

NAVAL Postgraduate School

TECHNOLOGY TRUST: THE IMPACT OF ANTHROPOMORPHIC SYSTEM INFORMATION ON THE ACCEPTANCE OF AUTONOMOUS SYSTEMS USED IN HIGH-RISK APPLICATIONS

Michael Anderson (PhD Candidate, Dept of Information Sciences) Johnathan Mun, Ph.D. (Research Professor, Dept. Information Sciences)

Excellence Through Knowledge

Problem / Purpose

The **problem** is technology rejection due to a lack of trust. This is a problem because our enemies are using increasingly sophisticated technologies in combat and it is becoming a disruptive threat to the United States' technological superiority. (Murphy & Shields, 2012)

The **purpose** is to research the effect of anthropomorphic system information on trust in autonomous systems. This is important because autonomous systems can save the lives of military personnel by increasing the distance between human and combat related threats, such as improvised explosive devices.

Anthropomorphism

- Human-like system presentation can increase technology trust (Waytz et. al., 2014)
- Human-like system information can increase technology trust (Lankton et. al., 2015)
- Human Processor Model uses technology to explain the body and measure performance. (Card et. al, 1983)
- Can we use the human body to explain technology and measure trust?

Human Processor Model (Card et. al., 1983)

HARDWARE Processor Circuits	$\langle \rangle$	BODY Brain Nervous System	
ALGORITHMS Data OS	$\langle \rangle$	THOUGHT Knowledge Wisdom	
LINKS Inputs Outputs	$\langle \rangle$	SENSES Sight, Smell, Hear, Taste, Touch	
Hardwa	re Algorithr	ns Links	

System Presentation

- A presentation is the act of providing information to explain something
- HAL (hardware, algorithms, links) is a concept for presenting technology as human-like information
- Two types of trust information, reason-based & experience-based (Castelfranchi & Falcone, 2010)

Human-Human

ARE	HA1	Brain
	HA2	Body
HAF	HA3	Endurance / Strength
ŝ	AL1	Data
SITHA	AL2	Information
В В С С С С	AL3	Knowledge
AL	AL4	Wisdom
	LN1	Sight
	LN2	Touch
¥s	LN3	Hearing
	LN3	Smell
	LN5	Taste
	LN6	Balance

Human-Automation

ARE	HA1	Processor / CPU
	HA2	System Capabilities
HAF	HA3	Endurance / Power
IS	AL1	Data
RITHI	AL2	Direct Control
ALGOR	AL3	Remote Control
	AL4	Autonomous Operation
	LN1	Imagery
	LN2	Haptic Feedback
IKS	LN3	Comms RX
LIN	LN3	Comms TX
	LN5	Environmental
	LN6	Geolocate/Navigate

Human-Computer

ARE	HA1	Processor / CPU
	HA2	Peripheral Components
HAR	НАЗ	Power / Battery
ŝ	AL1	Data
NHTI	AL2	Instruction Sets
GOF.	AL3	Operating Systems
AL	AL4	Artificial Intelligence / ML
	LN1	Monitors / Cameras
	LN2	Keyboards / Printers
LINKS	LN3	LAN
	LN3	WAN
ſ	LN5	Wired Comms
	LN6	Wireless Comms

Automation

Level of Automation (LOA)

- Multiple ordinal scales; 1-10 (computer) and 0-5 (vehicle)
- In high-risk scenarios some operators prefer manual control over high levels of autonomy (Hoff & Bashir, 2013)
- Efficient user theory contributes to disuse of autonomy in high-risk scenarios (Tetard & Collan, 2009)

2	3		0 @@@
2	3	4	5
Partial Automation Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and	Conditional Automation Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times	High Automation The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.	Full Automation The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.
	Partial Automation Vehicle has combined submatch functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.	Partial Automation Conditional Automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment. The take control of the vehicle at all times.	Partial AutomationConditional AutomationHigh AutomationVehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment. The driver must be ready to take control of the environment. The driver must be ready to take control of the which he driving task and monitor the environment at all times.High Automation

6

Technology Trust is a mental state where a prediction about the use of technology entails risk and is based on the expectation of a positive outcome (Castelfranchi & Falcone, 2010; Rousseau et al., 1988)

Fechnology Acceptance Model (TAM)

- TAM is strongly correlated to trust and perceived risk (Pavlou, 2003)
- TAM appears to have never been tested under extreme conditions of risk

Adapted from Pavlou, 2003

10

RRARI

3 3.

Method	ology
--------	-------

7

		LEVEL OF AUTOMATION (LOA)		
		Low LOA Direct Control	Med LOA Remote Control	High LOA Autonomous
ATION	Vendor Info (n = 23)	RISK PU PEOU IU	RISK PU PEOU IU	RISK PU PEOU IU
M PRESENT/	HAL Info (n=20)	RISK PU PEOU IU	RISK PU PEOU IU	RISK PU PEOU IU
SYSTE	Operational Info (n=19)	RISK PU PEOU IU	RISK PU PEOU IU	RISK PU PEOU IU

A convenience sample of participants were organized into three treatment groups (n=62).

Experiment stimulus scenario provided for a new USMC EOD LOCE/EABO mission (Littoral Operations in Contested Environment & Expeditionary Advanced Base of Operations).

Three different LOA (low, med, high) systems are presented to participants using one of three system presentation treatments (vendor info, HAL info, operational info)

Following system presentation treatment, surveys are provided to participants in near-identical settings (Naval conference center).

Participants were NOT incentivized financially or otherwise.

Systems

SRS Fusion ROV Low LOA

Sonar EMILY USV Medium LOA

Sea OX High LOA

Analytics

- 1. Distribution Fitting Tests
 - Parametric Akaike Information Criterion, Anderson–Darling, Kolmogorov–Smirnov, Kuiper's Statistic, Schwarz Criterion, and the Nonparametric Shapiro-Wilk Test
 - ICC Interclass Correlation and Kendall's W
- 2. Grouped Tests
 - Hotelling T2
 - Bonferroni
- 3. General Linear Models: ANOVA (IV,DV)
 - (1,1) Single ANOVA Multiple Treatments
 - (1,1) Single ANOVA with Blocking Variables
 - (2,1) Two-way ANOVA
 - (1,n) Single Factor MANOVA
 - (2,n) Two-way MANOVA
- 4. Two Variable Equal Variance T-Tests & Mann–Whitney Tests
- 5. Multivariate Nonlinear Regression & Econometric Models
- 6. Principal Component Analysis

- No evidence that LOA effects TAM on average
- HAL information showed an increase in Medium LOA systems for two of four perceived usefulness scores.

(PU1: p<0.008*; PU2: p<0.10*)

- Operational information increased TAM in all cases. (Vendor<Operational: p= 0.0453* & HAL<Operational: p=0.0698*)
- Operational information decreased perceived risk of failure in the Hardware, but not the Algorithms or Links.

(Ops Risk < Vendor Risk: p= 0.0299* & Ops Risk < HAL Risk: p=0.0463*)

* Significant at $\alpha = 0.10$