

^`nrfpfqflk=obpb^o`e=moldo^j=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

bu`bomq=colj=qeb==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

bfdeqe=^kkr^i=^`nrfpfqflk==

obpb^o`e=pvjmlpfrj==

tbakbpa^v=pbppflkp==

slirjb=f=

Disclaimer: The views represented in this report are those of the authors and do not reflect the official policy position
of the Navy, the Department of Defense, or the Federal Government.

Approved for public release; distribution unlimited.

Prepared for the Naval Postgraduate School, Monterey, California 93943

NPS-AM-11-C8P10R02-043

Test Reduction in Open Architecture via Dependency Analysis

Valdis Berzins, Peter Lim, and Mohsen Ben Kahia, NPS

Published: 30 April 2011

^`nrfpfqflk=obpb^o`e=moldo^j=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor, please
contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our website
www.acquisitionresearch.net

=
================^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- i -

=

Preface & Acknowledgements

During his internship with the Graduate School of Business & Public Policy in June
2010, U.S. Air Force Academy Cadet Chase Lane surveyed the activities of the Naval
Postgraduate School’s Acquisition Research Program in its first seven years. The sheer
volume of research products—almost 600 published papers (e.g., technical reports, journal
articles, theses)—indicates the extent to which the depth and breadth of acquisition
research has increased during these years. Over 300 authors contributed to these works,
which means that the pool of those who have had significant intellectual engagement with
acquisition issues has increased substantially. The broad range of research topics includes
acquisition reform, defense industry, fielding, contracting, interoperability, organizational
behavior, risk management, cost estimating, and many others. Approaches range from
conceptual and exploratory studies to develop propositions about various aspects of
acquisition, to applied and statistical analyses to test specific hypotheses. Methodologies
include case studies, modeling, surveys, and experiments. On the whole, such findings
make us both grateful for the ARP’s progress to date, and hopeful that this progress in
research will lead to substantive improvements in the DoD’s acquisition outcomes.

As pragmatists, we of course recognize that such change can only occur to the
extent that the potential knowledge wrapped up in these products is put to use and tested to
determine its value. We take seriously the pernicious effects of the so-called “theory–
practice” gap, which would separate the acquisition scholar from the acquisition practitioner,
and relegate the scholar’s work to mere academic “shelfware.” Some design features of our
program that we believe help avoid these effects include the following: connecting
researchers with practitioners on specific projects; requiring researchers to brief sponsors on
project findings as a condition of funding award; “pushing” potentially high-impact research
reports (e.g., via overnight shipping) to selected practitioners and policy-makers; and most
notably, sponsoring this symposium, which we craft intentionally as an opportunity for
fruitful, lasting connections between scholars and practitioners.

A former Defense Acquisition Executive, responding to a comment that academic
research was not generally useful in acquisition practice, opined, “That’s not their [the
academics’] problem—it’s ours [the practitioners’]. They can only perform research; it’s up
to us to use it.” While we certainly agree with this sentiment, we also recognize that any
research, however theoretical, must point to some termination in action; academics have a
responsibility to make their work intelligible to practitioners. Thus we continue to seek
projects that both comport with solid standards of scholarship, and address relevant
acquisition issues. These years of experience have shown us the difficulty in attempting to
balance these two objectives, but we are convinced that the attempt is absolutely essential if
any real improvement is to be realized.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the Acquisition
Research Program:

• Office of the Under Secretary of Defense (Acquisition, Technology & Logistics)

• Program Executive Officer SHIPS

• Commander, Naval Sea Systems Command

• Army Contracting Command, U.S. Army Materiel Command

• Program Manager, Airborne, Maritime and Fixed Station Joint Tactical Radio System

=
================^`nrfpfqflk=obpb^o`eW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- ii -

=

• Program Executive Officer Integrated Warfare Systems

• Office of the Assistant Secretary of the Air Force (Acquisition)

• Office of the Assistant Secretary of the Army (Acquisition, Logistics, & Technology)

• Deputy Assistant Secretary of the Navy (Acquisition & Logistics Management)

• Director, Strategic Systems Programs Office

• Deputy Director, Acquisition Career Management, US Army

• Defense Business Systems Acquisition Executive, Business Transformation Agency

• Office of Procurement and Assistance Management Headquarters, Department of
Energy

We also thank the Naval Postgraduate School Foundation and acknowledge its
generous contributions in support of this Symposium.

James B. Greene, Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 319
-
=

=

Panel 10 – New Testing Protocols for the Open
Architecture Era

Wednesday, May 11, 2011

3:30 p.m. –
5:00 p.m.

Chair: Captain Brian Gannon, USN, Program Manager, Naval Open
Architecture, PEO IWS

Modeling Complex System Testing: Characterizing Test Coverage to
Improve Information Return

Karl Pfeiffer, Valery Kanevsky, and Thomas Housel, NPS

Test Reduction in Open Architecture via Dependency Analysis

Valdis Berzins, Peter Lim, and Mohsen Ben Kahia, NPS

Utilizing Statistical Inference to Guide Expectations and Test Structuring
During Operational Testing and Evaluation

Joy Brathwaite, Georgia Institute of Technology, Alton Wallace and
Robert Holcomb, Institute for Defense Analyses

Captain Brian Gannon—CAPT Gannon was born in Chicago, Illinois and received a commission in
1985 through the Naval Reserve Officer Training Corps program at the Illinois Institute of Technology.
His formal education includes a Bachelor of Science in Mechanical Engineering from the Illinois
Institute of Technology, a Master of Science in Astronautical Engineering from the Naval
Postgraduate School, and a Master of Business Administration from the University of Phoenix.

His service tours include Electronics Readiness Officer, ASW Officer and CIC Officer onboard USS
Gary (FFG-51) from 1986 to 1989; Combat Systems Instructor at the Surface Warfare Officer's
School in Coronado, CA, from 1989 to 1992; Student in the Space Systems Engineering curriculum at
the Naval Postgraduate School from 1992 to 1994; Aegis Project Officer at the Port Hueneme
Division, Naval Surface Warfare Center from 1994 to 1998; AEGIS LEAP Intercept (ALI) Project
Officer in the Navy Theater Wide Program Office (PMS 452) from 1998 to 2002; TBMD Section Head
in the Aegis Combat System Engineering Program Office (PMS 400B) from 2002 to 2003; Combat
Systems Officer on the Fleet Maintenance staff for Commander, United States Pacific Fleet from
2003 to 2005; Technical Representative for Surface Naval Weapons (PEO IWS 3.0) and Aegis
Ballistic Missile Defense (PD 452) portfolio of programs at Raytheon Missile Systems in Tucson, AZ.

CAPT Gannon assumed his present duties as Major Program Manager Future Combat Systems and
Open Architecture (PEO IWS 7.0) in October 2008.

Captain Gannon’s personal awards include the Meritorious Service Medal (four awards), Navy
Commendation Medal and the Navy Achievement Medal in addition to various service awards. He is
married to the former Jean Raup of Alexandria, VA. He has three children: Brittany (18), Timothy (15),
and Christopher (13).

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 333
-
=

=

Test Reduction in Open Architecture via Dependency Analysis
Valdis Berzins—Professor, Computer Science, Naval Postgraduate School. His research interests
include software engineering, software architecture, reliability, computer-aided design, and software
evolution. His work includes software testing, reuse, automatic software generation, architecture,
requirements, prototyping, re-engineering, specification languages, and engineering databases.
Berzins received BS, MS, EE, and PhD degrees from MIT and has been on the faculty at the
University of Texas and the University of Minnesota. He has developed several specification
languages, software tools for computer-aided software design, and fundamental theory of software
merging. [berzins@nps.edu]

Peter Lim—Peter Lim received a BTech in Electronics Engineering and MEng degrees in Electrical
and Computing from the National University of Singapore. He is currently pursuing an MS in Software
Engineering at the Naval Postgraduate School. His research area is in software engineering
processes and testing tools, and his research interests include computer vision and microcontroller
implementation. [plim@nps.edu]

Mohsen Ben Kahia—Mohsen Ben Kahia received a BS in computer sciences from the Tunisian
Naval Academy. He is currently pursuing an MS in software engineering at the Naval Postgraduate
School. He was involved as a member of the software research center of the Tunisian Navy. His
research areas in software engineering include software maintenance and testing. In parallel he is
pursuing research on improving distributed system efficiency. [mbenkahi@nps.edu]

Abstract
In the Verification and Validation (V&V) phase, whenever there is a newer release of
a given program, test engineers need to re-conduct all the tests performed on the
previous program release—a costly process known as regression testing. By using
the concept of program slicing, this project aims to be more effective in managing
costly human effort by selectively retesting the subset of the newer program release
that is critical and necessary. Program Slicing is an abstraction and program analysis
technique based on the principle of eliminating/deleting parts or subsets of the
program statements that are irrelevant to a given slicing criterion (Weiser, 1984). The
result, which is known as the program slice, holds those statements that directly or
indirectly affect the value computed at a given program point. Based on the behavior
invariance theorem, the project team intends to reduce the human effort in testing by
performing selective regression testing only on the affected subset of the program
that is identified by the slicing analysis algorithm, while maintaining the same test
adequacy criteria. The primary objective of this project is to evaluate the various
commercial-off-the-shelf (COTS) program slicing tools and assess their suitability for
enabling safe reduction of testing effort. Identification of suitable tools is a step on
the critical path towards application of program slicing to reduce the time and cost of
regression testing in the Navy’s technology upgrade process and in many other
contexts.

Introduction
Unlike in other domains, frequent and rapid changes in software requirements and

systems are not uncommon. The widespread assumption that changes to software are
easier and less costly than hardware modification is implicit in current acquisition processes
and contributes to the rate of change, along with external factors such as emerging new
technologies, capabilities, and threats. However, the assumption may not always be valid,
especially in today’s System-of-System (SoS) environments, because software systems are
very complex, are likely the main controller of the cyber-physical systems, and require

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 334
-
=

=

integrating or interfacing with other systems. Therefore, a simple or slight change in the
software that is not investigated or retested properly may have a big repercussion on the
behavior of the system and result in an "ineffective" or "unsafe" system. That is the
motivation for both performing regression testing and the current policy of completely
retesting a software system after each modification. This regression testing accounts for a
significant part of the time and cost of upgrades to such systems. Our project is investigating
the potential feasibility and effectiveness of applying COTS tools for software slicing to
safely reduce the time and cost of this regression testing process.

The goal of regression testing is to ensure that a new program release after a code
update or correction does not adversely affect the intended behavior relative to the previous
certified program release (White & Leung, 1992; Binkley, 1998). Regression testing often
requires executing the complete software system on a large number of test cases to validate
the behavior. It is an expensive process in terms of both human effort and machine
resources. One way to reduce the cost of regression testing is to conduct a majority of the
new test cases automatically and off-line. Another way is to retest the critical components
only. To mitigate the risk of software failure resulting from program changes on a previous
stable program release and to conduct retesting selectively, we aim to effectively minimize
the effort of regression testing by using the concept of program slicing to identify the critical
components that need to be retested.

Program slicing is a technique for restricting the behavior of a program to a specific
subset of interest according to a slicing criterion. This may produce a small subset of the
program that still duplicates the same behavior with respect to that criterion. In other words,
the base program and its slice will execute and produce the same values for the subset of
interest (Weiser, 1984; Korel & Laski, 1988; Gallagher & Harman, 1998). Hence, program
slicing is not only useful for testing, but could be used to support program comprehension,
debugging, maintenance, reuse, reengineering, merging, teamwork, etc. (Weiser, 1984;
Gallagher & Harman, 1998). Our focus is the application of program slicing to safely reduce
the testing effort and evaluating the suitability of several COTS slicing tools in support of this
goal.

This project will use previous work by Mark Weiser, Susan Horwitz, Keith Gallagher,
and others. The project team may use or modify their proposed mathematical models
whenever necessary in this research.

The rest of the sections are organized as follows: The next section provides the
objectives and motivation for the research. The section titled Slicing Challenges describes
the potential challenges that a slicing tool needs to address. The Dependencies section
identifies the possible dependencies that can affect a modern program. Adequacy Criteria
for Slicing Tools discusses the determination of adequacy criteria for slicing tools, and
Assessment Scope and Procedure briefly describes our research approach.

Objectives and Motivation
The primary objective of the project and this paper is to provide criteria for evaluating

and applying program slicing tools to safely reduce re-testing of software components in
new software releases. The secondary objective is to conduct experimental assessments
and compare the suitability of available COTS program slicing tools for safe reduction of
testing effort. We aim to determine the suitability of available COTS program slicing tools for
practical software application. The experimental assessments are not yet complete, and
their results will be reported in a future publication.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 335
-
=

=

The new approach will be applicable to program V&V to assist the developers and
test engineers in identification and analysis of critical software components. The intention is
to identify the most adequate slicing tools among the evaluated ones based on the required
tool assessment criteria.

Slicing Challenges
This section characterizes features of programs that appear in applications of

interest, and that must be handled accurately by slicing tools in order to safely reduce
regression testing. We also describe previous research results related to slicing of programs
that have these features.

Slicing Object-Oriented Programs
The first program slicing algorithms were intended for imperative programs with

simple scalar data.

Object-oriented programs have been addressed using the same general approach
as imperative programs extended to include specific algorithms that handle typical features
of sequential object-oriented programs. For example, Larsen and Harrold (1996) proposed
an algorithm for static slicing of sequential object-oriented programs based on an extended
representation of system dependence graphs (SDG) to handle some of the object-oriented
features such as classes and their instances, objects, inheritance, polymorphism, and
dynamic binding.

Pointers and Recursion
For a slicing tool to be useful, its slicing technique must be sufficiently precise and

efficient. Preciseness and efficiency are difficult to achieve when pointers and recursion are
used in a program. In this context, many researchers have focused their effort on improving
slicing tools to improve these aspects of the analysis and minimize this shortcoming (Liang
& Harrold, 1999).

The size or length of a slice has a big impact on its usefulness. In our case, for safe
reduction of regression testing, every additional statement that is unnecessarily included in a
slice may mislead us to include additional test cases, which require re-execution, and may
contradict our main purpose of avoiding spending effort on irrelevant tasks. Hence, this
parameter will be included in our assessment criteria for the evaluation of the tools.

Difficulties with pointers arise because data is not limited to statically identified
variables, as in simpler slicing methods, but rather, locations that are computed so that the
same variable name may refer to different locations at different stages of the computation.
The presence of pointers enables a phenomenon called aliasing. Aliasing happens when
several different variables refer to the same memory location. The problem is that aliasing
complicates the computation of slices and requires the use of approximations. This point is
addressed differently by each slicing algorithm. The problem of checking two pointer
variables can be referred to the same memory location has been proved to be un-decidable,
which implies that perfectly precise analysis of aliasing is impossible, and that safe
approximations are necessary.

Consequently, the analysis of program dependencies is less specific with pointers,
and a slicing tool may overestimate the size of the slice and include irrelevant statements in
the computed slice, as illustrated by the example shown in Figures 1 and 2. This is
assuming that the algorithm generates correct slices, which is more complicated in this
case, introducing more risk of error in the tool implementation. Our tool assessment criteria

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 336
-
=

=

will therefore include test cases that probe the soundness and resolution of slices involving
pointers.

In C, for example, we can have multiple levels of indirect pointers (double or more). If
this is the case, how would a slicer compute the slices correctly, precisely, and efficiently?
Binkley and Lyle (1998) addressed this issue and proposed an approach based on Pointer
State Sub-graphs (PSS) they used with the Unravel tool, an ANSI-C program slicer
developed at NIST to support their research. However, their paper addresses a “relaxed”
definition of slicing that does not require slices to be executable, which is not appropriate in
our context, because they do not always satisfy the behavior invariance property: for all
initial states in which the original program terminates, the slice must also terminate and
compute the same results for all quantity included in the slicing criterion that determines the
slice.

Mark Weiser’s (1984) original definition of slices requires slices to be executable, but
does not define what “executable” means. Since he talks about what happens when a slice
does not terminate, we can conclude he did not require executable program to terminate for
all initial states. The “relaxed” version used by Binkley & Lyle (1998) does not require slices
to be executable, and does not define “executable” either. However, the discussion of an
example in the paper indicates they do not consider slices that do not terminate cleanly to
be executable. The example talks about a runtime exception caused by attempting to
dereference an uninitialized pointer, which can happen in their “relaxed” slice, but not in the
original program. This situation does not satisfy the behavior invariance property on which
our test reduction analysis depends, because their relaxed definition allows cases where the
original program terminates cleanly and produces a well-formed result, but the slice
terminates abnormally, and therefore, does not produce the same result as the original
program.

For the purpose of safe test reduction, in practical situations that include the
possibility of abnormal termination, we need a version of slicing that conforms to the
following conditions:

1. All slices must be executable if the original program is.

2. Whenever the original program terminates cleanly, the slice must terminate
cleanly and produce the same result as the original program for all
observable values specified by the slicing criterion.

The first condition is required for the meaning of the slice to be well defined. We
define a program to be executable if it is sufficiently well-formed to compile, load, and begin
execution. Programs that fail to terminate or that terminate abnormally are still considered to
be executable.

Both conditions are consistent with the original definitions in Weiser (1984), but they
have been refined to explicitly detail what “executable” means and have been extended to
explicitly state how abnormal termination is to be interpreted.

In order to be suitable for test reduction, as well as conformance to the above
conceptual refinements, a slicing tool must correctly represent the control dependencies
associated with runtime exceptions and exception handling mechanisms. Experimental
assessment of such tools should therefore include test cases that are sensitive to these
aspects, such as the example in Binkley & Lyle (1998).

In recursion, the problem of overestimation may occur because recursion is a self
calling construct. This means that the slicer cannot wait until after it has computed the

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 337
-
=

=

dependencies of everything used by the function to compute the dependency of the function
itself, and must instead solve a fixed point equation to get a precise result. That process is
complicated and may not be computationally traceable in the general case. A practical
solution may need a safe approximation that produces an overestimation of the slice. For
example, in the HC (Harrold & Ci) algorithm (Harrold & Ci, 1998), the slicer locks the current
statement until the determination of its dependents.

For programs with recursion, the HC algorithm can produce imprecise slices.
When the algorithm requests slicing information for a non-local variable at a
recursive call, it may find that the slicing information is currently being computed
and thus, unavailable. In this case, the algorithm computes an overestimate of
the statements that affect the slicing criterion. (Liang & Harrold, 1999)

Test cases suitable for measuring the degree of overestimation of slices of recursive
programs should therefore be included in experimental slicing tool assessment.

Slicing Concurrent Programs

Parallel or concurrent imperative programs introduce additional concepts such as
inter-process synchronization and communication. These new dependencies require
additional features in the slicing algorithms. Zhao, Cheng and Ushijima (1996) addressed
this problem by proposing what they called Process Dependence Nets (PDN). They
generalized program dependence graphs (PDG) to represent program dependencies in a
concurrent imperative program with a single procedure. In their approach, selection,
synchronization, and communication dependency edges were added to control any data
dependency edges in the traditional PDG. The notions of nondeterministic parallel control
flow net and nondeterministic parallel definition-use net were introduced for representing
multiple control flows and multiple data flows in concurrent programs. These new constructs
are required because control flows and data flows of parallel processes are not independent
due to the existence of inter-process synchronization among multiple control flows, and
inter-process communication among multiple data flows in the program. For concurrent
object-oriented programs, they proposed the System Dependence Net (SDN), which can be
used to represent concurrency issues in the program, in addition to the other features used
in sequential object-oriented programs.

Another challenge that requires attention is the non-determinism when a process
interacts with a number of other concurrent processes while communicating. This introduces
an additional challenge to the slicing task and requires special considerations such as
intermediate representations that accurately represent sets of possible behaviors rather than
a single definite behavior.

Dependencies
In a program, statements affect each other in different ways. Basically, any software

language has the following three main constructs:
1. iteration,

2. selection, and

3. repetition.

If we include parallel programming capabilities and the external environment, we add
other constructs such as synchronization, interference, and external inter-connections. To

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 338
-
=

=

cover these features, a complete program slicing algorithm needs to handle the following
dependencies:

Data Dependency

"A statement u is directly data-dependent on a statement v if the value of a variable
computed at v has a direct influence on the value of a variable computed at u" (Zhao,
Cheng, & Ushijima, 1996).

Control Dependency

"A statement u is directly control-dependent on the control predicate v of a
conditional branch statement if whether u is executed or not is directly determined by the
evaluation result of v" (Zhao, Cheng, & Ushijima, 1996).

Parallel Dependencies

This type involves dependencies between concurrent processes. In such a case,
classical control and data dependencies are insufficient to represent the flow of data and
control. Additional dependencies have been defined for the purpose:

Selection Dependencies

“They [Selection dependencies] are similar to control dependencies but involve
nondeterministic selection statements. A statement u is directly selection-dependent on a
nondeterministic selection statement v if whether u is executed or not is directly determined
by the selection result of v” (Zhao, Cheng, & Ushijima, 1996).

Synchronization Dependencies

“A statement u is directly synchronization-dependent on another statement v if the
start and/or termination of execution of v directly determines whether or not the execution of
u starts and/or terminates” (Zhao, Cheng, & Ushijima, 1996).

Internal-Communication Dependencies

“A statement u in a process is directly internal-communication dependent on another
statement v in another process if the value of a variable computed at v has a direct influence
on the value of a variable computed at u by an inter-process communication” (Zhao, Cheng,
& Ushijima, 1996).

External Dependencies

An important aspect related to programs is their communication with external
components and interfaces. This connection brings up another type of dependency that
could have a significant impact on the behavior of the program.

Any program that uses external libraries, makes system calls, fetches data from an
external database, or calls external application level services has external dependencies.
This is usually done through interfaces. From the slicing perspective, the behavior of the
slicer toward these components is important to evaluate. For safe reduction of regression
testing, we need to know if a slicing tool includes these types of dependencies and to what
extent. A program may not use these components as a whole, but rather call a subset of its

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 339
-
=

=

functions or use a subset of the service components. In this case, it would be useful if the
slicer is able to provide precise indications of dependencies related to these external calls,
or means by which users could model such dependencies.

In the same context, programs may execute input/output (I/O) statements directed to
certain destinations. These statements may involve hardware modules (an actuator, a
sensor, a control module, an I/O stream) and/or external software modules (a web service,
another software system) and/or humans (Operator). In this perspective, a change in a
software module may require retesting the components that may share the I/O destination,
in particular if the changed module updates an I/O destination that is read or sensed by an
unmodified component. I/O destinations should be treated as "variables" with respect to data
dependencies, even if they are external to the system. Anything with a state that can
influence software behavior has to be included as an I/O destination whether or not it is a
component entity.

This includes physical systems that are affected by actuator controlled by the
software component and sensed by sensors read by the software component. It also
includes computational entities such as files, databases, web services, and human
operators that interact with the system based on information it displays.

The way the slicer interprets these dependencies may significantly optimize safe
reduction of regression testing. Correctly modeling the direction of such dependencies is
vital for soundness and efficiency of the proposed approach.

When Retesting Can Be Safely Omitted
Re-testing of an unchanged component can be safely omitted when slicing analysis

confirms that program behavior is unchanged and all of the following conditions are met:

1. Requirements of the component are unchanged.

2. Workload of the component is unchanged.

3. Behavior of the deployed machine code correctly corresponds to the source
code that was analyzed via slicing.

4. Real-time constraints and other resource constraints related to the
component are re-checked in system-level tests.

These assumptions and methods for checking them are discussed in detail in
Berzins (2008). Methods for efficiently retesting components when component workload has
changed are given in Berzins and Dailey (2009, 2010).

Adequacy Criteria for Slicing Tools
We propose criteria for determining the adequacy of slicing tools according to the

assessment below. Slicing algorithms are specific to the programming language and
whether it is sequential or concurrent. Other aspects of the environment of the program to
be analyzed by slicing, including the hardware platform and the external components, play a
significant role on its behavior. Hence, we need to include all possible dependencies present
in the program according to its type, its behavior, and its environment. This is required to
identify suitable algorithms that handle the possible dependencies and also the full range of
features provided by the targeted programming language, specifically those of object-
oriented programs.

Size of the Computed Slice

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 340
-
=

=

For determining the adequacy of slicing tools, the size of the computed slice is
significant in our context, because the bigger the slice, the more likely it will interfere with the
components modified in the new release of the system. Hence, the concept of minimal slice
is very important in such a perspective. Since finding exact minimal slices is algorithmically
unsolvable in the general case (Weiser, 1984), all practical tools will sometimes produce
overestimations of slices. Our criteria should be able to compare the size of the slices from
different algorithms by statement to statement analysis, if the tools are used on the same
language, and by slice-program ratio, if the tools have to be used on different languages but
for the similar requirements.

In this same context—the importance of the size of generated slices, Jackson and
Rollins (1994) introduced the concept of program chopping. This technique aims at
generating smaller and more precise slices with regard to a pair of slicing criteria, a source,
and a sink. Chopping produces the subset of the program’s statements influencing sink
elements and caused by source elements. Program chopping means that a slice is limited
between two statements. The chopping criteria are the source statement with a set of
variables to a forward slicing and the sink statement with a set of variables for backward
slicing.

From regression testing perspective this technique must be used with great care to
avoid optimizations that could invalidate the analysis. To be safe, all components that were
modified in the new release must be included as source statements. To judge whether a
particular service of an unchanged component must be retested, the appropriate sink
consists of the return statements for the service, together with all associated return values
and output variables.

Programming Languages
Most of the slicing tools are programming language specific and since each

language has its specificities, the criteria need to be language specific. For example,
pointers can be explicitly manipulated by the programmer in C and C++, but in Java they are
implicitly invoked, and operations on them are restricted to equality checks. When slicing
C/C++ programs, the slicing algorithm needs to be evaluated specifically on how it analyzes
pointers, with attention to computed pointer values.

Another point is related to the type of the language, meaning imperative or object-
oriented (OO). This requires specific attention because OO programs include additional
features, such as simple and multiple inheritance, polymorphism, and dynamic binding. The
slicer of OO programs has to deal with these additional concepts by defining additional
dependencies or redefining previously proposed dependencies to accurately capture these
aspects of OO programs.

Behavior of the Program
If we are slicing a sequential program, our dependencies are limited to data and

control. Specific considerations are to be added for object-oriented programming features,
as mentioned above. In terms of dependencies, we only have the two mentioned types.

In sequential programs, slices are also sequential and follow the structure of the
program consistently. When concurrent programs are evaluated, slices become more
challenging to compute, because new dependencies are required to be evaluated by the
algorithm, and are usually located externally to the procedure or method of interest. Hence,
if we are evaluating a concurrent program, the slicer must include this capability.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 341
-
=

=

More specifically, another level of analysis needs to be performed that is related to
the language and its constructs. To be clear, we will give examples for the following criteria
in order to explain the concept.

Pointers and Parameter Passing
The concept of call by value and call by reference needs to be addressed carefully

during slicing, because the difference between these two aspects is considerably critical in
safety critical systems. If we call by value, the scope of the change is limited within the
procedure or the method. In C and Java, the parameter is passed by value or reference,
depending on the type, and this is done by regular calls. A slicer needs to identify these
aspects efficiently to avoid mishaps or abnormal behavior when the program is changed and
is being tested for release.

In Figure 1 we have two different programs that have different behaviors due only to
aliasing introduced by pointers in line 4 of (b). If we want to slice both programs with respect
to the slicing criterion {8, p1.a}, then the set of statements {1,2,3,4,5,6,8,10,11,12} would be
an overestimate for (a) but a precise slice for (b). This is due to the fact that statement (6) in
program (a) doesn't affect the object p1 since program (a) creates two separate objects. In
(b) this is not the case, because p1 and p2 point to the same object from statement (4)
onwards. Statement (6) must be included in a correct and precise slice of (b), because in
program (b), statement (6) changes the value of p1.a.

Figure 1. Example of the Preciseness of the Slicing Tool When Pointers Used

Note. (a) p1 and p2 are instantiated independently; (b) p1 and p2 refer to the same object
point.

Slicer Output
Since we have planned to use the computed slices to safely reduce regression

testing, we will need the capability to compare these slices and analyze them. For this
reason, we would like a slicing tool to provide the following:

1. An operation to check if two slices are the same and/or

2. An operation to save a slice into a file.

Note that Capability 1 in this list can be realized using Capability 2, together with an
external tool for comparing files.

If the slicer output is merely a set of highlighted statements within a screen display of
the original code, the comparison will be very challenging.

In addition, this research could not lead to an efficient procedure if there is no
possibility of automation. Automation is crucial in this context, especially for large scale

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 342
-
=

=

systems or incremental projects based on agile method. Automation may involve the usage
of other tools, especially for textual comparison between different slices. This infers an
essential need of an interface between the slicer and any additional tool.

External Components
As discussed in the previous section, external dependencies are important from

testing perspective, because an external component may be shared by other software
modules. This point of intersection between separate modules scales up the impact of
change in the subsystems. If the slicer can reach these external points by any
representation or indication, the tester may count on it to identify potential extent of the
scope of change. Though these components come outside the program code, they are part
of the whole integrated system.

The criteria we proposed so far were set up according to the specified challenges
described in the Dependencies section, and the dependencies described in the Adequacy
Criteria for Slicing Tools section. This research is still in progress and may not yet address
all criteria relevant to the assessment of the suitability of slicing tools. The most important
condition that needs to be verified is that the tools generate correct slices with respect to the
behavior invariance property.

Assessment Scope and Procedure
Tentatively, the project team plans to use and conduct assessment for the following

slicing tools: (1) Indus’s static slicing tool for Java programs. This tool was developed by
Kansas State University and delivered as an Eclipse plug-in under the product name Kaveri;
(2) GrammaTech’s CodeSurfer, a static slicing tool for C/C++ programs, formerly developed
by Wisconsin Slicing Project; and (3) Jslice static and dynamic slicing tool for Java
programs. This tool was developed by the National University of Singapore.

Most of the academic slicing tools developed for research purposes will not be
evaluated in this project. Such tools include the following: (1) Unravel static slicing tool for C
programs, a prototype tool contracted to the National Institute of Standards and Technology
by the United States Nuclear Regulatory Commission and the National Communications
System; and (2) Oberon slicing tool for Oberon system, developed by the Johannes Kepler
University. For these tools, the lack or limitation of documentation and support represents a
serious obstacle for us to include them in this research. We also gave lower priority to the
Oberon tool, because the Oberon language (a modern version of Pascal) is not in
widespread use, compared to Java and C/C++.

The team is currently testing some of the above tools and will provide a
comprehensive test-driven adequacy criteria and test cases in a later publication. Some of
the planned criteria identified are in the Dependencies section and the Adequacy Criteria for
Slicing Tools section, including pointer handling, coverage of OO features, exceptions,
concurrency features, program size limitations, programming language handling, etc; and
the test cases will focus on soundness of the analysis of unchanged behavior and effort
reduction based on off-line and on-line testing.

Slicing the program in Figure 1 using Indus gave us the following result:

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 343
-
=

=

Figure 2. Slicing the Program Using Indus
Note. (a) Sliced on criterion {10, p2.a}; and (b) Sliced on criterion {10, p2.a}.

The slicing tools Indus highlights in green are totally relevant statements, and those
in yellow are partially relevant statements to the criterion. As shown in Figure 2, Indus
generated the same slices for the two programs which are correct, but for (a), the generated
slice includes statement (5) which is irrelevant with regard to the defined criterion, so that we
have an overestimated slice in case (a).

Conclusion
The time and cost of software development are important concerns in system

acquisition. For systems with long lifetimes, regression testing is a major component of the
cost of each new release, including periodic technology upgrades typical of DoD/Navy
systems. Slicing has the potential to reduce the time and cost of this regression testing,
which is necessary to ensure the safety and effectiveness of each new release. The
research reported here will facilitate the practical application of this approach by evaluating
existing slicing tools to determine if any of them are currently able to adequately support this
process.

This project is in its early stages, and this paper reports some of our preliminary
results, which consist of evaluation criteria for slicing tools in the context of their ability to
achieve safe reduction of regression testing. We have identified potential difficulties in
implementing sound and discriminating slicing tools, together with associated risks with
respect to safe reduction of regression testing. These difficulties and risks have been used
to derive tool assessment criteria to be used in the experimental phase of this project. These
criteria are described in the Dependencies section and in the Adequacy Criteria for Slicing
Tools section of this paper.

Experimental assessment is currently in progress and is not yet complete.
Assessment results for particular tools will be reported when the effort is complete and
measurements related to the evaluation criteria are available.

If the result of the tool assessment is positive, the next step will be to use the chosen
slicing tools to identify possible reductions in regression testing for a subset of a real system
in a pilot study to check the safety and effectiveness of the theoretically proposed test
reduction process in a realistic setting.

If the result of the tool assessment is not positive, our project will identify the
candidate tools that are closest to meeting the requirements for supporting safe regression
test reduction and the current shortcomings of those tools, thus laying the groundwork for
obtaining the needed tool support.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 344
-
=

=

References
Berzins, V. (2008, April). Which unchanged components to retest after a technology

upgrade. In Proceedings of the Fifth Annual Acquisition Research Symposium.
Monterey, CA: Naval Postgraduate School.

Berzins, V., & Dailey, P. (2009, April). How to check if it is safe not to retest a component. In
Proceedings of the Sixth Annual Acquisition Research Symposium. Monterey, CA:
Naval Postgraduate School.

Berzins, V., & Dailey, P. (2010, May). Improved software testing for open architecture. In
Proceedings of the Seventh Annual Research Symposium—Acquisition Research:
Creating Synergy for Informed Change (pp. 385–398). Monterey, CA: Naval
Postgraduate School.

Binkley, D. (1998). The application of program slicing to regression testing. Information and
Software Technology, 40(11–12), 583–594.

Binkley, D. W., & Lyle, J. R. (1998). Application of the pointer state subgraph to static
program slicing. Journal of Systems and Software.

Gallagher, K. B., & Harman, M. (1998). Program slicing. Information and Software
Technology (Special Issue), 40(11–12).

Harrold, M. J., & Ci, N. (1998). Reuse-driven inter-procedural slicing. In Proceedings of the
1998 International Conference on Software Maintenance (p. 74).

Jackson, D., & Rollins, E. J. (1994). Chopping: A generalization of slicing. In Proceedings of
the Second ACM SIGSOFT Symposium on the Foundations of Software Engineering
(pp. 11–17).

Korel, B., & Laski, J. (1988). Dynamic program slicing. Information Processing Letters, 155–
163.

Larsen, L., & Harrold, M. J. (1996). Slicing object-oriented software. In 18th International
Conference on Software Engineering (pp. 495–505).

Liang, D., & Harrold, M. J. (1999, August). Reuse-driven inter-procedural slicing in the
presence of pointers and recursion. In Proceedings of the 1999 International
Conference on Software Maintenance (pp. 421–432).

Weiser, M. (1984). Program slicing. IEEE transactions on software engineering, SE–10(4),
352–357.

White, L., & Leung, H. (1992). Regression testability. IEEE Micro, 12(2), 81–84.
Zhao, J., Cheng, J., & Ushijima, K. (1996). Static slicing of concurrent object-oriented

programs. In Proceedings of the 20th IEEE Annual International Computer Software
and Applications Conference.

