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During his internship with the Graduate School of Business & Public Policy in June 
2010, U.S. Air Force Academy Cadet Chase Lane surveyed the activities of the Naval 
Postgraduate School’s Acquisition Research Program in its first seven years.  The sheer 
volume of research products—almost 600 published papers (e.g., technical reports, journal 
articles, theses)—indicates the extent to which the depth and breadth of acquisition 
research has increased during these years.  Over 300 authors contributed to these works, 
which means that the pool of those who have had significant intellectual engagement with 
acquisition issues has increased substantially.  The broad range of research topics includes 
acquisition reform, defense industry, fielding, contracting, interoperability, organizational 
behavior, risk management, cost estimating, and many others.  Approaches range from 
conceptual and exploratory studies to develop propositions about various aspects of 
acquisition, to applied and statistical analyses to test specific hypotheses.  Methodologies 
include case studies, modeling, surveys, and experiments.  On the whole, such findings 
make us both grateful for the ARP’s progress to date, and hopeful that this progress in 
research will lead to substantive improvements in the DoD’s acquisition outcomes. 
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practice” gap, which would separate the acquisition scholar from the acquisition practitioner, 
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researchers with practitioners on specific projects; requiring researchers to brief sponsors on 
project findings as a condition of funding award; “pushing” potentially high-impact research 
reports (e.g., via overnight shipping) to selected practitioners and policy-makers; and most 
notably, sponsoring this symposium, which we craft intentionally as an opportunity for 
fruitful, lasting connections between scholars and practitioners. 
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research was not generally useful in acquisition practice, opined, “That’s not their [the 
academics’] problem—it’s ours [the practitioners’].  They can only perform research; it’s up 
to us to use it.”  While we certainly agree with this sentiment, we also recognize that any 
research, however theoretical, must point to some termination in action; academics have a 
responsibility to make their work intelligible to practitioners.  Thus we continue to seek 
projects that both comport with solid standards of scholarship, and address relevant 
acquisition issues.  These years of experience have shown us the difficulty in attempting to 
balance these two objectives, but we are convinced that the attempt is absolutely essential if 
any real improvement is to be realized. 
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Gary (FFG-51) from 1986 to 1989; Combat Systems Instructor at the Surface Warfare Officer's 
School in Coronado, CA, from 1989 to 1992; Student in the Space Systems Engineering curriculum at 
the Naval Postgraduate School from 1992 to 1994; Aegis Project Officer at the Port Hueneme 
Division, Naval Surface Warfare Center from 1994 to 1998; AEGIS LEAP Intercept (ALI) Project 
Officer in the Navy Theater Wide Program Office (PMS 452) from 1998 to 2002; TBMD Section Head 
in the Aegis Combat System Engineering Program Office (PMS 400B) from 2002 to 2003; Combat 
Systems Officer on the Fleet Maintenance staff for Commander, United States Pacific Fleet from 
2003 to 2005; Technical Representative for Surface Naval Weapons (PEO IWS 3.0) and Aegis 
Ballistic Missile Defense (PD 452) portfolio of programs at Raytheon Missile Systems in Tucson, AZ. 

CAPT Gannon assumed his present duties as Major Program Manager Future Combat Systems and 
Open Architecture (PEO IWS 7.0) in October 2008. 

Captain Gannon’s personal awards include the Meritorious Service Medal (four awards), Navy 
Commendation Medal and the Navy Achievement Medal in addition to various service awards. He is 
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Test Reduction in Open Architecture via Dependency Analysis 
Valdis Berzins—Professor, Computer Science, Naval Postgraduate School. His research interests 
include software engineering, software architecture, reliability, computer-aided design, and software 
evolution. His work includes software testing, reuse, automatic software generation, architecture, 
requirements, prototyping, re-engineering, specification languages, and engineering databases. 
Berzins received BS, MS, EE, and PhD degrees from MIT and has been on the faculty at the 
University of Texas and the University of Minnesota. He has developed several specification 
languages, software tools for computer-aided software design, and fundamental theory of software 
merging. [berzins@nps.edu] 

Peter Lim—Peter Lim received a BTech in Electronics Engineering and MEng degrees in Electrical 
and Computing from the National University of Singapore. He is currently pursuing an MS in Software 
Engineering at the Naval Postgraduate School. His research area is in software engineering 
processes and testing tools, and his research interests include computer vision and microcontroller 
implementation. [plim@nps.edu] 

Mohsen Ben Kahia—Mohsen Ben Kahia received a BS in computer sciences from the Tunisian 
Naval Academy. He is currently pursuing an MS in software engineering at the Naval Postgraduate 
School. He was involved as a member of the software research center of the Tunisian Navy. His 
research areas in software engineering include software maintenance and testing. In parallel he is 
pursuing  research on improving distributed system efficiency. [mbenkahi@nps.edu] 

Abstract 
In the Verification and Validation (V&V) phase, whenever there is a newer release of 
a given program, test engineers need to re-conduct all the tests performed on the 
previous program release—a costly process known as regression testing. By using 
the concept of program slicing, this project aims to be more effective in managing 
costly human effort by selectively retesting the subset of the newer program release 
that is critical and necessary. Program Slicing is an abstraction and program analysis 
technique based on the principle of eliminating/deleting parts or subsets of the 
program statements that are irrelevant to a given slicing criterion (Weiser, 1984). The 
result, which is known as the program slice, holds those statements that directly or 
indirectly affect the value computed at a given program point. Based on the behavior 
invariance theorem, the project team intends to reduce the human effort in testing by 
performing selective regression testing only on the affected subset of the program 
that is identified by the slicing analysis algorithm, while maintaining the same test 
adequacy criteria. The primary objective of this project is to evaluate the various 
commercial-off-the-shelf (COTS) program slicing tools and assess their suitability for 
enabling safe reduction of testing effort. Identification of suitable tools is a step on 
the critical path towards application of program slicing to reduce the time and cost of 
regression testing in the Navy’s technology upgrade process and in many other 
contexts. 

Introduction 
Unlike in other domains, frequent and rapid changes in software requirements and 

systems are not uncommon. The widespread assumption that changes to software are 
easier and less costly than hardware modification is implicit in current acquisition processes 
and contributes to the rate of change, along with external factors such as emerging new 
technologies, capabilities, and threats. However, the assumption may not always be valid, 
especially in today’s System-of-System (SoS) environments, because software systems are 
very complex, are likely the main controller of the cyber-physical systems, and require 
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integrating or interfacing with other systems. Therefore, a simple or slight change in the 
software that is not investigated or retested properly may have a big repercussion on the 
behavior of the system and result in an "ineffective" or "unsafe" system. That is the 
motivation for both performing regression testing and the current policy of completely 
retesting a software system after each modification. This regression testing accounts for a 
significant part of the time and cost of upgrades to such systems. Our project is investigating 
the potential feasibility and effectiveness of applying COTS tools for software slicing to 
safely reduce the time and cost of this regression testing process.  

The goal of regression testing is to ensure that a new program release after a code 
update or correction does not adversely affect the intended behavior relative to the previous 
certified program release (White & Leung, 1992; Binkley, 1998). Regression testing often 
requires executing the complete software system on a large number of test cases to validate 
the behavior. It is an expensive process in terms of both human effort and machine 
resources. One way to reduce the cost of regression testing is to conduct a majority of the 
new test cases automatically and off-line. Another way is to retest the critical components 
only. To mitigate the risk of software failure resulting from program changes on a previous 
stable program release and to conduct retesting selectively, we aim to effectively minimize 
the effort of regression testing by using the concept of program slicing to identify the critical 
components that need to be retested. 

Program slicing is a technique for restricting the behavior of a program to a specific 
subset of interest according to a slicing criterion. This may produce a small subset of the 
program that still duplicates the same behavior with respect to that criterion. In other words, 
the base program and its slice will execute and produce the same values for the subset of 
interest (Weiser, 1984; Korel & Laski, 1988; Gallagher & Harman, 1998). Hence, program 
slicing is not only useful for testing, but could be used to support program comprehension, 
debugging, maintenance, reuse, reengineering, merging, teamwork, etc. (Weiser, 1984; 
Gallagher & Harman, 1998). Our focus is the application of program slicing to safely reduce 
the testing effort and evaluating the suitability of several COTS slicing tools in support of this 
goal. 

This project will use previous work by Mark Weiser, Susan Horwitz, Keith Gallagher, 
and others. The project team may use or modify their proposed mathematical models 
whenever necessary in this research. 

The rest of the sections are organized as follows: The next section  provides the 
objectives and motivation for the research. The section titled Slicing Challenges describes 
the potential challenges that a slicing tool needs to address. The Dependencies section 
identifies the possible dependencies that can affect a modern program. Adequacy Criteria 
for Slicing Tools discusses the determination of adequacy criteria for slicing tools, and 
Assessment Scope and Procedure briefly describes our research approach.  

Objectives and Motivation 
The primary objective of the project and this paper is to provide criteria for evaluating 

and applying program slicing tools to safely reduce re-testing of software components in 
new software releases. The secondary objective is to conduct experimental assessments 
and compare the suitability of available COTS program slicing tools for safe reduction of 
testing effort. We aim to determine the suitability of available COTS program slicing tools for 
practical software application. The experimental assessments are not yet complete, and 
their results will be reported in a future publication. 
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The new approach will be applicable to program V&V to assist the developers and 
test engineers in identification and analysis of critical software components. The intention is 
to identify the most adequate slicing tools among the evaluated ones based on the required 
tool assessment criteria. 

Slicing Challenges 
This section characterizes features of programs that appear in applications of 

interest, and that must be handled accurately by slicing tools in order to safely reduce 
regression testing. We also describe previous research results related to slicing of programs 
that have these features. 

Slicing Object-Oriented Programs 
The first program slicing algorithms were intended for imperative programs with 

simple scalar data. 

Object-oriented programs have been addressed using the same general approach 
as imperative programs extended to include specific algorithms that handle typical features 
of sequential object-oriented programs. For example, Larsen and Harrold (1996) proposed 
an algorithm for static slicing of sequential object-oriented programs based on an extended 
representation of system dependence graphs (SDG) to handle some of the object-oriented 
features such as classes and their instances, objects, inheritance, polymorphism, and 
dynamic binding. 

Pointers and Recursion 
For a slicing tool to be useful, its slicing technique must be sufficiently precise and 

efficient. Preciseness and efficiency are difficult to achieve when pointers and recursion are 
used in a program. In this context, many researchers have focused their effort on improving 
slicing tools to improve these aspects of the analysis and minimize this shortcoming (Liang 
& Harrold, 1999).  

The size or length of a slice has a big impact on its usefulness. In our case, for safe 
reduction of regression testing, every additional statement that is unnecessarily included in a 
slice may mislead us to include additional test cases, which require re-execution, and may 
contradict our main purpose of avoiding spending effort on irrelevant tasks. Hence, this 
parameter will be included in our assessment criteria for the evaluation of the tools.    

Difficulties with pointers arise because data is not limited to statically identified 
variables, as in simpler slicing methods, but rather, locations that are computed so that the 
same variable name may refer to different locations at different stages of the computation. 
The presence of pointers enables a phenomenon called aliasing. Aliasing happens when 
several different variables refer to the same memory location. The problem is that aliasing 
complicates the computation of slices and requires the use of approximations. This point is 
addressed differently by each slicing algorithm. The problem of checking two pointer 
variables can be referred to the same memory location has been proved to be un-decidable, 
which implies that perfectly precise analysis of aliasing is impossible, and that safe 
approximations are necessary.  

Consequently, the analysis of program dependencies is less specific with pointers, 
and a slicing tool may overestimate the size of the slice and include irrelevant statements in 
the computed slice, as illustrated by the example shown in Figures 1 and 2. This is 
assuming that the algorithm generates correct slices, which is more complicated in this 
case, introducing more risk of error in the tool implementation. Our tool assessment criteria 
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will therefore include test cases that probe the soundness and resolution of slices involving 
pointers. 

In C, for example, we can have multiple levels of indirect pointers (double or more). If 
this is the case, how would a slicer compute the slices correctly, precisely, and efficiently? 
Binkley and Lyle (1998) addressed this issue and proposed an approach based on Pointer 
State Sub-graphs (PSS) they used with the Unravel tool, an ANSI-C program slicer 
developed at NIST to support their research. However, their paper addresses a “relaxed” 
definition of slicing that does not require slices to be executable, which is not appropriate in 
our context, because they do not always satisfy the behavior invariance property: for all 
initial states in which the original program terminates, the slice must also terminate and 
compute the same results for all quantity included in the slicing criterion that determines the 
slice. 

Mark Weiser’s (1984) original definition of slices requires slices to be executable, but 
does not define what “executable” means. Since he talks about what happens when a slice 
does not terminate, we can conclude he did not require executable program to terminate for 
all initial states. The “relaxed” version used by Binkley & Lyle (1998) does not require slices 
to be executable, and does not define “executable” either. However, the discussion of an 
example in the paper indicates they do not consider slices that do not terminate cleanly to 
be executable. The example talks about a runtime exception caused by attempting to 
dereference an uninitialized pointer, which can happen in their “relaxed” slice, but not in the 
original program. This situation does not satisfy the behavior invariance property on which 
our test reduction analysis depends, because their relaxed definition allows cases where the 
original program terminates cleanly and produces a well-formed result, but the slice 
terminates abnormally, and therefore, does not produce the same result as the original 
program. 

For the purpose of safe test reduction, in practical situations that include the 
possibility of abnormal termination, we need a version of slicing that conforms to the 
following conditions: 

1. All slices must be executable if the original program is. 

2. Whenever the original program terminates cleanly, the slice must terminate 
cleanly and produce the same result as the original program for all 
observable values specified by the slicing criterion. 

The first condition is required for the meaning of the slice to be well defined. We 
define a program to be executable if it is sufficiently well-formed to compile, load, and begin 
execution. Programs that fail to terminate or that terminate abnormally are still considered to 
be executable. 

Both conditions are consistent with the original definitions in Weiser (1984), but they 
have been refined to explicitly detail what “executable” means and have been extended to 
explicitly state how abnormal termination is to be interpreted. 

In order to be suitable for test reduction, as well as conformance to the above 
conceptual refinements, a slicing tool must correctly represent the control dependencies 
associated with runtime exceptions and exception handling mechanisms. Experimental 
assessment of such tools should therefore include test cases that are sensitive to these 
aspects, such as the example in Binkley & Lyle (1998). 

In recursion, the problem of overestimation may occur because recursion is a self 
calling construct. This means that the slicer cannot wait until after it has computed the 
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dependencies of everything used by the function to compute the dependency of the function 
itself, and must instead solve a fixed point equation to get a precise result. That process is 
complicated and may not be computationally traceable in the general case. A practical 
solution may need a safe approximation that produces an overestimation of the slice. For 
example, in the HC (Harrold & Ci) algorithm (Harrold & Ci, 1998), the slicer locks the current 
statement until the determination of its dependents. 

For programs with recursion, the HC algorithm can produce imprecise slices. 
When the algorithm requests slicing information for a non-local variable at a 
recursive call, it may find that the slicing information is currently being computed 
and thus, unavailable. In this case, the algorithm computes an overestimate of 
the statements that affect the slicing criterion. (Liang & Harrold, 1999) 

Test cases suitable for measuring the degree of overestimation of slices of recursive 
programs should therefore be included in experimental slicing tool assessment. 

Slicing Concurrent Programs 

Parallel or concurrent imperative programs introduce additional concepts such as 
inter-process synchronization and communication. These new dependencies require 
additional features in the slicing algorithms. Zhao, Cheng and Ushijima (1996) addressed 
this problem by proposing what they called Process Dependence Nets (PDN). They 
generalized program dependence graphs (PDG) to represent program dependencies in a 
concurrent imperative program with a single procedure. In their approach, selection, 
synchronization, and communication dependency edges were added to control any data 
dependency edges in the traditional PDG. The notions of nondeterministic parallel control 
flow net and nondeterministic parallel definition-use net were introduced for representing 
multiple control flows and multiple data flows in concurrent programs. These new constructs 
are required because control flows and data flows of parallel processes are not independent 
due to the existence of inter-process synchronization among multiple control flows, and 
inter-process communication among multiple data flows in the program. For concurrent 
object-oriented programs, they proposed the System Dependence Net (SDN), which can be 
used to represent concurrency issues in the program, in addition to the other features used 
in sequential object-oriented programs. 

Another challenge that requires attention is the non-determinism when a process 
interacts with a number of other concurrent processes while communicating. This introduces 
an additional challenge to the slicing task and requires special considerations such as 
intermediate representations that accurately represent sets of possible behaviors rather than 
a single definite behavior. 

Dependencies 
In a program, statements affect each other in different ways. Basically, any software 

language has the following three main constructs:  
1. iteration,  

2. selection, and  

3. repetition.  

If we include parallel programming capabilities and the external environment, we add 
other constructs such as synchronization, interference, and external inter-connections. To 
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cover these features, a complete program slicing algorithm needs to handle the following 
dependencies: 

Data Dependency 

"A statement u is directly data-dependent on a statement v if the value of a variable 
computed at v has a direct influence on the value of a variable computed at u" (Zhao, 
Cheng, & Ushijima, 1996).  

Control Dependency 

"A statement u is directly control-dependent on the control predicate v of a 
conditional branch statement if whether u is executed or not is directly determined by the 
evaluation result of v" (Zhao, Cheng, & Ushijima, 1996). 

Parallel Dependencies 

This type involves dependencies between concurrent processes. In such a case, 
classical control and data dependencies are insufficient to represent the flow of data and 
control. Additional dependencies have been defined for the purpose:  

Selection Dependencies 

“They [Selection dependencies] are similar to control dependencies but involve 
nondeterministic selection statements. A statement u is directly selection-dependent on a 
nondeterministic selection statement v if whether u is executed or not is directly determined 
by the selection result of v” (Zhao, Cheng, & Ushijima, 1996).  

Synchronization Dependencies  

“A statement u is directly synchronization-dependent on another statement v if the 
start and/or termination of execution of v directly determines whether or not the execution of 
u starts and/or terminates” (Zhao, Cheng, & Ushijima, 1996). 

Internal-Communication Dependencies 

“A statement u in a process is directly internal-communication dependent on another 
statement v in another process if the value of a variable computed at v has a direct influence 
on the value of a variable computed at u by an inter-process communication” (Zhao, Cheng, 
& Ushijima, 1996).  

External Dependencies 

An important aspect related to programs is their communication with external 
components and interfaces. This connection brings up another type of dependency that 
could have a significant impact on the behavior of the program.  

Any program that uses external libraries, makes system calls, fetches data from an 
external database, or calls external application level services has external dependencies. 
This is usually done through interfaces. From the slicing perspective, the behavior of the 
slicer toward these components is important to evaluate. For safe reduction of regression 
testing, we need to know if a slicing tool includes these types of dependencies and to what 
extent. A program may not use these components as a whole, but rather call a subset of its 
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functions or use a subset of the service components. In this case, it would be useful if the 
slicer is able to provide precise indications of dependencies related to these external calls, 
or means by which users could model such dependencies.  

In the same context, programs may execute input/output (I/O) statements directed to 
certain destinations. These statements may involve hardware modules (an actuator, a 
sensor, a control module, an I/O stream) and/or external software modules (a web service, 
another software system) and/or humans (Operator). In this perspective, a change in a 
software module may require retesting the components that may share the I/O destination, 
in particular if the changed module updates an I/O destination that is read or sensed by an 
unmodified component. I/O destinations should be treated as "variables" with respect to data 
dependencies, even if they are external to the system. Anything with a state that can 
influence software behavior has to be included as an I/O destination whether or not it is a 
component entity. 

This includes physical systems that are affected by actuator controlled by the 
software component and sensed by sensors read by the software component. It also 
includes computational entities such as files, databases, web services, and human 
operators that interact with the system based on information it displays. 

The way the slicer interprets these dependencies may significantly optimize safe 
reduction of regression testing. Correctly modeling the direction of such dependencies is 
vital for soundness and efficiency of the proposed approach. 

When Retesting Can Be Safely Omitted 
Re-testing of an unchanged component can be safely omitted when slicing analysis 

confirms that program behavior is unchanged and all of the following conditions are met: 

1. Requirements of the component are unchanged. 

2. Workload of the component is unchanged. 

3. Behavior of the deployed machine code correctly corresponds to the source 
code that was analyzed via slicing. 

4. Real-time constraints and other resource constraints related to the 
component are re-checked in system-level tests. 

These assumptions and methods for checking them are discussed in detail in 
Berzins (2008). Methods for efficiently retesting components when component workload has 
changed are given in Berzins and Dailey (2009, 2010). 

Adequacy Criteria for Slicing Tools 
We propose criteria for determining the adequacy of slicing tools according to the 

assessment below. Slicing algorithms are specific to the programming language and 
whether it is sequential or concurrent. Other aspects of the environment of the program to 
be analyzed by slicing, including the hardware platform and the external components, play a 
significant role on its behavior. Hence, we need to include all possible dependencies present 
in the program according to its type, its behavior, and its environment. This is required to 
identify suitable algorithms that handle the possible dependencies and also the full range of 
features provided by the targeted programming language, specifically those of object-
oriented programs. 

Size of the Computed Slice 
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For determining the adequacy of slicing tools, the size of the computed slice is 
significant in our context, because the bigger the slice, the more likely it will interfere with the 
components modified in the new release of the system. Hence, the concept of minimal slice 
is very important in such a perspective. Since finding exact minimal slices is algorithmically 
unsolvable in the general case (Weiser, 1984), all practical tools will sometimes produce 
overestimations of slices. Our criteria should be able to compare the size of the slices from 
different algorithms by statement to statement analysis, if the tools are used on the same 
language, and by slice-program ratio, if the tools have to be used on different languages but 
for the similar requirements. 

In this same context—the importance of the size of generated slices, Jackson and 
Rollins (1994) introduced the concept of program chopping. This technique aims at 
generating smaller and more precise slices with regard to a pair of slicing criteria, a source, 
and a sink. Chopping produces the subset of the program’s statements influencing sink 
elements and caused by source elements. Program chopping means that a slice is limited 
between two statements. The chopping criteria are the source statement with a set of 
variables to a forward slicing and the sink statement with a set of variables for backward 
slicing. 

From regression testing perspective this technique must be used with great care to 
avoid optimizations that could invalidate the analysis. To be safe, all components that were 
modified in the new release must be included as source statements. To judge whether a 
particular service of an unchanged component must be retested, the appropriate sink 
consists of the return statements for the service, together with all associated return values 
and output variables. 

Programming Languages 
Most of the slicing tools are programming language specific and since each 

language has its specificities, the criteria need to be language specific. For example, 
pointers can be explicitly manipulated by the programmer in C and C++, but in Java they are 
implicitly invoked, and operations on them are restricted to equality checks. When slicing 
C/C++ programs, the slicing algorithm needs to be evaluated specifically on how it analyzes 
pointers, with attention to computed pointer values.  

Another point is related to the type of the language, meaning imperative or object-
oriented (OO). This requires specific attention because OO programs include additional 
features, such as simple and multiple inheritance, polymorphism, and dynamic binding. The 
slicer of OO programs has to deal with these additional concepts by defining additional 
dependencies or redefining previously proposed dependencies to accurately capture these 
aspects of OO programs. 

Behavior of the Program 
If we are slicing a sequential program, our dependencies are limited to data and 

control. Specific considerations are to be added for object-oriented programming features, 
as mentioned above. In terms of dependencies, we only have the two mentioned types.  

In sequential programs, slices are also sequential and follow the structure of the 
program consistently. When concurrent programs are evaluated, slices become more 
challenging to compute, because new dependencies are required to be evaluated by the 
algorithm, and are usually located externally to the procedure or method of interest. Hence, 
if we are evaluating a concurrent program, the slicer must include this capability.  
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More specifically, another level of analysis needs to be performed that is related to 
the language and its constructs. To be clear, we will give examples for the following criteria 
in order to explain the concept. 

Pointers and Parameter Passing 
The concept of call by value and call by reference needs to be addressed carefully 

during slicing, because the difference between these two aspects is considerably critical in 
safety critical systems. If we call by value, the scope of the change is limited within the 
procedure or the method. In C and Java, the parameter is passed by value or reference, 
depending on the type, and this is done by regular calls. A slicer needs to identify these 
aspects efficiently to avoid mishaps or abnormal behavior when the program is changed and 
is being tested for release. 

In Figure 1 we have two different programs that have different behaviors due only to 
aliasing introduced by pointers in line 4 of (b). If we want to slice both programs with respect 
to the slicing criterion {8, p1.a}, then the set of statements {1,2,3,4,5,6,8,10,11,12} would be 
an overestimate for (a) but a precise slice for (b). This is due to the fact that statement (6) in 
program (a) doesn't affect the object p1 since program (a) creates two separate objects. In 
(b) this is not the case, because p1 and p2 point to the same object from statement (4) 
onwards. Statement (6) must be included in a correct and precise slice of (b), because in 
program (b), statement (6) changes the value of p1.a. 

 
Figure 1. Example of the Preciseness of the Slicing Tool When Pointers Used 

Note. (a) p1 and p2 are instantiated independently; (b) p1 and p2 refer to the same object 
point. 

Slicer Output 
Since we have planned to use the computed slices to safely reduce regression 

testing, we will need the capability to compare these slices and analyze them. For this 
reason, we would like a slicing tool to provide the following: 

1. An operation to check if two slices are the same and/or 

2. An operation to save a slice into a file. 

Note that Capability 1 in this list can be realized using Capability 2, together with an 
external tool for comparing files. 

If the slicer output is merely a set of highlighted statements within a screen display of 
the original code, the comparison will be very challenging. 

In addition, this research could not lead to an efficient procedure if there is no 
possibility of automation. Automation is crucial in this context, especially for large scale 
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systems or incremental projects based on agile method. Automation may involve the usage 
of other tools, especially for textual comparison between different slices. This infers an 
essential need of an interface between the slicer and any additional tool. 

External Components 
As discussed in the previous section, external dependencies are important from 

testing perspective, because an external component may be shared by other software 
modules. This point of intersection between separate modules scales up the impact of 
change in the subsystems. If the slicer can reach these external points by any 
representation or indication, the tester may count on it to identify potential extent of the 
scope of change. Though these components come outside the program code, they are part 
of the whole integrated system.  

The criteria we proposed so far were set up according to the specified challenges 
described in the Dependencies section, and the dependencies described in the Adequacy 
Criteria for Slicing Tools section. This research is still in progress and may not yet address 
all criteria relevant to the assessment of the suitability of slicing tools. The most important 
condition that needs to be verified is that the tools generate correct slices with respect to the 
behavior invariance property. 

Assessment Scope and Procedure 
Tentatively, the project team plans to use and conduct assessment for the following 

slicing tools: (1) Indus’s static slicing tool for Java programs. This tool was developed by 
Kansas State University and delivered as an Eclipse plug-in under the product name Kaveri; 
(2) GrammaTech’s CodeSurfer, a static slicing tool for C/C++ programs, formerly developed 
by Wisconsin Slicing Project; and (3) Jslice static and dynamic slicing tool for Java 
programs. This tool was developed by the National University of Singapore. 

Most of the academic slicing tools developed for research purposes will not be 
evaluated in this project. Such tools include the following: (1) Unravel static slicing tool for C 
programs, a prototype tool contracted to the National Institute of Standards and Technology 
by the United States Nuclear Regulatory Commission and the National Communications 
System; and (2) Oberon slicing tool for Oberon system, developed by the Johannes Kepler 
University. For these tools, the lack or limitation of documentation and support represents a 
serious obstacle for us to include them in this research. We also gave lower priority to the 
Oberon tool, because the Oberon language (a modern version of Pascal) is not in 
widespread use, compared to Java and C/C++.  

The team is currently testing some of the above tools and will provide a 
comprehensive test-driven adequacy criteria and test cases in a later publication. Some of 
the planned criteria identified are in the Dependencies section and the Adequacy Criteria for 
Slicing Tools section, including pointer handling, coverage of OO features, exceptions, 
concurrency features, program size limitations, programming language handling, etc; and 
the test cases will focus on soundness of the analysis of unchanged behavior and effort 
reduction based on off-line and on-line testing. 

Slicing the program in Figure 1 using Indus gave us the following result: 
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Figure 2. Slicing the Program Using Indus 
Note. (a) Sliced on criterion {10, p2.a}; and (b) Sliced on criterion {10, p2.a}. 

The slicing tools Indus highlights in green are totally relevant statements, and those 
in yellow are partially relevant statements to the criterion. As shown in Figure 2, Indus 
generated the same slices for the two programs which are correct, but for (a), the generated 
slice includes statement (5) which is irrelevant with regard to the defined criterion, so that we 
have an overestimated slice in case (a). 

Conclusion 
The time and cost of software development are important concerns in system 

acquisition. For systems with long lifetimes, regression testing is a major component of the 
cost of each new release, including periodic technology upgrades typical of DoD/Navy 
systems. Slicing has the potential to reduce the time and cost of this regression testing, 
which is necessary to ensure the safety and effectiveness of each new release. The 
research reported here will facilitate the practical application of this approach by evaluating 
existing slicing tools to determine if any of them are currently able to adequately support this 
process. 

This project is in its early stages, and this paper reports some of our preliminary 
results, which consist of evaluation criteria for slicing tools in the context of their ability to 
achieve safe reduction of regression testing. We have identified potential difficulties in 
implementing sound and discriminating slicing tools, together with associated risks with 
respect to safe reduction of regression testing. These difficulties and risks have been used 
to derive tool assessment criteria to be used in the experimental phase of this project. These 
criteria are described in the Dependencies section and in the Adequacy Criteria for Slicing 
Tools section of this paper. 

Experimental assessment is currently in progress and is not yet complete. 
Assessment results for particular tools will be reported when the effort is complete and 
measurements related to the evaluation criteria are available. 

If the result of the tool assessment is positive, the next step will be to use the chosen 
slicing tools to identify possible reductions in regression testing for a subset of a real system 
in a pilot study to check the safety and effectiveness of the theoretically proposed test 
reduction process in a realistic setting. 

If the result of the tool assessment is not positive, our project will identify the 
candidate tools that are closest to meeting the requirements for supporting safe regression 
test reduction and the current shortcomings of those tools, thus laying the groundwork for 
obtaining the needed tool support. 
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