

The AFIT of Today is the Air Force of Tomorrow.

A New Learning Curve for Department of Defense Acquisition Programs: How to Account for the "Flattening Effect"

Author/Presenter:

Capt Dakotah Hogan, CCEA®, Cost Analyst, AFCAA

U.S. AIR FORCE

Co-authors:

Dr. John Elshaw, Assistant Professor, AFIT Lt Col Clay Koschnick, Assistant Professor, AFIT Dr. Jonathan Ritschel, Assistant Professor, AFIT Dr. Adedeji Badiru, Dean, AFIT

Background: Diminishing Rates of Learning

The AFIT of Today is the Air Force of Tomorrow.

- DoD must be able to estimate program costs with accuracy
- Method of forecasting production cost include learning curves
 - Workers gain efficiencies when producing end-items
 - Costs decrease by a constant percentage as units double

- Some programs display non-constant rates of learning
 - Cost decrease by a diminishing percentage as units double
 - Cost underestimated at beginning & end of production
 - Funding misallocated among programs' fiscal years *Air University: The Intellectual and Leadership Center of the Air Force Aim High...Fly - Fight - Win*

Background: Diminishing Rates of Learning

The AFIT of Today is the Air Force of Tomorrow.

Background: Diminishing Rates

The AFIT of Today is the Air Force of Tomorrow.

Background: Diminishing Rates of Learning

The AFIT of Today is the Air Force of Tomorrow.

- To address these diminishing rates of learning a 2018 AFIT graduate created Boone's Learning Curve
 - Explored making the learning curve exponent a function of the numbers of units produced
- Functional form of learning curve exponent created from trial and error
 - Decreases "b" as the number of units produced "x" increases
 - As "b" decreases, the rate of learning decreases
 - Effects of "x" on "b" are tempered using the Boone's Decay Value "c"
 - All parameters are empirically estimated

The AFIT of Today is the Air Force of Tomorrow.

Background: Diminishing Rates

The AFIT of Today is the Air Force of Tomorrow.

Justification for a Diminishing Learning Model

The AFIT of Today is the Air Force of Tomorrow.

- Diminishing learning rate models justified in research
- Psychology research indicates knowledge depreciates:
 - Forgetting, production breaks, & employee turnover
- Other research shows learning slows over time:
 - Highly automated production & inability to process learning
- Asher's 1956 RAND study concluded higher aggregations of learning curve relate to diminishing learning rates
 - Manufacturing learning curves contain several constituent learning curves
 - Most learning curve analysis performed at highly aggregated levels

Theory & empirical analyses justify diminishing rates of learning

Analysis: Data & Methodology AFI]

The AFIT of Today is the Air Force of Tomorrow.

- Gathered diverse dataset of 123 weapons systems with 258
 unique components
 - Unit of analysis: weapon system components
 - System types: aircraft, engine, helicopter, missile, & UAV
 - Analysis levels: PME, airframe, & sub-components
- Estimated four learning curves and generated predictions
- Compared error from Boone's Curve and traditional curves
 - Boone's Curve vs. Wright's Cumulative Average Curve
 - Boone's Curve vs. Crawford's Unit Curve
- Performed statistical tests to determined if Boone's Learning Curve systematically reduces error

Boone's Curve tested using large, diverse dataset

Analysis: Results

The AFIT of Today is the Air Force of Tomorrow.

- Based on six paired difference t-tests, Boone's Curve reduced error when compared to both traditional curves
 - Right-tailed rejection region
 - Distributions centered on zero & right skewed

		Hypothesis Test: $H_0: \mu \le 0$ $H_A: \mu > 0$						
Learning Curve Theory	Error Measure	Units of Measure	Sample Mean (\bar{x})	Sample Standard Deviation (s)	Number of Observations	Test Statistic	P-Value	Result
Cumulative Average Theory	Root Mean Squared Error Percentage Difference	Total Dollars (K)	19.3%	28.9%	118	7.23	<0.001	Reject H _o
		Labor Hours	15.2%	31.2%	22	18.50	0.280	Fail to Reject H_0
	Mean Absolute Percent Error Percentage Difference	Total Dollars (K) & Labor Hours Combined	18.6%	29.5%	140	7.45	<0.001	Reject H _o
Unit Theory	Root Mean Squared Error Percentage Difference	Total Dollars (K)	13.8%	22.7%	141	7.23	<0.001	Reject H _o
		Labor Hours	6.0%	14.8%	28	74.00	0.046	Reject H _o
	Mean Absolute Percent Error Percentage Difference	Total Dollars (K) & Labor Hours Combined	11.3%	23.1%	169	6.36	<0.001	Reject H _o

Analysis: Results

The AFIT of Today is the Air Force of Tomorrow.

- 93% of observations had comparable percentage error or less
 - Defined insignificant percentage error reductions between -0.25% & 0.25%
 - 42% of observed learning curves significantly better explained
 - 51% of observed learning curves error approximately equal in error
- Cannot estimate an expected error reduction: highly variable reductions
 - Mean percentage difference error reductions: 6% to 19%
 - Coefficients of variation: 150% to 247%
- Applicability of Boone's Curve is an area of future research
 - Attempted to predict the error reductions from the use of Boone's Curve
 - Utilized program attributes and theory in OLS regression analysis
 - Could not explain more than 5% of the variation in the data

Promising results but further analysis necessary to fully leverage

Questions/References

The AFIT of Today is the Air Force of Tomorrow.

Questions

Email: dakotah.hogan.1@us.af.mil; dakotah.hogan@gmail.com

Journal Article:

MDPI's *Forecasting*: "Cost Estimating Using a New Learning Curve Theory for Non-Constant Production Rates." https://doi.org/10.3390/forecast2040023

Original work:

Thesis: "An Analysis of Learning Curve Theory & Diminishing Rates of Learning." https://scholar.afit.edu/etd/3607