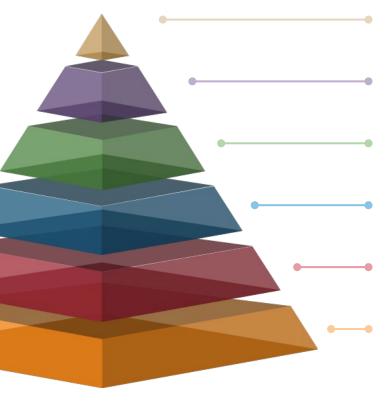


Quantifying Systemic Risk and Fragility in the U.S. Defense Industrial Base

John Ullrich, John Kamp May 11, 2021



Summary

- This research proposes that centrality and community measures provide critical insight into two macro forces threatening a supply chain
 - Connectedness-based rankings quantify systemic risk
 - Community measures quantify fragility
- A supplier can be both systemically risky and fragile
- We argue that systemic risk, fragility, and imbalance directly relates to a supplier's criticality within a supply chain network

The Network Structure

Funding Organization

Example: Department of Defense, Department of Transportation, Department of Energy

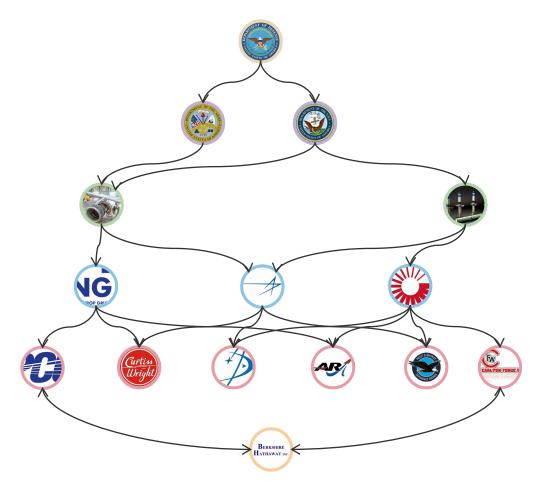
Procuring Organization

Example: Department of the Army, Department of the Navy, NASA, DCAA, DCMA

Commodity Code

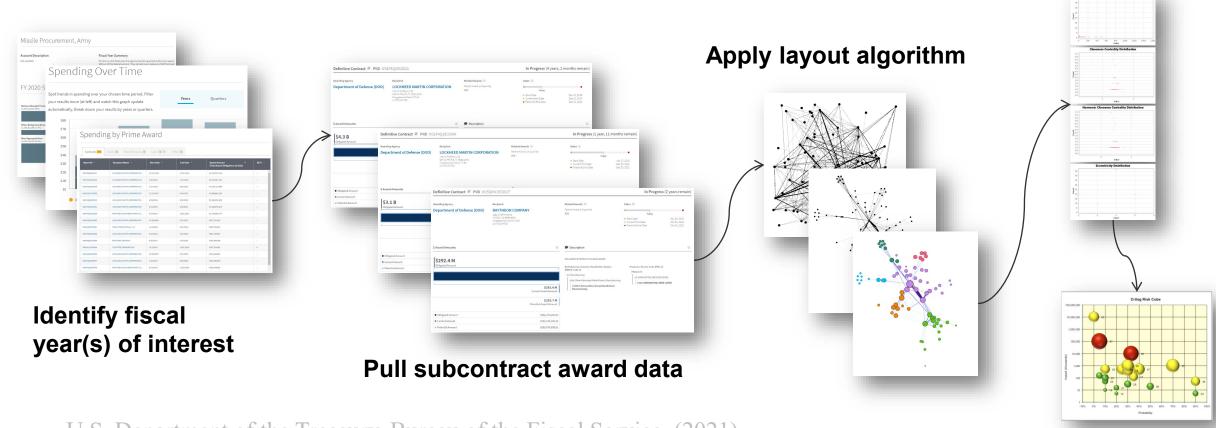
Example: NAICS or PSC (Aircraft, Missiles, Shipbuilding)

Prime Contractor


Example: Raytheon Technologies, Lockheed Martin, Boeing, MITRE, BAE

Sub-Contractor (Direct Spend)

This is the primary industrial supply base. Examples: TTM, Aerojet, Ducommun, Carleton, Cobham


Sub-Contractor Parent

Parent or controlling company (if applicable). Example: Berkshire Hathaway, Honeywell

Method

Assess centrality/community

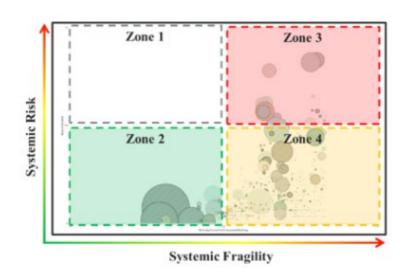
U.S. Department of the Treasury, Bureau of the Fiscal Service. (2021). *USAspending.gov*. Images from https://www.usaspending.gov/

Translate into risk/fragility measures

Measures of Centrality and Community

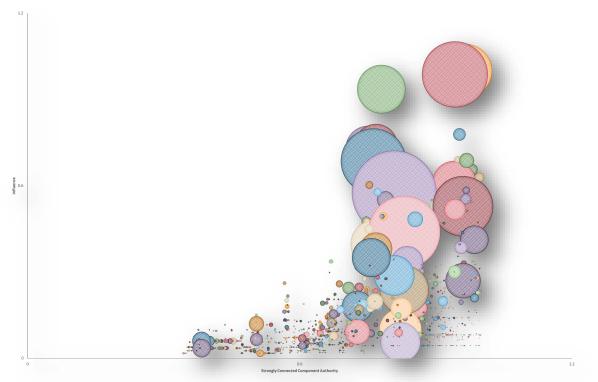
- Centrality ~ node connectedness
- Community ~
 groups of densely connected nodes
- Systemic risk ~ local and network centrality and community

Item	Basis	Measure	DIB Applic	ability	Source
Degree	Importance score based on the number of links held by each node	Direct connections	In-degree and out-degree measures to better understand the flow of material		(Perera, Bell, & Bliemer, 2018)
Betweenness	The number of times a node lies on the shortest path between other nodes	Network efficiency of flow	•	eenness indicates critical suppliers that active within the network	(Estrada, Higham, & Hatano, 2009)
Closeness	Time required to spread information from a node to the other nodes in the network Represents the relative strength	Shortest paths between all nodes	support mi	Suppliers with high closeness centrality levels support mitigation of the impacts arising from bullwhip effect (Xu, M; Liu, JB; Li, DX; Wang, J;, 2016)	
EigenCentrality	or influence over other nodes in the network	Node influence	, ,	Quantifying the propagation of failure tied to disruption of a supplier	
PageRank	Reflects influence within the network, but PageRank also considers link direction and weight	Node Influence	The extent of failure propagated through a community of suppliers or across a commodity		(Page, 1998)
Item	Basis	M	easure	DIB Applicability	Source
Network Diameter	Edge count of the shortest path action the network			Supports quantification of local community authority, or the lack of authority across a commodity	(Abd-El-Barr, 2009)
Network Density	The level of interconnectivity between nodes	Cor	nnectivity	Higher density indicates a more robust supply chain	(Bendle & Patterson, 2008)
Clustering Coefficient	The level of coupling nodes demonstrated		system or nborhoods	Assessing program, agency, or prime contractor supply chain dependencies	(Brintrup, et al., 2016)
Modularity	The strength of the allocation of subsystems within a network		system or nborhoods	Detecting community structure within a NAICs group	(Fortunato, Barthelemy, & yes 2007)

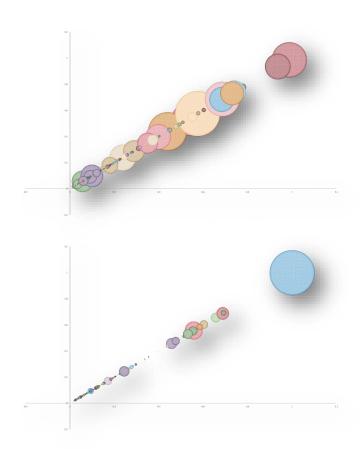


Measures of systemic risk and fragility

 Systemic risk ~ increased influence carries a more significant negative impact on the overall network


Fragility ~ vulnerability or lack of network robustness (Perera,

Bell, & Bliemer, 2018)



Measure	Fragility Dimension	Systemic Risk Drivers
Weighted Degree	Primarily parent companies, or direct subcontract award to major prime contractors. The network is dependent on forecasted	Demand Uncertainty Budget Uncertainty
	demand	Natural Disaster or Malicious Attack
Betweenness	Composed of "bridge suppliers," this model moves to the first tier	Foreign Dependence
	of the prime contractor supplier spend. As an effect, these are primarily parent suppliers or familiar sources of supply for generic material (electronic components, fasteners)	Single Sources of Supply
Closeness	Relatively high overlap of closeness and weighted degree indicates	 Limited production capacity
	that the network's agility or speed depends on large tier suppliers.	 Foreign Dependence
	Respective capabilities and capacities should facilitate shorter paths through the network	Natural Disaster or Malicious Attack
PageRank	The PageRank algorithm consistently highlights influential	Obsolete Items
	suppliers outside of the top spend.	 Financial Viability of Suppliers
		 Sole sourcing
		 Loss of skill or equipment
EigenCentrality	They are highly coupled or connected suppliers within the network;	 Limited production capacity
	their dependencies cross over programs, procuring agencies, and	 Foreign Dependence
	even commodities.	 Loss of skill or equipment
		 Financial viability
		Sole source
		 Natural Disaster or Malicious Attack

Visualizations of Systemic Risk

FY20 - Aircraft NAICs Holistic Base View

FY20 – Aircraft NAICs Supplier Risk Characterization

FY20 – Aircraft NAICs Module Based Risk Characterization

Mapping to Traditional Risk

Traditional Risk Area (GAO)	Traditional Approaches	Concern	Pf Measures (Likelihood)	Cf Measures (Severity)
Financial Viability of Suppliers	Monitor – Monitor DUNs data as available	Shrinking defense industrial base, inconsistent demand forecasting	DUNS Trend (6-month, 12 month) – Couple with community measures, the financial viability of the community	Highest betweenness levels within a community
Sole Source	Monitor – Quantitative at the program level	Single points of failure	Closeness centrality, ability to share demand	Highest Eigenvector measure within a network
Limited Production Capacity	Avoid - Qualitative, supplier RFPs	Inability to ramp quickly	Trend analysis supplier CAGR (increasing) Highest Eigenvector measure within a network; within a commodity	Highest Eigenvector measure within a network; within a commodity
Facility Damage by Disaster	Monitor - Quantitative concerning risk areas, qualitative regarding the impact	The failure mode of sole- source	Natural disaster probabilities/distributions	Supplier Geolocation – Number of programs/primes impacted Highest Eigenvector measure within a network; within a commodity
Loss of Skill or Equipment	Accept – Difficult to quantify. Highly variable by program	Lack of manufacturing expertise and DIB investment funding	Trend analysis supplier CAGR (decreasing)	Highest Eigenvector measure within a network; within a commodity
Foreign Dependence	Mitigate - Quantitively at the prime level, qualitative at the subcontract level	Component dependencies external to the US	DUNS Trend (6-month, 12 month) – Couple with community measures, the financial viability of the community, commercial market share	Parent DUNS, Highest Eigenvector measure within a network; within a commodity

United States Government Accountability Office. (2018). *Integrating Existing Supplier Data and Addressing Workforce Challenges Could Improve Risk Analysis*. Washington, D.C.: GAO-18-435.

Summary

- Systemic risk is quantified using centrality measures
 - Identifies the most critical nodes (suppliers) within the network
 - A supplier with more influence carries more negative network impact in the event of disruption and is more systemically risky
- Defense Industrial Base fragility is quantified using community measures
 - Identifies communities with more significant overall systemic dependencies
 - Illustrates vulnerability within the supply chain network
- Imbalance represents disproportional levels of both risk and fragility in both specific commodities and suppliers
 - Single sources of supply, limited competition options

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

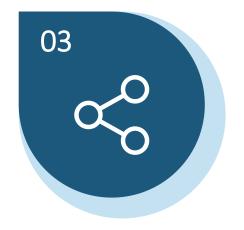
Abstract

- This research quantifies fragility within the United States Defense Industrial Base (DIB) and translates it into supplier risk.
 - It identifies systemically critical suppliers, where criticality is characterized in terms
 of the supplier either being highly coupled within the industrial base, operating in a
 limited competition space or owning a disproportionately large market share within
 a specific commodity.
- Each of these properties is quantified using centrality and community detection methods.
 - By correctly assessing critical suppliers in the defense base, it allows for a methodical approach to preemptively addressing standard failure modes that typically result in material disruptions.
- Quantifying fragility in supply chains based on systemic centrality and communities is a novel effort.
 - Direct application of this process within the DIB fundamentally approaches assessing our supply base resiliency in a completely different manner.

USG Value Proposition

Illuminates Foreign Reliance

Provides insight on foreign dependencies at both the subcontract award level as well as providing any foreign parent relations; detailed by spend, program, and commodity supported


Risk Characterization

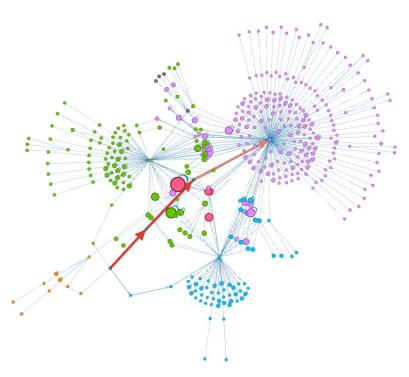
Facilitates a risk-based framework for identifying critical suppliers, commodities, or industries.

Informs Base Development

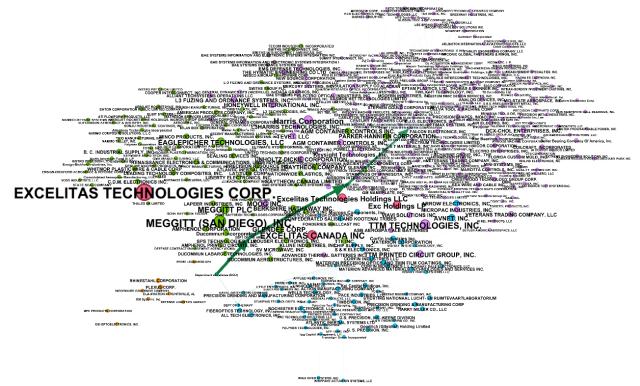
Supports prioritization of development spending, improve effectiveness of direct investments in the lower tier of the DIB via DPA Title III, ManTech, etc.

Decoupling Critical Assets

Conveys the coupling of weapon systems and subsystems by supplier; this insight supports strategic MRA/TRA engagements or dual-source development.


Supply chain risk framework

Macro forces driving risk into defense acquisition create diverse impacts


	IMPACTS			Quantify
ISSUE	FIRST TIER SUPPLIER	PRIME	USG	Fragility Measure
Uncertainty in spending	Compelled to invest outside of defense, consolidate	Challenge's affordability and supply base agility	Increased "bull whip" effect, systemic material shortages	Closeness
Decline of U.S. manufacturing capability and capacity	Lower defense capability investment and innovation	Capacity constrained supply market	Erosion of U.S-based infrastructure	Eigenvector
USG business practices	High barriers to market entry	Reduced advanced technology suppliers	Tightly coupled network of critical suppliers	Betweenness
Foreign industrial policies	Competitive disadvantages, increased M/A activity	Increased risk of foreign supply dependencies	Foreign dependency, product security risk	Eigenvector + Commercial Presence + Parent DUNS
HOW CAN WE HELP?	Identify fragility by commodity	Build resiliency in our supply base	Influence DIB investments aimed at strengthening	Map to traditional Pf measures (GAO,DoD)

Example Network Visualizations

Above: Network Map reflects the aggregated supplier spend of incorporated programs along with the dependencies representing material flow

Above: Network Map with supplier names, illustrating the complexity and density of the network. Larger text indicates supplier criticality

Criticality Assessments

Betweenness

AMPHENOL CORPORATION 17 **BAE SYSTEMS PLC** 21 BERKSHIRE HATHAWAY INC. 39 Corfin Industries Inc. 11 17 **Ducommun Incorporated** HONEYWELL INTERNATIONAL INC. 14 MATERION CORPORATION 11 Nammo AS 18 SMITHS GROUP PLC 21 VISHAY INTERTECHNOLOGY, INC. 14

Eigenvector

MEGGITT (SAN DIEGO), INC. 0.660834 TTM TECHNOLOGIES, INC. 0.490661 EXCELITAS CANADA INC 0.475433 MEGGITT PLC 0.429083 Harris Corporation 0.420989 Exc Holdings LP 0.376692 Excelitas Technologies Holdings LLC 0.376692 EAGLEPICHER TECHNOLOGIES, LLC 0.349024 MOOG INC. 0.322545 GLENDEE CORP. 0.322545	EXCELITAS TECHNOLOGIES CORP.	1
EXCELITAS CANADA INC 0.475433 MEGGITT PLC 0.429083 Harris Corporation 0.420989 Exc Holdings LP 0.376692 Excelitas Technologies Holdings LLC 0.376692 EAGLEPICHER TECHNOLOGIES, LLC 0.349024 MOOG INC. 0.322545	MEGGITT (SAN DIEGO), INC.	0.660834
MEGGITT PLC 0.429083 Harris Corporation 0.420989 Exc Holdings LP 0.376692 Excelitas Technologies Holdings LLC 0.376692 EAGLEPICHER TECHNOLOGIES, LLC 0.349024 MOOG INC. 0.322545	TTM TECHNOLOGIES, INC.	0.490661
Harris Corporation 0.420989 Exc Holdings LP 0.376692 Excelitas Technologies Holdings LLC 0.376692 EAGLEPICHER TECHNOLOGIES, LLC 0.349024 MOOG INC. 0.322545	EXCELITAS CANADA INC	0.475433
Exc Holdings LP 0.376692 Excelitas Technologies Holdings LLC 0.376692 EAGLEPICHER TECHNOLOGIES, LLC 0.349024 MOOG INC. 0.322545	MEGGITT PLC	0.429083
Excelitas Technologies Holdings LLC 0.376692 EAGLEPICHER TECHNOLOGIES, LLC 0.349024 MOOG INC. 0.322545	Harris Corporation	0.420989
EAGLEPICHER TECHNOLOGIES, LLC 0.349024 MOOG INC. 0.322545	Exc Holdings LP	0.376692
MOOG INC. 0.322545	Excelitas Technologies Holdings LLC	0.376692
	EAGLEPICHER TECHNOLOGIES, LLC	0.349024
GLENDEE CORP. 0.322545	MOOG INC.	0.322545
	GLENDEE CORP.	0.322545

Authority

Excelitas Technologies Holdings LLC	0.09057
BERKSHIRE HATHAWAY INC.	0.090141
MOOG INC.	0.081135
EAGLEPICHER TECHNOLOGIES, LLC	0.081127
DRYTECH INC.	0.080745
UNITED TECHNOLOGIES CORPORATION	0.080745
SMITHS GROUP PLC	0.080745
ULTIMATE HYDROFORMING, INC.	0.080745
AGM CONTAINER CONTROLS, INC.	0.080745
L3HARRIS TECHNOLOGIES, INC.	0.080745
NORTHROP GRUMMAN CORPORATION	0.080745
PARKER-HANNIFIN CORPORATION	0.080745
BAE SYSTEMS PLC	0.080745
Picut Industries Inc.	0.080745
RAYTHEON COMPANY	0.080745
GENERAL DYNAMICS CORPORATION	0.080745
TEVET, LLC	0.080745
HONEYWELL INTERNATIONAL INC.	0.080745
UNHOLTZ-DICKIE CORPORATION	0.080745
Keysight Technologies, Inc.	0.080745
Wesco Aircraft Holdings, Inc.	0.080745
KILDER CORPORATION	0.080745
L3 TECHNOLOGIES, INC.	0.080745

Weighted Degree

GENERAL DYNAMICS CORPORATION
NORTHROP GRUMMAN CORPORATION
MOOG INC.
VETERANS TRADING COMPANY, LLC
Exc Holdings LP
UNITED TECHNOLOGIES CORPORATION
TTM TECHNOLOGIES, INC.
L3HARRIS TECHNOLOGIES, INC.
MAROTTA CONTROLS, INC.

Transdigm Group Incorporated

Highest betweenness centrality

a

C

Highest betweenness centrality

Best closeness centrality

m

p

h

i

i

k

Highest degree
ocentrality

References

Abd-El-Barr, M. (2009). Review: Topological network design: A survey. *Journal of Network and Computer Applications*, 32(3), 501-509. Retrieved 3 20, 2021, from https://sciencedirect.com/science/article/pi i/s108480450800101x

Alvarez-Socorro, A. J., Herrera-Almarza, G. C., & González -Díaz, L. A. (n.d.). Eigencentrality based on dissimilarity measures reveals central nodes in complex networks. *Scientific Reports*, *5*, 17095. Retrieved 2 27, 2021, from http://www.nature.com/articles/srep17095

Asbjørnslett, B. (2008). Assessing the vulnerabil ity of supply chains. In G. A. Zsidisin, & B. Ritchie, Supply Chain Risk: A Handbook of Assessment, Management & Performand pp. 15-33). New York: Springer.

Aviles, L., & Sle eper, S. (2016). *Identifying and Mitigating the Impact of the Budget Control Act on HighRisk Sectors and Tiers of the Defense Industrial Base: Assessment Approach to Industrial Base Risks* Retrieved 2 27, 2021, from https://apps.dtic.mil/docs/citations/ad 1016751

Bendle, L. J., & Patterson, I. (2008). Network Density, Centrality, and Communication in a Serious Leisure Social World. *Annals of leisure research 11*, 1-19. Retrieved 3 20, 2021, from http://tandfonline.com/doi/pdf/10.1080/11745398.2008.9686783

Blackhurst, J. V., Scheibe, K. P., & Johnson, D. J. (2008). Supplier risk assessment and monitoring. *International Journal of Physical Distribution & Logikts Management*, 143-165.

Bonacich, P. (1987). Power and Centrality: A Family of Measures. *American Journal of Sociology*, 92 (5): 1170 –1182.

Brintrup, A., Brintrup, A., Ledwoch, A., Ledwoch, A., Barros, J., & Barros, J. (2016). Topological robustness of the global automotive industry. *Logistics Research*, *9*(1), 1-17. Retrieved 3 20, 2021, from https://link. springer.com/article/10.1007/s12159 -015-0128-1

Buechel, B., & Buskens, V. (2013). The dynamics of closeness and betweenness. *Journal of Mathematical Sociobgy*, 37(3), 159-191. Retrieved 3 20, 2021, from https://ideas.repec.org/p/bie/wpaper/398.html

Chan-Lau, J. A. (2018). Systemic centrality and systemic communities in financial networks. *Quantitative finance and economics* 468-496.

Chopra, S., & Meindl, P. (2009). Supply Chain Management, 4th edUpper Saddle River, NJ: Prentice-Hall.

Department of Defense . (2008). DoDM 3020.45V1. Defense Critical Infrastructure Program (DCIP): DoD MissionBased Critical Asset Identification Process (CAIP)Arlington: Under Secretary of Defense for Policy.

Department of Defense. (2018). Assessing and Strengthening the Manfacturing and Defense Industrial Base and Supply Chain Resiliency of the United StateWashington D.C.: Office of the Under Secretary of Defense.

Estrada, E., Higham, D. J., & Hatano, N. (2009). Communicability betweenness in complex networks. *Physica A-statistical Mechanics and Its Applications*, 38(5), 764-774. Retrieved 3 20, 2021, from http://estradalab.org/wp -content/uploads/2015/10/paper -11511.pdf

Finch, P. (2004). Supply chain risk management. Supply Chain Management, (2), 183-196. Retrieved 2 21, 2021, from

https://emerald.com/insight/content/doi/10.1108/13598540410527079/full/html

Fortunato, S., Barthelemy, M., & yes. (2007). Resolution limit in community detection. *Proceedings of the National Academy of Sciences of the United States of America*) 4(1), 36–41. Retrieved 3 20, 2021, from http://www.pnas.org/content/104/1/36.abstract

González, A. M., González, A. M., Dalsgaard, B., & Olesen, J. M. (2010). Centrality measures and the importance of generalist species in pollination networks. *Ecological Complexity*, 7(1), 36-43. Retrieved 2 26, 2021, from https://sciencedirect.com/science/article/pii/s1476945x09000294

Hallikas, J. (2004). Risk management processes in supplier networks. *International Journal of Production Economics, Vol. 90 No.*, A7-58.

Hubbard, D. (2009). The Failure of Risk Management: Why & Broken and How to Fix It. John Wiley & Sons.

Lambert, D. M., & Cooper, M. C. (2000). Issues in Supply Chain Management. *Industrial Marketing Management*, 201), 65-83. Retrieved 2 27, 2021, from https://sciencedirect.com/science/article/abs/pii/s0019850199001133

Manuj, I., & Mentzer, J. T. (2008). Global supply chain risk management strategies. *International Journal of Physical Distribution & Logistics Management, Vol. 38 No*, 192-223.

References

Meyer, M., Brintrup, A., & Windt, K. (2014). Linking product and machine network structure using nested pattern analysis. *Procedia CIRP*, 17278-283. Retrieved 3 20, 2021, from https://sciencedirect.com/science/article/pii/s2212827114003412

Newman, M. E. (2008). The mathematics of networks Dictionary of Economics, 2nd edition, *The New Palgrave*, 3-4. Retrieved 2 27, 2021, from http://www - personal.umich.edu/~mejn/papers/palgrave.pdf

Nishat, F. M., Banwet, D. K., & Shankar, R. (2006). Mapping supply chains on risk and customer sensitivity dimensions. *Industrial Management and Data Systems* 106(6), 878 -895.

Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. *Social Networks*, 323), 245–251. Retrie ved 2 27, 2021, from http://toreopsahl.com/2010/04/21/article -node-centrality-in-weighted-networks-generalizing -degree-and-shortest-paths/

Outdot, J. M. (2010). Journal of Public Policy Vol. 30, No. 2, pp. 201 -218.

Page, L. a. (1998). The PageRank Citatio n Ranking: Bringing Order to the Web. *Stanford University InfoLab Publication Server*. Retrieved 3 20, 2021, from http://ilpubs.stanford.edu:8090/422/1/1999 -66.pdf

Perera, S., Bell, M. G., & Bliemer, M. C. (2018). Network Science approach to Modelling Emerg ence and Topological Robustness of Supply Networks: A Review and Perspective. *arXiv: Physics and Society* Retrieved 3 20, 2021, from https://arxiv.org/abs/1803.09913

Rao, S., & Goldsby, T. J. (2009). Supply chain risks: a review and typology. *The International Journal of Logistics Management, Vol. 20 No.*, **97**-112.

Ruhnau, B. (2000). Ei genvector-centrality — a node-centrality? ★. Social Networks, 22(4), 357-365. Retrieved 3 20, 2021, from

https://sciencedirect.com/science/article/pii/s0378873300000319

Schafer, M. H. (2011). Health and Network Centrality in a Continuing Care Retirement Community. *Journals of Gerontology Series Ppsychological Sciences and Social Sciences*, 66(6), 795-803. Retrieved 2 26, 2021, from

https://academic.oup.com/psychsocgerontology/a rticle/66b/6/795/593397

Sinha, P. R., Whitman, L. E., & Malzahn, D. E. (2004). Met hodology to mitigate supplier risk in an aerospace supply chain. *Supply Chain Management*, *Q*2), 154-168. Retrieved 2 27, 2021, from https://emerald.com/insight/content/doi/10 .1108/13598540410527051/full/html

U.S. Department of the Treasury, Bureau of the Fiscal Service. (2021). *USAspending.gov* Retrieved from https://www.usaspending.gov/

United States Government Accountability Office. (2017). DOD Needs Complete Information on Single Sources of Supply to Proactively Manage the RiskWashington D.C.: GAO Code -17 -1768.

United States Government Accountability Office. (2018). Integrating Existing Supplier Data and Addressing Workforce Challenges Could Improve Risk Analys Washington, D.C.: GAO-18-435.

Vivas, R. d., Sant'Anna, A. M., Es querre, K., & Freires, F. G. (2019). Integrated method combining analytical and mathematical models for the evaluation and optimization of sustainable supply chains: A Brazilian case study. *Computers & Industrial Engineering* 105670. Retrieved 2 27, 2021, from https://sciencedirect.com/science/article/pii/s0360835219300476

Wang, W., & Street, W. N. (2015). Modeling influence diffusion to uncover influence centrality and community structure in social n etworks. *Social Network Analysis and Mining*, 5(1), 15. Re trieved 2 26, 2021, from https://link.springer.com/article/10.1007/s13278 -015-0254-4

Xu, M., Wang, X., & Zhao, L. (2014). Predicted supply chain resilience based on structural evolution against rando m supply disruptions. *International Journal of Systems Science: Operations & Logistics*, 1(2):105 –117.

Xu, M; Liu, JB; Li, DX; Wang, J;. (2016). Research on evolutionary mechanism of agile supply chain network via complex network theory. *Math Probl Eng* 9.

