumulative Average Learning Curve theory. He obtained goodness-of-fit 
statistics in the form of the SSE and MAPE for each estimate in order to compare the accuracy 
of both curves (Boone, 2018, pp. 25–26). Boone then performed a paired difference t-test for 
both SSE and MAPE statistics (Boone, 2018, pp. 25–26). Both the SSE and MAPE paired 
difference t-tests rejected the null hypothesis that the means were equal to zero (Boone, 2018, 
pp. 29–30). These tests indicate that Boone’s Learning Curve more accurately explains the cost 
data in comparison to Wright’s Learning Curve at a significance level (α) of 0.05. Therefore, 
Boone demonstrated his learning curve to be more accurate to a statistically significant degree 
in comparison to Wright’s Learning Curve (Boone, 2018, pp. 30–31).   

Boone did not assess the predictive capacity of his model in comparison to Wright’s by 
estimating parameters for a subset of early units and then extrapolating to future lots using the 
same estimated parameters. This approach departs from previous research including Moore et 
al. (2015) and Honious et al. (2016); however, this may be due to data availability as several 
lots are required for predictive analysis. Additionally, Boone did not hold constant the traditional 
learning curve parameters and estimate his new parameter, Boone’s Decay Value, with these 
values fixed. Instead, Boone allowed all three of his parameters to change from Wright’s 
estimated parameter values. Boone’s methodology is also a departure from the previous 
methodology where Moore et al. (2015) and Honious et al. (2016) estimated the traditional 
learning curve, held the estimated parameters constant, and then added additional parameters. 
Boone’s methodology may also be justified because Boone’s Decay Value is a result of 
estimating learning curves and requires a different learning curve slope and first unit cost be 
considered. This Decay Value is unlike the parameters Stanford-B parameter and 
incompressibility parameter “M,” which are measurable values that describe the manufacturing 
process itself.  

Methodology Population and Sample 
In order to test Boone’s Learning Curve against the traditional learning curve theories, 

quantitative data from a diverse set of DoD programs was gathered. The population studied is 
DoD programs that have produced several complex end-items over time. These complex units 
can include aircraft, land vehicles, and missiles along with their complex sub-systems and sub-
components. The data sample consists of programs with the necessary information required for 
learning curve analysis. This required program data included direct recurring labor costs in units 
of labor hours or total dollars per production lot along with the number of units per lot.  

The direct recurring manufacturing labor cost category for each applicable WBS 
element was used to obtain labor hour data for each program. If this labor hour data were 
unavailable, the total recurring cost for each applicable WBS element was utilized instead. The 
total recurring dollar cost comprises the costs of all functional categories of labor along with 
materials costs and other costs for each WBS element. Unlike labor hours, costs in units of 
dollars must be normalized to be compared over time; therefore, all costs in units of dollars were 
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normalized using escalation rates based on Producer Price Index (PPI) 3364 Aerospace 
Products and Parts. Removing the effects of escalation using PPI 3364 is common practice 
when normalizing costs in the aerospace industry. Additionally, total costs in units of dollars 
were provided and maintained in units of thousands of dollars. These labor cost data included 
costs at the prime mission equipment. WBS level prime mission equipment costs are directly 
related to touch labor and experience learning. Depending on data availability, additional 
elements below the prime mission equipment WBS elements were also analyzed to include 
engines and wings among other sub-systems and sub-components. Therefore, one program 
may contribute several unique components for learning curve analysis.   

This final sample included direct recurring cost data from bomber, cargo, and fighter 
aircraft along with missiles and munitions. The programs in this dataset are both historical and 
contemporary spanning 1957–2018 and include a variety of defense contractors. This diverse 
dataset tested the generalizability of Boone’s Learning Curve due to the varying levels of 
analysis along with the multitude of platforms, contractors, and production periods that foster 
various learning environments. In total, data from 123 weapon system programs were gathered 
with 258 unique components. Learning curve analysis will be performed on these unique 
components.  
Data Collection  

This dataset was created using DD Form 1921-1 “Functional Cost-Hour Report” and DD 
Form 1921-2 “Progress Curve Report” data obtained from the CADE Defense Automated Cost 
Information Management System (DACIMS). CADE DACIMS is a repository of DoD weapons 
system program cost data available to DoD analysts. Some historical data was also extracted 
from the AFLCMC Cost Research Library.   

Business rules were created to avoid overfitting the data and to ensure learning curve 
analysis was appropriate to model each component’s cost. The first business rule omitted 
programs with production lots of four or fewer. This business rule is consistent with Boone 
(2018, p. 22) and limited the sample from 258 to 169 unique components. A second business 
rule was also necessary when performing Cumulative Average Theory analysis. Cumulative 
Average Theory relies on continuous data because each lot’s cumulative average cost and 
cumulative quantity is a function of all previous lots’ costs and quantities. Therefore, if a 
program’s production lot was missing cost or quantity data, all lots after that missing lot were 
removed for that program; however, all lots before the missing lot were retained. These lot 
removals decreased the number of lots in the total program. This reduced number of lots 
warranted the complete removal of some programs by applying the first business rule. This 
second business rule limited the dataset to 140 unique components for Cumulative Average 
Theory analysis. Despite these business rules, there was not a systematic elimination of any 
characteristic of the program labor cost data; a diverse dataset remained with the previously 
stated attributes.  
Data Analysis  

This analysis will examine whether Boone’s Learning Curve more accurately explains 
variability in program labor cost data than the traditional theories. Both Cumulative Average 
Theory and Unit Theory will be used to make these comparisons. In order to test these 
hypotheses, learning curve parameters were estimated using each program’s labor cost data for 
Boone’s Learning Curve and the traditional learning curve models. Next, parameters from 
Boone’s Learning Curve and the respective traditional theory were used to predict a learning 
curve. These predicted learning curves were then compared to the observed data. In order to 
utilize Unit Learning Curve Theory, Boone’s Learning Curve was adapted from its original 
Cumulative Average Theory form to Unit Learning Curve Theory form. When Boone’s Learning 
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Curve utilized Cumulative Average Theory, Boone’s Learning Curve was compared to Wright’s 
Learning Curve. When Boone’s Learning Curve utilized Unit Theory, Boone’s Learning Curve 
was compared to Crawford’s Learning Curve.   

Parameters for each learning curve were estimated using non-linear optimization 
techniques in Microsoft Excel. The traditional learning curve theories could be estimated using 
OLS regression. However, non-linear optimization was utilized to estimate the traditional curves 
for equitable comparison with Boone’s Learning Curve. In contrast, Boone’s Learning Curve 
required the use of nonlinear optimization techniques. This requirement spawns from the fact 
that Boone’s Learning Curve is not linear when logarithmically transformed due to the decaying 
learning curve slope. This non-linearity of Boone’s Learning Curve precludes the parameters 
from being estimated using OLS regression. The learning curve parameters for Boone’s 
Learning Curve (i.e., “A,” “b,” and “c”) and the traditional theories (i.e., “A” and “b”) were 
estimated by minimizing the SSE using Excel’s Generalized Reduced Gradient (GRG) 
Nonlinear Solver and Excel’s Evolutionary Solver engines. The SSE is calculated by squaring 
the vertical difference of the observed data and predicted data for each lot and summing these 
squared differences across all lots. The SSE is calculated separately for Boone’s Learning 
Curve and the traditional learning curves. For each model, Excel Solver is set to minimize the 
objective cell that is set as the SSE. The changing variable cells are the learning curve 
parameters specific to each learning curve model. These parameters are iteratively solved for 
using optimization techniques specific to each engine for each learning curve model. When 
using Evolutionary Solver, it is also necessary to bound the changing variable cells and choose 
a set of values from which to begin the optimization process. Due to the inherent differences in 
both Cumulative Average Theory and Unit Learning Curve Theory, different specific processes 
were used to estimate parameters for each.  
Cumulative Average Learning Curve Theory  

The following process was implemented to estimate parameters for Wright’s Learning 
Curve and Boone’s Learning Curve using Cumulative Average Theory for each program.  
1. Wright’s Learning Curve parameters “A” and “b” were initially estimated using OLS 
regression.  a. Cumulative Average Cost was the dependent variable, while Cumulative 
Number of Units Produced was the independent variable. 
2. These initial learning curve parameter estimates were used as starting values to more 
precisely estimate Wright’s Learning Curve parameters using GRG Non-Linear Solver. This 
process generated final estimates for Wright’s Learning Curve parameters.  
3. Boone’s Learning Curve parameters “A,” “b,” and “c” were estimated using Excel’s 
Evolutionary Solver. This process generated initial estimates for Boone’s Learning Curve 
parameters.   

a. Final estimates for Wright’s Learning Curve parameters were used to calculate the 
upper and lower bounds of Evolutionary Solver.   

b. The starting values were calculated from the upper and lower bounds.  
4. The Evolutionary Solver learning curve parameter estimates for Boone’s Learning Curve 
were used as starting values to more precisely estimate parameters using GRG Non-Linear 
Solver.  

 

This process produced final estimates for Boone’s Learning Curve parameters. When 
estimating Wright’s Learning Curve parameters, the GRG Nonlinear Solver technique should 
produce SSE at least equal to the SSE using OLS regression. The GRG Nonlinear Solver 
technique was appropriate to estimate Wright’s Learning Curve parameters because this 
technique is used to find locally optimal solutions of smooth and non-linear functions (Solver 
Technology–Smooth Nonlinear Optimization, 2012). Because OLS regression was used to 
provide starting values for GRG Nonlinear Solver, it was reasonable to assume that the global 
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minimum is within this local region approximated using OLS regression. However, GRG 
Nonlinear Solver cannot guarantee that a global minimum is found. The GRG Nonlinear Solver 
Multistart method was also utilized to ensure this technique yielded a global minimum. However, 
the Multistart method failed to provide consistent, reliable parameter estimates, unlike GRG 
Nonlinear Solver.   

When estimating Boone’s Learning Curve, the GRG Nonlinear Solver optimized values 
for Wright’s Learning Curve parameters were used to calculate bounds for Boone’s Learning 
Curve. For the “A” parameter, the lower bound was half of Wright’s “A” parameter, and the 
upper bound was twice that of Wright’s “A” parameter. For bounds on Boone’s Learning Curve 
“b” parameter, the absolute value of Wright’s Learning Curve “b” parameter was multiplied by 3 
to yield upper (positive) and lower (negative) bounds. Lastly, for Boone’s Decay Value “c,” 
bounds were set between 0 and 500,000 in contrast to Boone’s original bounds of 0 and 5,000. 
This bound was increased in comparison to Boone (2018) due to the upper bound being binding 
in Boone’s analyses. Except for Boone’s Decay Value, these bounds are consistent with Boone 
(2018) and provide the optimization model with a restricted range to decrease the search time 
for an optimal solution but a broad enough range to not constrain the model. Similar to Boone 
(2018), none of these constraints were binding except for the Decay Value “c” upper bound 
despite relaxing this constraint in comparison to Boone (2018). Further relaxing this constraint 
would not have led to substantive changes to Boone’s Learning Curve; as Boone’s Decay Value 
“c” approaches infinity, Boone’s Learning Curve transforms into Wright’s Learning Curve.   

In order to estimate Boone’s Learning Curve, the starting values were set as the 
midpoint of the negative values of the slope parameter “b” because negative values are those 
that represent learning curve slopes below 100%. This starting point is reasonable because 
most programs in this analysis will experience cost efficiencies from learning. Thus, these 
programs will have learning curve slopes at or below 100% that translate to a negative learning 
curve exponent “b” parameter. The starting values for Boone’s Learning Curve first unit cost “A” 
parameter were the midpoint of the upper and lower bounds. These two starting values and 
bounds depend on the parameters estimated by Wright’s Learning Curve. The last starting 
value was set as the midpoint between the upper and lower bounds of the Boone’s Decay Value 
“c,” which was static at 250,000 due to the static bounds.   

Once these starting values and bounds were set, Evolutionary Solver was used to 
estimate a globally optimal solution. The Evolutionary Solver technique was appropriate to 
estimate Boone’s Learning Curve parameters because this technique is used to find a globally 
optimal solution of smooth and non-smooth functions (Solver Technology–Global Optimization, 
2016). In contrast to estimating Wright’s Learning Curve, a local region with the global minimum 
cannot be reliably approximated before using this optimization technique. This local region 
cannot be reliably approximated because OLS regression cannot be used to provide starting 
values for Boone’s Learning Curve. Similar to GRG Nonlinear Solver, Evolutionary Solver 
cannot guarantee the parameter estimates produce a global minimum. However, using the 
Evolutionary Solver solution as starting values, the GRG Nonlinear Solver was then used to 
ensure the solution is locally optimal.  
Unit Learning Curve Theory  

Unit Learning Curve Theory parameter estimation maintained the Cumulative Average 
Learning Curve Theory parameter estimation methodology for calculating various bounds and 
starting values. Additionally, the justification for utilizing both Excel Solver engines also remains 
the same. However, the inclusion of lot midpoint calculations required different analysis 
techniques. The following process was implemented to estimate parameters for Crawford’s 
Learning Curve and Boone’s Learning Curve using Unit Theory for each program.  
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1. Parameter-free lot midpoint approximations (Equation 6) were calculated for each production 
lot. 
2. Crawford’s Learning Curve parameters “A” and “b” were initially estimated using OLS 
regression.  a. Average Unit Cost was the dependent variable while Lot Midpoint, calculated 
in Step 1, was the independent variable.  
3. These initial learning curve parameter estimates were used as starting values to more 
precisely estimate Crawford’s Learning Curve parameters using GRG Non-Linear Solver. This 
process generated intermediate estimates of Crawford’s Learning Curve parameters. 
4. The intermediate estimate of Crawford’s Learning Curve “b” parameter was used to calculate 
a more precise set of lot midpoints using Asher’s Approximation (Equation 7).  
5. Applying these more precise lot midpoint approximations, Crawford’s Learning Curve 
parameters “A” and “b” were more accurately estimated using GRG Nonlinear Solver.   

a. Steps 4 and 5 were repeated until the iterative process converged on a solution to 
produce final estimates of Crawford’s Learning Curve parameters and lot midpoint 
approximations.  
6. Parameter-free lot midpoint approximations (Equation 6) were used to estimate Boone’s 
Learning Curve parameters “A,” “b,” and “c” using Excel’s Evolutionary Solver. This process 
generated intermediate estimates of Boone’s Learning Curve parameters.   

a. The final estimates for Crawford’s Learning Curve parameters were used to calculate 
upper and lower bounds.   

b. The starting values were calculated from the upper and lower bounds. 
7. The intermediate estimates of Boone’s Learning Curve parameters “b” and “c” were used to 
approximate a more precise set of lot midpoints using Asher’s Approximation adapted for 
Boone’s Learning Curve (Equation 14).  
8. Applying these more precise lot midpoint approximations, Boone’s Learning Curve 
parameters were more accurately estimated using Evolutionary Solver. This process generated 
Evolutionary Solver parameter estimates of Boone’s Learning Curve.  
9. These Evolutionary Solver parameter estimates were used as starting values to improve 
further the accuracy of Boone’s Learning Curve parameters estimates “A,” “b,” and “c” using 
GRG Non- Linear Solver.   

a. Steps 7, 8, & 9 were repeated until the iterative process converged on a solution to 
produce a final estimate of Boone’s Learning Curve parameters and lot midpoint 
approximations.   

 

For both Crawford’s and Boone’s Learning Curves, an iterative process is used to 
calculate precise parameter estimates and lot midpoint approximations. This iterative process 
was repeated until a solution converged. A solution converged when small changes in the 
learning curve exponent “b” parameter were calculated between iterations. This process of 
iterative solving was adapted from Hu and Smith’s “Accuracy Matters” (2013). For Boone’s 
Learning Curve, a limit of 10 iterations was placed on the iterative process. This limit of 10 
iterations was reached a limited number of times and still produced relatively small differences 
of Boone’s Learning Curve exponent “b” between iterations. In order to estimate lot midpoints 
and Boone’s Learning Curve parameters, Asher’s Approximation from Equation 6 was adapted 
to incorporate Boone’s decaying learning curve slope.  
Statistical Significance Testing  

The estimated parameters for Boone’s Learning Curve and the traditional learning 
curves were used to create predicted learning curves. These predicted curves were then 
compared to observed data. Total model error was calculated by comparing the difference 
between observations and predicted values to determine which learning curve theory more 
accurately explained variability in the data. Two measures were used to determine the overall 
model error. The first error measure was RMSE. RMSE is calculated by dividing the total SSE 
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by the number of observations; in our case, the number of lots in that program (McClave et al., 
2014, p. 14-25). RMSE is a scale-dependent measure. Additionally, RMSE is not robust to 
outliers; therefore, the greater the magnitude of an outlier from the average error values, the 
more influence this outlier will have on RMSE. RMSE was used instead of total SSE because 
RMSE transforms units from squared units to original units. This transformation eases 
interpretation. RMSE can be interpreted as the average amount of error of the model in the 
model’s original units.   

The second measure used to determine the overall model error was MAPE. MAPE is 
calculated by subtracting the predicted value from the observed value, dividing this difference by 
the observed value, taking the absolute value, and multiplying by 100%; these absolute percent 
errors are then summed over all observations and divided by the total number of observations 
(McClave et al., 2014, p. 14-25). MAPE provides a unitless measure of accuracy and can be 
interpreted as the average percentage the model is inaccurate. MAPE is robust to outliers, so 
the effects of outliers do not unduly influence this measure.   

After calculating these measures of overall model error, a series of paired difference t-
tests were conducted to determine if reductions in error from Boone’s Learning Curve are 
significantly different than zero or due to random chance. In order to conduct the first paired 
difference t-test, Boone’s Learning Curve RMSE using Cumulative Average Theory will be 
subtracted from Wright’s Learning Curve RMSE, and the difference will be divided by Wright’s 
Learning Curve RMSE by observation. This calculation will yield a percentage difference rather 
than raw difference to compare programs of varying differences in magnitude equitably. Only 
programs with errors reported in total dollars will be examined first to examine the results of the 
different unit measures. The null hypothesis for this test is that the percentage difference in 
RMSE is equal to or less than zero. This null hypothesis represents that Boone’s Learning 
Curve results in an equal amount of or more error in predicting observed values in comparison 
to Wright’s Learning Curve. The alternative hypothesis is that the percentage difference is 
greater than zero. The alternative hypothesis represents that Boone’s Learning Curve results in 
less error in predicting observed values than Wright’s Learning Curve. This same methodology 
was repeated five more times to examine both learning curve theories, each with two measures 
of model error for programs examined using labor hours and total dollars.  

Results 
The diverse dataset utilized in Phase 1 was augmented with observed learning curves 

estimated at the flyaway cost level to form the basis of the dataset used in Phase 2. Phase 2 
utilized Unit Theory learning curve predictions generated from analyses in Phase 1. Observed 
learning curve data, Crawford’s Learning Curve data, and Boone’s Learning Curve data were 
used to answer a variety of research questions. These analyses sought to determine 1. if the 
plateauing and forgetting phenomena occur using traditional learning curve theory, 2. how 
Boone’s Learning Curve models observed learning curve data in comparison to traditional 
learning curve theory, and 3. which program attributes, if any, can explain the programs that are 
best modeled by Boone’s Learning Curve as well as explain the prevalence of plateauing and 
forgetting phenomena.   

In order to understand if the plateauing and forgetting phenomena occur using the 
traditional learning curve theory, the mean percentage error of Crawford’s Learning Curve in the 
fourth quarter was isolated. These fourth quarter mean percentage errors indicated that 
Crawford’s Learning Curve did not systematically underestimate observed learning curves. In 
fact, the statistical tests across all quarters indicated Crawford’s Learning Curve systematically 
overestimated observed learning curves with a high amount of variability. These findings 
suggest that the plateauing and forgetting phenomena are not systematically present in 
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observed data when modeled with Crawford’s Learning Curve. This conclusion limits instances 
where Boone’s Learning Curve can more accurately model observed learning curve data in 
comparison to Crawford’s Learning Curve.   

The mean percentage error of Crawford’s Learning Curve in the fourth quarter were then 
analyzed using proportions. Crawford’s Learning Curve underestimated 47.6% of the observed 
learning curves tested. Therefore, these hypothesis tests of proportions also failed to indicate 
that Crawford’s Learning Curve systematically underestimates observed learning curve data in 
the fourth quarter. Lastly, for the proportion analysis, the proportion of learning curves that 
Crawford’s Learning Curve underestimated in both the first and last quarter was investigated. 
These instances represent learning curves with high rates of learning decaying to low rates of 
learning; Boone’s Learning Curve models these observed learning curves exceptionally well. 
The proportion of learning curves that experienced high rates of learning decaying to low rates 
of learning was 35% when modeled using Crawford’s Learning Curve. This proportion highlights 
that if an observed learning curve is experiencing high rates of learning in the first quarter, it is 
also more likely to experience low rates of learning in the last quarter when modeled with the 
Crawford’s Learning Curve. Although these results failed to show a systematic presence of 
plateauing, they emphasize opportunities for Boone’s Learning Curve to improve upon 
Crawford’s Learning Curve.   

Next, Boone’s Learning Curve was analyzed to determine how it models observed 
learning curve data in comparison to the traditional learning curve theory. Because Boone’s 
Learning Curve contains an additional, empirically-estimated parameter, it is expected to 
improve upon Crawford’s Learning Curve at an aggregate level. However, if Boone’s Learning 
Curve more accurately models observed learning curves that plateau and remains 
approximately equal to Crawford’s Learning Curve in terms of error for observed learning curves 
that do not plateau, then Boone’s Learning Curve provides inherent value in modeling the 
plateauing phenomenon. To investigate this, a confusion matrix was used to determine how 
learning curves that plateau interact with learning curves that are more accurately explained by 
Boone’s Learning Curve. The confusion matrix indicated that Boone’s Learning Curve more 
accurately modeled observed learning curves based on if those observed learning curves 
plateaued for 77% of observations. These results provide mixed conclusions as to if Boone’s 
Learning Curve improves upon Crawford’s Learning Curve by more accurately modeling the 
plateauing phenomenon of observed learning curves or because of its an additional, empirically-
estimated parameter.   

To further investigate how Boone’s Learning Curve models observed learning curves, 
the MAPE percentage differences between Boone’s Learning Curve and Crawford’s Learning 
Curve in the first, middle, and last quarters were investigated. Hypothesis tests were conducted 
to determine in which quarter Boone’s Learning Curve improved upon Crawford’s Learning 
Curve to a statistically significant degree. Outliers were excluded, and the dataset was limited to 
observations in which Boone’s Learning Curve was a significant improvement in error. The 
hypothesis tests indicated that Boone’s Learning Curve improved upon Crawford’s Learning 
Curve to a statistically significant degree in the first quarter only. Furthermore, the tests 
indicated that the error improvements in the last quarter were not statistically different from zero. 
The middle quarters’ hypothesis test indicated that Boone’s Learning Curve was systematically 
worse at explaining observed data in comparison to Crawford’s Learning Curve. Each of these 
tests had a high amount of variability. These results suggest that Boone’s Learning Curve 
improves upon Crawford’s Learning Curve more than it merely having an additional empirically 
estimated parameter. However, Boone’s Learning Curve was not shown to model the plateau 
effect in the last quarter to a statistically significant degree. There is a possibility observed 
learning curves improved in different sections of the learning curves while performing worse in 
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others in comparison to Crawford’s Learning Curve. These error improvements in different 
sections of the learning curve would have caused substantial variations of error in each section. 
These substantial variations of error improvement within each section could significantly 
obscure the statistical results due to the variability included in each hypothesis test.   

Regression analysis was also used to investigate which program attributes, if any, can 
explain the programs that are best modeled by Boone’s Learning Curve as well as explain the 
plateauing and forgetting phenomena. For the first part of this regression analysis, the 
percentage difference between Boone’s Learning Curve MAPE and Crawford’s Learning Curve 
MAPE was used as a dependent variable. A variety of independent variables were created 
using the Literature Review and operationalized using available data. The independent 
variables representing the level of aggregation of the learning curve was significant in the 
model. The regression analysis indicated that Boone’s Learning Curve MAPE would decrease 
26% on average when modeling learning curves at the highest (flyaway cost) and second 
highest (air vehicle cost) levels of aggregation, respectively, in comparison to Crawford’s 
Learning Curve. This finding is consistent with the research hypotheses. The independent 
variable that measured the amount of time that spanned between the first and last years of 
production was also statistically significant although the coefficient estimate’s sign was opposite 
of the hypothesized sign. In a separate regression, the independent variable representing the 
learning curve units of measure in total dollars was also statistically significant. This 
independent variable indicated that Boone’s Learning Curve is associated with a 14.9% 
decrease in error on average when modeling observed learning curves with units of measure in 
total dollars rather than hours in comparison to Crawford’s Learning Curve. Despite these pool 
of significant variables, several hypothesized were not significant in the model. Additionally, the 
Adjusted R2 for these models was relatively low at 6.7% and 5.3%, respectively. These 
Adjusted R2 values highlight that a large amount of variability remains to be explained in the 
dependent variable. These theory-based independent variables were also tested using data-
mining independent variables using a mixed stepwise regression. This methodology was 
employed to potentially expose statistically significant theory-based independent. Some groups 
of data-mining independent variables were statistically significant and able to explain more 
variability in the dependent variable; however, no additional statistically significant theory-based 
independent variables were revealed. Furthermore, the stepwise regression model results and 
statistical inferences may have been invalid due to not passing overall model tests.   

For the second part of this regression analysis, the percentage error between Crawford’s 
Learning Curve and observed data in the fourth quarter of the observed learning curve served 
as a dependent variable. This variable provided a measure of plateauing indifferent to how 
Boone’s Learning Curve models observed data. After testing various independent variables and 
validating the model with statistical tests, no hypothesized independent variables were 
significant in the model. This finding suggests that either the operationalization of plateauing 
was inappropriate, there exists too much variability in the data to explain instances of 
plateauing, or the hypothesized independent variables are unsuitable or were not appropriately 
operationalized. These theory-based independent variables were also tested using a mixed 
stepwise regression in order to potentially expose other statistically significant theory-based 
independent. Some groups of data-mining independent variables were statistically significant 
and able to explain more variability in the dependent variable; however, no statistically 
significant theory-based independent variables were revealed. Furthermore, the second set of 
stepwise regression model results and statistical inferences may have also been invalid due to 
not passing overall model tests.  



 
 

Acquisition Research Program 
Graduate School of Defense Management - 354 - 
Naval Postgraduate School 

Summary 
This research sought to determine 1. if the plateauing and forgetting phenomena occur 

using traditional learning curve theory, 2. how Boone’s Learning Curve models observed 
learning curve data in comparison to traditional learning curve theory, and 3. which program 
attributes, if any, can explain the programs that are best modeled by Boone’s Learning Curve as 
well as explain the plateauing and forgetting phenomena. The various statistical results indicate 
that the plateauing and forgetting phenomena do not systematically occur using the traditional 
Unit Learning Curve theory. Despite these results, there remain instances where plateauing and 
forgetting occur that provide opportunities for Boone’s Learning Curve to improve upon 
Crawford’s Learning Curve.   

Additionally, results provide mixed conclusions as to if Boone’s Learning Curve improves 
upon Crawford’s Learning Curve by more accurately modeling the plateauing phenomenon of 
observed learning curves or because of its additional, empirically-estimated parameter. Tests 
also did not show that Boone’s Learning Curve improved upon Crawford’s Learning Curve to a 
statistically significant degree in the last quarter but instead in the first quarter. This finding 
brings into question if Boone’s Learning Curve does in fact more accurately model the 
plateauing phenomenon.   

Finally, few hypothesized independent variables were significant in explaining when 
Boone’s Learning Curve more accurately models observed learning curves, and a significant 
amount of variability in the data remained. Despite these results, OLS regression analysis 
confirmed that the level of aggregation, the units of measure, and the time span of a program 
explain a small amount of variability of the degree to which Boone’s Learning Curve more 
accurately models observed learning curves. The OLS regression results for explaining 
plateauing independent of Boone’s Learning Curve indicated that no hypothesized independent 
variables were significant in the model even when non-theoretically based independent 
variables were included in the OLS regression model.   

These results indicate that Boone’s Learning Curve may provide value by more 
accurately explaining observed learning curves. However, the theoretical explanations as to 
where Boone’s Learning Curve improves upon the traditional learning curve theory and under 
what circumstances Boone’s Learning Curve is more appropriate to use than the traditional 
learning curve theory remains to be discovered.  
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