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Abstract 

This technical report summarizes the work conducted by Massachusetts Institute 

of Technology under contract award HQ0034-20-1-0008 during the performance period 

May 22, 2020 – July 31, 2021.  Digital engineering transformation changes the practice of 

systems engineering, and drives the need to re-examine how engineering effectiveness is 

measured and assessed. Early engineering metrics were primarily lagging measures. 

More recently leading indicators have emerged that draw on trend information to allow for 

more predictive analysis of technical and programmatic performance of the engineering 

effort. By analyzing trends (e.g., requirements volatility) in context of the program’s 

environment and known factors, predictions can be forecast on the outcomes of certain 

activities (e.g., probability of successfully passing a milestone review), thereby enabling 

preventative or corrective action during the program.  

Augmenting a companion research study under contract HQ0034-19-1-0002 on 

adapting and extending existing systems engineering leading indicators, this study takes 

a future orientation. This report discusses how base measures can be extracted from a 

digital system model and composed as leading indicators.  An illustrative case is used to 

identify how the desired base measures could be obtained directly from a model-based 

toolset.  The importance of visualization and interactivity for future leading indicators is 

discussed, especially the potential role of visual analytics and interactive dashboards. 

Applicability of leading edge technologies (automated collection, visual analytics, 

augmented intelligence, etc.) are considered as advanced mechanisms for collecting and 

synthesizing measurement data from digital artifacts. This research aims to provide 

insights for the art of the possible for future systems engineering leading indicators and 

their use in decision-making on model-centric programs.  Several recommendations for 

future research are proposed extending from the study. 
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Introduction 

This report HQ0034-20-1-0008 Phase 2: Investigation of Leading Indicators for 

Systems Engineering Effectiveness in Model-Centric Programs discusses results of an 

exploratory investigation related to systems engineering leading indicators.  The focus 

of this research has been on the future, investigating opportunities for existing and new 

leading indicators afforded by use of model-based toolsets, as well as applying leading-

edge techniques to collect, compose and display measurement data for proactively 

assessing engineering effectiveness on model-based acquisition programs. 

This research was performed by Massachusetts Institute of Technology.  

Involved research team members include: Dr. Donna H. Rhodes, Principal Investigator; 

Dr. Eric Rebentisch, Research Associate; Mr. Allen Moulton, Research Engineer; and 

Dr. Adam Ross, Research Scientist.    

A related research investigation under the NPS Acquisition Research Program, 

HQ0034-19-1-0002: Investigation of Leading Indicators for Systems Engineering 

Effectiveness in Model-Centric Programs, was initiated prior to this work and continued 

in parallel with this research project. It focused on the present, investigating adaptation 

and extension of existing leading indicators for model-centric programs.   

Selected background information on leading indicators is included in each of 

these reports.  

Background  

Defense programs have long used engineering metrics to provide status and 

historical information, but implementation has been limited by the nature of the 

traditional, document-based engineering approach. Further, early systems engineering 

metrics were primarily lagging measures, providing information for the next program 

instead of the current one. Systems engineering leading indicators were subsequently 

developed to allow for more timely predictive analysis of the technical and programmatic 

performance of the engineering effort on a program. Leading indicators use an 
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approach that draws on trend information to allow for more predictive insight (Rhodes, 

Valerdi, & Roedler, 2009).  

A systems engineering leading indicator is a measure for evaluating the 

effectiveness of how a specific program activity impacts engineering effectiveness, 

which may affect the system performance objectives. Both lagging and leading 

indicators are found to be useful in many fields (e.g., economic, health, social science). 

(Zheng, et al., 2019). While lagging measures (e.g., system defects) continue to provide 

useful information over time for an enterprise, they are insufficient for real-time 

decisions during a program. Relatively little evidence exists on the application of leading 

indicators in the engineering of systems. The value of leading indicators comes from 

examining trends (e.g., requirements volatility) in context of the program’s 

characteristics and known factors. This information can be used to make predictions to 

forecast the outcomes of certain activities (for example, likelihood of successfully 

passing a milestone review). Leading indicators have provided some improved ability to 

assess ongoing engineering effort, and where necessary, take preventative or 

corrective action during the program.  

Motivation and Research Approach 

The broad motivation for the work is to enable more timely and informed 

decisions on systems engineering activities and resources. The use of systems 

engineering measures is a standard part of traditional practice, though its limitations are 

acknowledged. Systems engineering leading indicators overcome some of the 

limitations but until recently collecting the underlying data and performing analysis has 

been constrained by document-driven engineering practice.  As the use of model-based 

systems engineering increases, the increased ease of generating systems engineering 

leading indicators will make these more tractable for systems programs.  Model-based 

systems engineering (MBSE) is defined as “the formalized application of modeling to 

support system requirements, design, analysis, verification and validation activities 

beginning in the conceptual design phase and continuing throughout development and 

later life cycle phases." (OMG).  The transformation to digital engineering has prompted 

a need to re-examine the systems engineering leading indicators for this new context.  
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The investigation aims to provide findings for model-centric programs seeking to use the 

leading indicators, as well as contribute recommendations to inform the larger effort of 

the systems engineering community to establish the next generation of digital 

engineering effectiveness measurement.   

Digital engineering tools are recognized as a means to increase engineering 

efficiency (DoD, 2018, p.17) and to provide access to vast data. Leading indicators are 

especially important to monitoring of effectiveness on a continuous basis, and also to 

ensure that effectiveness is not compromised for sake of efficiency.  The strategy calls 

for leadership to “establish accountability to measure, foster, demonstrate, and improve 

tangible results across programs and the enterprise” (DoD, 2018, p. 22). Common 

enabling technologies used in digital environments to generate, analyze and display 

measurement data will encourage a common foundation for cross-program comparison 

and learning.   

Existing leading indicators were developed under the document-based 

engineering approach. The introduction of digital engineering, or model-based 

engineering, practices has potentially radical or disruptive impact on the processes, 

tools, and timelines of engineering programs. Rapidly accelerating analytical and design 

capabilities will likely have limited impact on overall program pace and effectiveness if 

reviews and decision-making processes fail to adapt to the processes and cadence of 

digital engineering and management. Research is necessary in order to understand and 

adapt existing systems engineering indicators for digital engineering and management 

practice in model-centric programs. Exploring the art of the possible can reveal how 

digital system model information could be extracted from toolsets and used to compose 

base measures into indicators. Further, investigation is needed to understand how 

newer sciences and technologies (e.g., data science, visual analytics, and interactive 

dashboards) could better inform timely leadership decisions in model-centric programs.  

The proposed research seeks to address these two questions: 

• How does digital engineering enable current and new leading indicators to be 
obtained, composed and made available to program leaders for the purpose of 
assessment of engineering effectiveness on model-centric programs?    
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• How can leading- edge technologies (visual analytics, interactive dashboards, 
etc.) enable leading indicators in model-centric programs? 

The digital engineering environment and newer technologies open new 

possibilities for providing program leaders with leading insights into the effectiveness of 

systems engineering efforts. Since each of the indicators requires some additional 

considerations under digital engineering, the first year in this research (under contract 

HQ0034-19-1-0002) focused on identifying potential modifications and interpretation 

guidance (Rhodes, 2020).  Model-based implications were identified for each of the 

existing eighteen leading indicators.  

For this phase of research (under contract HQ0034-20-1-0008), the research 

team used literature review and knowledge gathering to explore how information from 

descriptive system models could be extracted and composed as leading indicators. This 

includes examining the possibility composing useful sets of leading indicators, and the 

potential for aggregated indicators. The investigation also explored opportunities for 

how interactive dashboards could be used to extract and more effectively display 

measurement information to enhance human decision-making, thereby positively 

impacting program reviews and decisions.    

Knowledge gathering from subject matter experts through technical exchanges 

and workshops provided insights regarding adaptation of leading indicators and 

potential new indicators of interest. This included investigation of publications, studies, 

workshop reports and interim research findings from academic research groups, 

professional and industry societies and cross-industry initiatives. Literature review is 

used to explore newer leading edge techniques and approaches for collection and 

synthesis of measurement data, as enabled by digital engineering practices and 

environments.   
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Leading Indicators and Measurement Specifications 

The interest in having leading indicators for acquisition and development 

programs has been discussed within the systems community for some time. In this 

context, a leading indicator is a measure for evaluating the effectiveness of how a 

specific activity is applied on a program in a manner that provides information about the 

impacts of engineering effectiveness that are likely to affect the system performance 

objectives. Leading indicators are designed to assist program leadership in delivering 

value to stakeholders, informing interventions and corrective actions to avoid problems, 

rework and wasted effort.  Conventional systems engineering measures provide status 

and historical information, while leading indicators use an approach that draws on trend 

information for more predictive insight (Rhodes, Valerdi, & Roedler, 2009). 

The foundational work on systems engineering leading indicators was initiated in 

2004. The early efforts produced a systems engineering leading indicators guide 

(Roedler & Rhodes, 2007) with thirteen leading indicators defined using measurement 

specifications.  This work was subsequently evolved through collaboration from 

organizations and individuals across the systems engineering community with over 

twenty organizations as contributors. The result was a second version of the guide 

(Roedler G. J., Rhodes, Schimmoler, & Jones, 2010), with five additional leading 

indicators and several appendices added. Related studies and papers have been 

published by various authors (Elm et al., 2008; Rhodes, et al., 2009; Montgomery & 

Carlson, 2010; Gerst & Rhodes, 2010; Knorr, 2012; Elm & Goldenson, 2013; Gilbert et 

al., 2014; Orlowski et al., 2015; Shirley, 2016; Orlowski, 2017; Zheng, et al., 2017; 

Zheng, et al., 2019).   

The eighteen leading indicators for systems engineering programmatic and 

technical performance are:  

Requirements Trends: Rate of maturity of the system definition against the 

plan. Additionally, characterizes the stability and completeness of the system 

requirements that could potentially impact design, production, operational utility, or 

support. 



Acquisition Research Program 
Graduate School of Business & Public Policy - 6 - 
Naval Postgraduate School 

System Definition Change Backlog Trends: Change request backlog which, 

when excessive, could have adverse impact on the technical, cost and schedule 

baselines. 

Interface Trends: Interface specification closure against plan. Lack of timely 

closure could pose adverse impact to system architecture, design, implementation 

and/or V&V any of which could pose technical, cost and schedule impact. 

Requirements Validation Trends: Progress against plan in assuring that the 

customer requirements are valid and properly understood. Adverse trends would pose 

impacts to system design activity with corresponding impacts to technical, cost & 

schedule baselines and customer satisfaction. 

Requirements Verification Trends: Progress against plan in verifying that the 

design meets the specified requirements. Adverse trends would indicate inadequate 

design and rework that could impact technical, cost and schedule baselines. Also, 

potential adverse operational effectiveness of the system. 

Work Product Approval Trends: Adequacy of internal processes for the work 

being performed and also the adequacy of the document review process, both internal 

and external to the organization. High reject count would suggest poor quality work or a 

poor document review process each of which could have adverse cost, schedule and 

customer satisfaction impact. 

Review Action Closure Trends: Responsiveness of the organization in closing 

post-review actions. Adverse trends could forecast potential technical, cost and 

schedule baseline issues. 

Technology Maturity Trends: Risk associated with incorporation of new 

technology or failure to refresh dated technology. Adoption of immature technology 

could introduce significant risk during development while failure to refresh dates 

technology could have operational effectiveness/customer satisfaction impact.  

Risk Exposure Trends: Effectiveness of risk management process in managing 

/ mitigating technical, cost& schedule risks. An effective risk handing process will lower 

risk exposure trends. 
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Risk Treatment Trends: Effectiveness of the systems engineering organization 

in implementing risk mitigation activities. If the systems engineering organization is not 

retiring risk in a timely manner, additional resources can be allocated before additional 

problems are created. 

Systems Engineering Staffing & Skills Trends: Quantity and quality of 

systems engineering personnel assigned, the skill and seniority mix, and time phasing 

of their application throughout project lifecycle. 

Process Compliance Trends: Quality and consistency of the project defined 

systems engineering process as documented in SEP/SEMP. Poor/inconsistent systems 

engineering processes and/or failure to adhere to SEP/SEMP, increase project risk. 

Technical Measurement Trends: Progress towards meeting the Measures of 

Effectiveness (MOEs) / Performance (MOPs) / Key Performance Parameters (KPPs) 

and Technical Performance Measures (TPMs). Lack of timely closure is an indicator of 

performance deficiencies in product design and/or team’s performance. 

Standardizing leading indicators of engineering effectiveness across programs is 

facilitated through measurement specifications. The systems engineering community 

has been using measurement specifications for many years, based on foundational 

work of PSM in software and systems measurement (PSM, 2020).  The systems 

engineering leading indicators initiative adopted the PSM measurement specification 

format. Accordingly, each of the systems engineering indicators is characterized using a 

measurement specification with detailed description, insights provided, interpretation 

guidance and usage guidance. Detailed contents of the measurement specifications for 

leading indicators is described in Roedler et al. (2010), and summarized in Table 1.   
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Table 1.  Systems Engineering Leading Indicator Specification Fields from (Roedler G. J., Rhodes, 
D.H., Schimmoler, H. & Jones, C. 2010), adapted by (Zheng L. , et al., 2019). 
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In the near term, the existing measurements specifications can be augmented 

with model-based implications.  In the future, modified and new measurement 

specifications are envisioned in a new release of the leading indicators guide.  In this 

research, composability of leading indicators is considered from the perspective of the 

composition of base measures into indicators.  Leading indicators for assessing the 

effectiveness of systems engineering on a program are expected to be more tractable 

and more useful in model-centric programs of the future. 

Value of Leading Indicators 

Leading indicators provide the most value when they give a proactive 

assessment that informs programmatic decisions and/or corrective actions. The 

Requirements Trend indicator, for instance, is used to evaluate trends in the growth, 

change, completeness and correctness of the definition of system requirements. 

Traditionally, this indicator provides insight into the rate of maturity of the system 

definition against the plan. Additionally, it characterizes stability and completeness of 

the system requirements that could potentially impact design, production, operational 

utility, or support.   

One of the trend indicators, requirements volatility, has been used to drive 

milestone technical reviews. The graph (Figure 1) illustrates the rate of change of 

requirements over time.  
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Figure 1. Illustrative Application of Leading Indicators on a Program (Rhodes, Valerdi, & Roedler, 
2009) 

It also provides a profile of the types of change (new, deleted, or revised) which 

allows root-cause analysis of the change drivers. By monitoring the requirements 

volatility trend, the project team was able to predict the readiness for the System 

Requirements Review (SRR) milestone. In this example, the project team initially 

selected a calendar date to conduct the SRR, but in subsequent planning made the 

decision to have the SRR be event driven, resulting in a new date for the review 

wherein there could be a successful review outcome. 

In traditional documentation-based engineering practice, requirements are the 

central objects used for assessing maturity of system definition.  In digital engineering, 

however, there are many other model constructs (e.g., activity diagrams) that are 

available and potentially composable to inform assessment of maturity of system 

definition.  
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SE Leading Indicators in the Digital Engineering 
Context 

With the transformation from traditional (document-based) engineering to digital 

engineering, there is a need to consider impacts in regard to how leading indicators are 

generated and used. The topic of composability has been explored in this effort, and is 

an area for additional future research.  

Composability 

Leading indicators involve base measures and derived measures, which are 

used to generate leading indicators information. Systems engineering metrics have 

been in use under document-based engineering (e.g., requirements productivity 

measured using page count), but model-based engineering approaches enhance the 

opportunity for collection of additional base measures (e.g., use cases completed). 

Model-based metrics has been a topic of interest for many years (e.g., Friedenthal et 

al., 2009). More recently, the maturation of systems modeling languages and model-

based tools and techniques has prompted increased interest in what can be measured 

and how this might be automated. The downside is that generating metrics is much 

easier and therefore there is a risk of focusing on quantity of metrics, rather than the 

most useful set. With digital engineering transformation, research is needed to 

understand the most useful and impactful measures that can be composed, focusing on 

leading information.   

Composability has been discussed in the systems literature as “the capability to 

select and assemble components in various combinations to satisfy specific user 

requirements meaningfully” (DMSO, 2004). A characteristic of composability is 

described as the ability to combine and recombine components into different systems 

for different purposes. Using this frame of reference for composability as applied to 

leading indicators, base measures can be thought of as components. In context of this 

research, the interest is composability of base measures extracted from a digital system 

model or digital process model that would, along with derived measures, comprise a 

leading indicator.  We can think of this in three aspects, as follows: 
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Composing Base Measures into Leading Indicators. Leading indicators are 

composed from base measures, for example requirements volatility is based on 

requirements change base measures, as has been done in document-based 

engineering projects. Our investigation suggests that model-based toolsets enable 

automated collection and aggregation of base measures from a system model, 

providing the means for real-time generation of leading indicators – both currently used 

indicators and newly defined ones.  

Composing Useful Sets of Leading Indicators. Eighteen leading indicators 

have been defined in prior research, and additional indicators of interest have already 

been described.  Further, digital engineering is likely to influence several new leading 

indicators. An important aspect concerning composability is to determine what useful 

sets of leading indicators could be composed. These sets could then be displayed on a 

dashboard, where the decision maker could interpret the information by looking at the 

collected set of displayed indicators. Orlowski (2017) and other researchers have 

explored useful sets of indicators for a specific purpose, such as use in technical 

reviews. Further consideration needs to be given for model-centric programs, where 

more frequent reviews are likely to be used. Additionally, there is a need to explore what 

sets of leading indicators might be most useful for various types of program leaders.  

Composing Aggregated Leading Indicators. Leading indicators are most 

useful when applied for predictive purpose to facilitate programmatic decisions and/or 

corrective actions. Requirements Trend indicators, for instance, are used to evaluate 

trends in the growth, change, completeness and correctness of the definition of system 

requirements. Traditionally, this indicator provides insight into the rate of maturity of 

system definition against the plan. Further, it characterizes stability and completeness of 

system requirements that could potentially impact design, production, operational utility, 

or support.  In traditional document-based engineering practice, requirements are 

central objects that can be used for assessing maturity of system definition. In model-

based engineering, however, there are many other potential base measures that can be 

obtained from the system model. With the advantages of model-based approaches, a 

leading indicator used to assess progress of system definition that uses base measures 

for requirements (e.g., requirements changes, requirements defects) would be limited to 
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providing a leading indicator as requirement volatility. A potential leading indicator of 

interest with digital engineering is model volatility, based on change information of 

myriad objects in a system model.  In a model-based environment, it may be possible to 

generate a model volatility leading indicator that uses base measures from the various 

model diagrams (e.g., in SysML requirements diagrams could be augmented with base 

measures from activity diagrams, use case diagrams, state machine diagrams, 

parametric diagrams, etc.). Model volatility may be a richer indicator for making 

decisions on review readiness than a requirements volatility indicator.  

Impact of Model-based Toolsets 

Model-based toolsets enhance the ability to extract base measure information 

(e.g., number of requirements changes) and produce derived measures (e.g., percent 

requirements modified). Collected or aggregated measurement data is then used to 

compose leading indicator information (e.g., requirements volatility, presenting a profile 

of added/modified/deleted requirements with projected trend lines (see Figure 1). To 

investigate this under the digital engineering context, an illustrative case was used to 

explore how digital engineering is expected to modify and/or enable four existing 

leading indicators the research identified as most likely to be implemented with direct 

use of model-based toolsets. These are requirements trends, interface trends, 

requirements verification trends and requirements validation trends.  

Illustrative Case Discussion 
The following example illustrative case involves systems engineering for new 

development of a self-driving fully autonomous vehicle meeting the SAE International 

Level 5 (“Full Driving Automation”) standards (see 

https://www.synopsys.com/automotive/autonomous-driving-levels.html). For more in-

depth case examples, beyond the small illustrative case presented here, see Tepper 

(2010) for a more complete application of MBSE to Naval Ship Design using SysML and 

Dam (2019) for an application of LML and MBSE to a hypothetical establishment of a 

permanent manned base on the moon. 

For the purposes of this case, Innoslate® is used to conduct a number of small-

scale exercises. Innoslate® is an integrated MBSE software package that implements 
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the open source LML Ontology, which is compact but comprehensive (Dam, 2019, p.5). 

The LML Ontology provides a guiding structure for investigating how information 

needed for leading indicators is represented in MBSE. The ontology is a compact, but 

comprehensive, organized, structured and customizable terminology for systems 

engineering from the earliest concept stage throughout the lifecycle to system disposal 

(Dam, 2019, p. 6, 10). Vaneman (2018) also reports that LML has sufficient constructs 

to be able to represent knowledge expressed or expressible in other modeling 

languages, such as SysML and DODAF.  

Innoslate enforces the important principal of concordance, which facilitates single 

source of truth by requiring that a given piece of information in the systems engineering 

knowledge base will have the same meaning when viewed through different language 

or visualization lenses. The version of the Innoslate tools used in these experiments is 

implemented on a central cloud database.  Current database and semantic web 

technology would also support more complex configurations with virtual integration of 

data stored in multiple physical locations provided that the semantics of the data can be 

made compatible. 

The LML ontology knowledge framework is built on an Entity-Relationship-

Attribute (ERA) data model. ERA was first introduced by Chen (1976) and is widely 

used today for conceptual modeling including by UML (https://www.omg.org/spec/UML/) 

and other methods. Entities represent things of interest (analogous to nouns in natural 

language). Relationships represent connections across entities. Attributes represent 

information about an entity or relationship. Standard entity attributes are defined in the 

LML Ontology along with standard relationships and the entity types they connect (LML 

Steering Committee, 2015). The LML Ontology provides definitions of typical 

relationship types for each combination of entity types (see Vaneman, 2018). 

Relationships are directional and matched with complementary relationships that go in 

the opposite direction (e.g., “performed by” and “performs” are complements).  The 

primary entity structure of the LML Ontology is shown in Figure 2. 
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Figure 2.  LML Ontology Primary Entity Classes (Dam, 2019) 

The Documentation section at the top of the ontology diagram includes entity 

classes that are ancillary to the system model and intended for exchanging information 

with humans or other outside systems. The Artifact entity represents a document, 

spreadsheet, test plan, or other source of information that is referenced by, or 

generated into, the knowledgebase. A Statement entity specifies text usually drawn 

from an Artifact. A Requirement entity is a Statement that expresses a capability or 

characteristic of a system that must be present for the system to have value to users. 

The LML Requirement entity is similar to a Requirement block in SysML. Both are 

structures that encapsulate a textual requirement statement. All of the Documentation 

section entities can be loaded from the outside or generated for use by people or 

systems. 

Figure 3 shows an excerpt from a sample LML requirement document. The 

artifact name appears at the top along with three of the statement entities below. The 

three visible statements are also requirement entities (1.1, 1.2, and 1.3).  Figure 3 also 

shows examples of attributes for ID number, name, and description of each entity along 

with quality score, and labels attributes in the columns on the right side of the table.  
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Figure 3. Sample of a Structured Requirements Document 

The Functional Model and Physical Model sections along with the Parametric 

and Program Model section have entity classes used for building and executing system 

models. The Action entity, on the left of the ontology diagram in Figure 2, is the primary 

building block for functional-behavioral models. The Asset entity, on the right, is the 

primary building block for physical models. Every entity has a “type” property, which 

allows many variants of Actions and Assets to be represented. For example, Actions 

may be described as Activity, Capability, Event, Function, Process, or Task. Assets may 

be described as Component, Entity, Service, Sub-system, or System as needed in a 

particular modeling context.  Assets may represent human actors as well as physical 

components and software systems. 

Another key basic concept in functional models is Input/Output (IO) which 

represents the flow of information or other resources in or out of an Action, including 

Item, Trigger, Information, Data, and Energy. The corresponding basic concept in a 

physical model is the Conduit, which might be implemented as a Data Bus, Interface, or 

Pipe. A resource in a functional model IO entity is transferred from one physical model 

Asset to another via a Connection or Conduit. 

Relationships describe connections among entities. For example, decomposition 

is denoted with the decomposed by/decomposes relationships. Similarly, when an Asset 

is allocated to perform a functional model Action, a “performed by/performs” relationship 

is established. A functional model Input/Output entity may be allocated to a physical 

model Conduit via the “transferred by/transfers” relationship where the functional flow 
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thereby becomes constrained by the properties of the physical device implementing the 

Conduit. 

Figure 4 shows a top level Action Diagram for the functional model in the 

autonomous vehicle example. The diagram depicts three parallel functional flows with 

actions A.1, A.2, and A.3 performed by the User, Autonomous Vehicle and Environment 

physical assets respectively. The physical assets here are viewed functionally with 

physical properties captured elsewhere in the model as appropriate. Even though three 

assets are present, everything in the Action Diagram depicts functional requirements. 

The two IO entities describe the flow of Destination Location from A.1 to A.2 and 

Environmental Conditions from A.3 to A.2. As depicted, each of these IO flows is a 

trigger that enables A.2 Drive Vehicle to start. 

 
Figure 4. Top Level Action Diagram 

The Figure 4 diagram also states that the A.2 Drive Vehicle action is 

decomposed. Figure 5 shows that decomposition. Figure 5 shows another three-way 
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parallel functional flow inside a loop functional flow depicting the vehicle continuing to 

drive until the destination is reached.  

On the top branch, the Sensors asset performs the A2.2 Monitor Environment 

action. On middle branch the Control System asset performs the A2.3 Calculate 

Waypoint and Obstacles action. On the bottom parallel branch, the Drive System 

performs the A2.4 Navigate Vehicle action. The two IOs on the left of Figure 5 are 

inherited as context from Figure 4 with connections adjusted to fit the decomposition. 

New IOs are introduced to describe sensor Camera Data and Lidar Data moving from 

A2.2 to A2.3 and for the calculated Waypoint and Obstacles moving from A2.3 to A2.4. 

These are all continuous parallel functional flows that continue until the A2.1 loop 

condition of Destination Reached is satisfied. The diagram also shows that A2.2 and 

A2.3 are further decomposed into other action diagrams not shown. 

 
Figure 5. Drive Vehicle – Decomposition Action Diagram 
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For V&V, the relationships among model elements can be used to trace the 

derivation of the model. As mentioned above, the diagrams tell only part of the story 

with relationships filling in additional detail.  Figure 6 is a “spider diagram” showing how 

some of the model elements trace back to the originating requirements for an SAE 

Level 5 Autonomous Vehicle. Similar diagrams can be used to review other connections 

across elements of the model, which can be helpful in establishing model validity. 

 
Figure 6. Relationship for Traceability to Originating Requirements 
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Since these models are executable, another form of validation is to run discrete 

event and other simulations and inspect the results to see if expectations of system 

behavior appear to be met.  Figure 7 shows the output of a discrete event simulation run 

of the sample model. As performance characteristics of model elements are refined, the 

timing results will change. As the fidelity of the model improves, additional Monte Carlo 

and other simulations can be used to explore optimization of models.  

Model diagrams, as well as spider and hierarchy diagrams and model simulators 

can be incorporated into dashboards for interactive exploration of the model and its 

implications. 

 
Figure 7. Sample Validation with Discrete Event Simulation 

Tracking the trends needed for the leading indicators requires taking snapshots 

of metrics values at intervals over time as the program proceeds. If integrated into an 

LML meta-model, this program management data would be stored as baselines or other 

objects in the database to facilitate integrative analysis with other program data.  
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Generating Leading Indicators from Digital System Model 
Using the illustrative case, we examined four leading indicators (Table 2) that 

relate to aspects of requirements management. These four were found to be in the 

subset of the eighteen leading indicators that were most likely to be implemented with 

direct use of model-based toolsets based on availability of the base measure 

information in the system model (Rhodes, et al. 2021).   

Table 2. Four leading indicators most likely to be implemented with direct use of model-based 
toolsets (Rhodes et al., 2021) 

Leading Indicator Insight Provided  (source: 2010 guide)  

Requirements Trends Rate of maturity of the system definition against the plan. 

Additionally, characterizes the stability and completeness of the 

system requirements that could potentially impact design, 

production, operational utility, or support. 

Interface Trends Interface specification closure against plan. Lack of timely 

closure could pose adverse impact to system architecture, 

design, implementation and/or V&V any of which could pose 

technical, cost and schedule impact. 

Requirements Validation 

Trends 

Progress against plan in assuring customer requirements are 

valid and properly understood. Adverse trends would pose 

impacts to system design activity with corresponding impacts to 

technical, cost & schedule baselines and customer satisfaction.  

Requirements 

Verification Trends 

Progress against plan in verifying design meets the specified 

requirements. Adverse trends would indicate inadequate design 

and rework that could impact technical, cost and schedule 

baselines. Also, potential adverse operational effectiveness of 

the system. 

In the current state of practice, requirements are typically collected and stored in 

a specialized requirements database, often using software (e.g., DOORS® or other 

similar packages suited to needs of the project/enterprise). These types of packages 

are generally interoperable with and/or loosely coupled to other systems engineering 
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model-based toolsets. It is the assumption of this research team that the specific details 

of this will vary based on chosen model-based tools used.  

Requirements Trends and Interface Trends  
The metrics required for Requirements Trends and Interface Trends can be 

composed by counting explicit and implicit requirements identified in the Innoslate 

database.  Explicit requirements are found in Requirements entities that contain natural 

language statements, which are (1) sourced from documents loaded into the system; (2) 

entered directly into the database by engineers; or (3) generated from other data and 

stored in the database.  

Implicit requirements are derived from the functional and physical models 

developed by engineers during requirements analysis. Functional Requirements may be 

defined by Action entities and the flows, relationships, and properties that describe 

them. Innoslate also has a tool that converts Actions in a functional model into implied 

Assets and Conduits in a physical model.  

Interface Requirements can be inferred from Conduit entities that connect Assets 

by transferring IO entities in the physical model. The technical characteristics of the 

endpoint Assets and the Conduit combine to specify the interface requirements. 

Performance Requirements often come from data related to Asset entities and 

connections.  External interfaces would be represented by connecting a Conduit to an 

Asset that is outside the system boundary, as the User and Environment assets in 

Figure 4. 

As requirements analysis progresses, the model and the requirements will grow 

deeper and broader. In traditional practice, the requirements are frozen in text and 

isolated from the models that engineers use for analysis. Whether explicit or implicit, a 

requirement in MBSE is linked by relationships to other elements of the model giving 

greater context to understanding the meaning of a requirement. For example, by 

running simulations on executable models, the engineer can identify whether a set of 

requirements has face validity or meets expectations. Spider charts and hierarchy 

charts can be used to visualize the structure of the model and the requirements.  
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As systems understanding develops, some information will be less refined than 

other information. For example, the value for a parameter in a requirement may be 

unknown (TBD) or estimated (TBR). LML Decision entities can be attached to the model 

to represent the both the uncertainty and the process for finding the missing information 

as well as defining assumptions. When the TBD/TBR is resolved, the updated Decision 

entities provide a record of how the value was obtained.  A burn-down chart for 

progress on resolution of Decisions would also be informative as a leading indicator. 

Base measures are used in composing leading indicators through manual, semi-

automated or automated counts (Table 3.  Change impacts may be estimated from the 

extracted information. In the case of digital engineering, model-based toolsets and 

supporting analysis software could provide more continuous calculation.  Digital 

engineering enhances the “push” of leading indicators to the decision maker. An open 

area of inquiry concerns the frequency and specific points at which the measurement 

data should be updated in the dashboard display.  Too frequent refresh of the 

information could be an issue, as requirements and interface changes are expected as 

part of normal system development.  Over time, digital engineering would be expected 

to provide a rich set of historical data for use in establishing thresholds and projecting 

trends.  A desired future enhancement is to have augmented intelligence capability to 

guide interpretation of the leading indicator.  

Table 3. Extracting Base Measures for Requirements and Interface Trends 

Base Measures  Traditional Engineering  Digital Engineering 

Requirements Manual or semi-automated count Continuous automated count, on demand  

Requirements  TBDs/TBRs Manual or semi-automated count Continuous automated count, on demand 

Requirements Changes Manual or semi-automated count Continuous automated count, on demand 

Requirement Change Impact  Estimated impact Calculated impact on demand 

Interfaces Manual or semi-automated count Continuous automated count, on demand 

Interface TBDs/TBRs Manual or semi-automated count Continuous automated count, on demand 

Interface Changes Manual or semi-automated count Continuous automated count, on demand 

Interface Change Impact  Estimated impact Calculated impact on demand 

 



Acquisition Research Program 
Graduate School of Business & Public Policy - 24 - 
Naval Postgraduate School 

Requirements Validation Trends and Requirements Verification Trends    
Systems engineering best practice involves beginning requirements validation 

and verification early in the project as requirements are found and entered into the 

database. Table 4 shows the base measures, and how obtaining these varies under 

traditional versus digital engineering.  As with the requirements and interface trends, 

while base measures can be available on demand, consideration needs to be given as 

to when this information is pushed to the decision maker.  Historical information from 

model-centric programs can inform setting this interval. At some points in a program, 

the frequency of looking at these leading indicators varies with program lifecycle.  

Table 4. Extracting Base Measures for Requirements Validation and Verification Trends 

Base Measures  Traditional Engineering  Digital Engineering 

Requirements Manual or semi-automated count Continuous automated count, on demand  

Requirements  Validated Manual or semi-automated count Continuous automated count, on demand 

Requirements Verified Manual or semi-automated count Continuous automated count, on demand 
 

At the early stage, Innoslate and some other toolsets offer a natural language 

tool for checking the quality of requirements statements against six of the eight standard 

criteria (clear, complete, consistent, design, traceable, verifiable but not correct and 

feasible). Another tool applies heuristics to evaluate models and requirements in more 

depth. A roll-up of these quality metrics could provide leaders with early insight on how 

well the requirements are progressing and whether problems are being left to later in 

the life cycle where they will be more difficult to resolve.   

Innoslate also includes a Test Center where test plans and scenarios can be built 

for early or later use and VCRM Reports generated. Figure 8 shows a snapshot of part 

of a test plan and results with verification status. The leading indicators for requirements 

verification and requirements validation could be improved by adding measures for 

progress on developing test plans to complement the metric for successful completion 

of validation and verification testing.  
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Validation and verification also need to be considered holistically at the system 

level.  The model used with simulation tools provides capability to predict behavior of 

the whole system or subsystems. 

 

 

Figure 8. V&V Sample Level 5 Test Suite 

Summary 

Model-based toolsets used in digital engineering, as described in the illustrative 

case, are now a source of base measures for selected leading indicators. With the 

progression of digital engineering, it is anticipated that many of the leading indicators 

will be available in models, rather than documents or spreadsheets.  Four leading 

indicators most likely to be generated from model information are described for an 

illustrative case using a selected toolset and ontology.  There are multiple ontologies 

and numerous toolsets in use in digital engineering, so an area of further research 

would be run experiments to understand available of base measures and calculated 

derived measures.  Further investigation is needed to understand how other fields of the 

leading indicator specification (Table 1) related to the information in models and the 
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digital engineering environment.  For example, units of measurement may be different 

of digital engineering versus what has been used in document-based engineering. 

Interpretation of leading indicators could in the future involve some augmented 

intelligence capability.  The impact of model-based toolsets as suggested by our 

exploratory research is enhanced capability to provide selected leading indicators, and 

the possibility of new leading indicators.  Models would enable more timely insight into 

requirements volatility, for example.  Model-based toolsets also offer the opportunity to 

compose a model volatility leading indicator that reflects changes in full set of diagrams 

being used.  The illustrative example was based on Lifecycle Modeling Language, LML 

Many model-based toolsets use SysML, with nine types of diagrams: Block definition 

diagram; Internal block diagram; Package diagram; Use case diagram; Requirement 

Diagram; Activity diagram; Sequence diagram; State machine diagram; and Parametric 

diagram.     

 

-  
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Visualization and Interactivity 

More complex leading indicators are likely in the digital engineering context, 

resulting from increased information, synthesis, and composability of measurement 

data. Accordingly, decision-makers will face challenges in comprehending the 

information, including a need to understand the underlying assumptions and 

uncertainties in the constituent data elements. Investigating the approach to display 

such leading indicators is an important area of inquiry.  Measurement dashboards have 

been used extensively for decades, typically providing static display of information. 

Visual analytics and interactive technologies provide the opportunity to create dynamic 

dashboards that would enable a decision-maker to be able to interact with the data.  

Such interaction allows for visual simplification while providing more transparency to the 

underlying data, as well as enabling the development of understanding and trust in the 

information.  

Visual Analytics  

Visual analytics is fundamentally about collaboration between a human and a 

computer using visualization, data analytics, and human-in-the-loop interaction.  More 

than just visualization tools, visual analytics aims to take advantage of a human’s ability 

to discover patterns and drive inquiry to make sense of data. Thomas (2007) defined 

visual analytics as “the science of analytical reasoning facilitated by interactive visual 

interfaces” that “provides the last 12 inches between the masses of information and the 

human mind to make decisions.”  As engineering becomes increasingly model-based, 

the available information to draw on to generate measures of effectiveness is vast and 

complex. It is foreseeable that decision-makers could be presented with large amounts 

of data that would be cognitively challenging to comprehend and difficult to find patterns 

that could be used to judge the effectiveness of the engineering on an ongoing program.  

For this reason, best practices knowledge as well as recent advancements in visual 

analytics may offer significant support in processing and displaying measurement data 

for decisions.  
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Vitiello and Kalawsky (2012) state the “guiding process in visual analytics is a 

synergy between interactive visualization and automated analysis of the data.”  Such 

human-computer teaming to discover insights is discussed as an approach that builds 

upon a visual analytic based workflow with the notion of sensemaking.  The authors 

describe using visual analytics to support systems thinking to make sense of complex 

systems interactions and interrelationships, enabling rapid modeling of the systems of 

interest for systems engineering design and analysis processes.  The visual analytic 

based sensemaking framework they describe aims toward providing the means to 

rapidly gain valuable insights into the data. A key strength of modern visual analytic 

approaches is that is makes insights accessible with less effort, as well enabling the 

ability to discover new insights beyond the intention of a static visualization (Yalcin, 

Elmqvist, and Bederson 2018). 

Interactive Dashboards 

Classically, information dashboards (example, circa 2008, shown in Figure 9)  

provide a high level summary of key information, accessible to a user at a glance, in 

order to support targeted decision making (Few 2013).  Applications of such 

dashboards necessarily simplifies the underlying information as a means to an end of 

their purposes, and must account for challenges that hinder their effective use 

(Alhamadi 2020).   
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Figure 9. Example metrics dashboard (circa 2008) from Selby (2009) 

For situations where multi-level data is needed, especially for details on demand, 

static dashboards are insufficient.  Instead, leveraging techniques from visual analytic 

workflows, interactive dashboards enable both the benefit of apparent simiplfication of 

complex data, and context-dependent customizations of data representation.  Strategic 

decision-making support in dashboard design has been shown to embody both 

interactivity as well as updatable, multipage visual features (Sarikaya et al. 2019). 

Strategic decision-making support dashboards focus on enabling drill-down as well as 

top-level synthesis of information, whereas static orgnaizational dashboads seek to 

improve awareness within an organization of the state of affairs (Figure 10). Systems 

engineering applications necessarily reside in both of these spaces, but moreso the 

former, as programs progress over time and require interventions from such 

information. Model-centric environments naturally lend themselves to providing time-

varying data and would benefit from the promise of interactive dashboards. 
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Figure 10. Example strategic decision-making dashboard (left) and static organizational 

dashboard (right) (circa 2019) (Sarikaya et al. 2019) 

Systems engineers, managers, and government sponsors all rely on creative 

work products of systems engineering and all need to glean an appropriate level of 

understanding of the work as it progresses.  The mean time for a warfighting system to 

move from well-defined concept to initial operating capability can be substantial, 

regularly averaging six to seven years (Dwyer, 2020).  Leading indicators can help 

stakeholders see how a project or program is progressing throughout the lifecycle and 

whether it is on target to deliver what is needed when it is needed at an affordable cost.  

The complexity of understanding the status and trajectory of a program is high and 

larger than any one person can hold in one’s head.  Systems engineering methods, 

languages, and models are intended to leverage visualizations, structure, and 

compuational representations to make the task manageable for all the humans who 

must be involved.  Model-based systems engineering incorporates all of those features 

and authors have previously pointed out how structured representations can improve 

MBSE accessibility.  Sindiy et al. (2013) demonstrates how clean visual representations 

can help in making MBSE models accessible.  Dam (2019) argues that, in addition to 

visualizations, modeling language and ontology matters, since a representation that is 

inherently fragmented and lacks a well-structured ontology will be less cognitively 

accessible to users.  As a program progresses through the lifecycle, an interactive 

dashboard could provide most recent information, while also providing the transparency 

for the user to pull up prior year data.  It follows that the quality of the measurement 

information relates to the quality of the systems model.   
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Figure 11. Example dataflow from data warehouse to KPI visualization (Fradi et al. 2017) 

Dashboards are often created as views into program data that has been 

extracted and loaded into a data warehouse.  This warehouse then provides a 

centralized location from which heterogenous access is possible, including targeted 

dashboards that roll up indicators for stakeholders, including key decision makers 

(Figure 11). Dam (2020) proposes that stakeholders should be given controlled direct 

access to MBSE models to improve the speed and depth of understanding in system 

reviews.  He also argues that prime contractors and subcontractors can achieve better 

coordination by using MBSE models as a vehicle for communication about the system 

that is being created, program progress, and how organizations with different roles and 

incentives will fit together to deliver the capability needed to meet customer objectives. 

As such, a program may want to consider giving controlled access to interactive 

dashboards respective to role/authorities.  

The use of interactive dashboards has shown promise in supporting 

management-level decision making, including those relying upon indicator evolution 

over time (Selby 2009).  Leading indicator project data can be presented in a compact 

form with tools for organizing data, drilling into the underlying data, and connecting data 

to analytic tools and models. Orlowski (2017) and Orlowski et al. (2015) propose a 

framework for guiding leading indicator development and usage to support technical 

reviews and audits.   

The continued advancement of underlying visualization and data pipeline 

technologies of interactive dashboards has made their use even more accessible.  
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Recent work by Thiruvathukal et al. (2018) shows the potential for using open source 

software repositories in the development of software metrics dashboards.  Yalcin, 

Elmqvist and Bederson (2018) demonstrate a semi-automated dashboard development 

environment allowing for easily customized interactive dashboards that accelerate 

insights for data analysis novices. On the other side of the experience spectrum, Nadj 

(2020) addresses how interactive dashboards help managers in gaining and 

maintaining situational awareness to understand the context of metrics. This deeper 

understanding of context, along with the metrics, enable decision makers to establish 

more trust of the data, and therefore making them more effective.  

Story and Treude (2019) cite the goal of dashboards is to transform the raw data 

into consumable information.  These authors describe possible risks of dashboards in 

context of software engineering projects and software developer productivity.  Table 5 

suggests how interactive dashboards for systems engineering leading indicators in 

model-centric programs mitigate several of the risks.  

Table 5. Risks Mitigated by Interactive Dashboard Capability in Model-Centric Programs 

Risks of Using Dashboards (Story 
& Treude, 2019) 

Potential mitigation of risks through interactive 
dashboards   

Dashboards favor numbers over 
text 

Interactive capability could enable a dashboard user to 
access associated underlying text information in models 

Dashboards might not display 
relevant context 

As cited by Story & Treude, interactive dashboards allow 
users to drill down into more complete information that 
provides better understanding of context 

Dashboards often don’t explain Interactive dashboards could be connected to supporting 
explanatory information in the underlying model  

Dashboards can only be as good as 
the underlying data 

Static dashboards have latency in information. A 
dashboard connected to the model would enable real-
time information to be displayed.  

Dashboards can only display data 
that has been tracked somewhere 

Interactive dashboards have potential to access data that 
is extracted/computed from the model itself 

Performance-related data on 
dashboards can easily be 
misinterpreted as productivity data 

As part of the dashboard design, leading indicators have 
associated interpretation guidance that could be included 
as displayed information  
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Summary  

Digital engineering will extend use of models into all facets of engineering of 

systems throughout the lifecycle. This will offer extensive opportunities for use of newer 

technologies that support the visualization and interaction with program information. 

Knowledge from visual analytics and emerging technology for interactive dashboards 

provide a foundation for further research in the digital engineering community. A 

discussion of recent research follows.  
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Discussion and Future Directions 

This research has accomplished initial investigation for how ontologies and 

model-based toolsets enable the collection and composability of base measures to 

generate leading indicators.  An initial investigation of interactive dashboards suggests 

that program leaders will be able to make improved and accelerated decisions using 

leading indicators if these are integrated with model-based environments to provide on-

demand trend information.  Implications identified in this research, including potential 

new leading indicators, can inform ongoing efforts in the systems community to define 

new or revised metrics for digital engineering programs and enterprises.   

Benefits, Impacts and Risks  

Effectiveness of systems engineering has been shown to have a positive 

relationship to the performance outcomes of projects and programs (Elm J. , 

Goldenson, El Eman, Donatelli, & Neisa, 2008); (Elm & Goldenson, 2013). A study by 

Orlowski (2017) shows the use of systems engineering measurement on a project as 

positively impacting the performance of the project. He found that 59% of higher 

performance programs in his study had higher use of systems engineering leading 

indicators (Orlowski C. T., 2017).    

A reexamination of existing leading indicators in the context of digital engineering 

includes understanding where enabling infrastructure, analytic approaches, frameworks 

and constructed dashboards are beneficial. Understanding the impacts as well as the 

risks is important.  Some promising outcomes are emerging within the systems 

engineering community.  Orlowski et al. (2015) state that “premature transition through 

key decision gates is likely to lead to cost and schedule overruns” but that program risks 

can be monitored through systems engineering measurements.  These authors propose 

a framework for implementing systems engineering leading indicators for technical 

reviews and audits. Dashboards for each technical review and audit may be beneficial. 

These authors state that “an aggregate of the leading indicators will assist with 

assessing the risks with exiting decision milestone” and that “leveraging leading 
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indicators to update the risk assessment will strengthen the end confidence around 

execution”. (Orlowski, Blessner, Blackburn, & Olson, 2015), (Orlowski C. T., 2017).   

Ongoing work by other researchers and practitioners is beginning to identify 

model-based systems engineering artifacts used throughout the lifecycle.  An excellent 

example of this is work by Parrot and Weiland at NASA regarding using MBSE to 

provide artifacts for NASA project life-cycle and technical reviews (Parrot & Weiland, 

2017).  According to these authors, “…the use of MBSE can reduce the schedule 

impact usually experienced for review preparation, as in many cases the review 

products can be auto-generated directly from the system model”. Parrot and Weiland 

believe leading indicators that might exist within a model (e.g., number of requirement 

changes, verification burndown status, etc.) could be populated within the model using 

parametrics or by simple scripting techniques, while other indicators (e.g., drawing 

percent released) may need scripting or manual entry of the information. (Parrot & 

Weiland, 2017).     

While in the future leading indicators of engineering effectiveness may be 

available on-demand through interactive dashboards, at present the existing eighteen 

systems engineering leading indicators will necessitate some manual effort to generate 

and track, and increasingly software tools include automation and some techniques 

(e.g., natural language processing) to augment the human decision-making.  In the near 

term, modeling toolsets can aid in generating the base information for generating 

leading indicators.  This availability of measurement information that is more easily 

collected (and supported with automation) will help to mitigate the burden of collection 

that presently exists, and composability research will support enhanced leading 

indicators that have potential to reduce program risk.   

Limitations and Future Research  

The research largely draws from the defense systems engineering community 

and literature from that sector. Future research can investigate additional sectors, as 

well as related disciplines. Expert knowledge was gathered though available workshops 

and from prior leading indicator project participants in the early phases. The limitations 

imposed by the COVID-19 pandemic, especially on workshops and conference events 
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other than virtual, resulted in reduced opportunities for access to the community of 

interest.  Planned group discussions were replaced with individual interviews and 

discussions, which resulted in reduced iteration and feedback opportunities.  

This research has included some experimentation with extraction of base 

measures based on a single systems engineering toolset (selection of toolset was 

based on ease of use and availability to research team).  Future research is needed to 

investigate extraction and composition of measurement information across the available 

model-based toolsets.  Additionally, variation in implementing digital engineering 

practice needs to be examined concerning this objective. For example, some of the 

existing leading indicators depend on disciplined management processes for approval 

of key program artifacts (e.g., requirements, change orders, interfaces, and test plans). 

While these processes are not part of the system being developed, they can be 

modeled and/or tracked through model-based toolsets. This would enable measuring 

aspects of process compliance. Dam (2019) gives examples of how software could be 

used in support of measuring management processes. Future research can investigate 

how technical and management related base measures could be composed into new 

indicators in such an implementation.   

Another recent active vein of research is the translation of model structures into 

traditional textual requirements statements. London, B. and Miotto, P. (2014) 

demonstrate the generation of textual requirements from a SysML model. Salado and 

Nilchiani (2014) and Salado, Nilchiani and Verma (2017) investigate different 

foundational aspects of the semantic content of models. Salado and Wach (2019a) 

examine automatic generation of contractual requirements from MBSE artifacts. Salado 

and Wach (2019b) address improving the quality of requirements expressed in SysML. 

Other research is looking at models used to support developing practices of agile 

systems engineering (Wanderley, et al., 2014). Methods for automatically translating 

system models to equivalent text is important for validation of models by experts who 

are more facile with natural language than model artifacts. Since leading indicators have 

developed in the context of textual requirements, study of semantic equivalency of 

model artifacts and text may help in future research on model-based leading indicators 

as well. 
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Model-centric programs have the opportunity to leverage leading-edge 

technologies in the collection, composition and display of measurement data, as well as 

enable better decisions to be made throughout the program lifespan.  Two aspects for 

future investigation are techniques emerging from visual analytics and from data 

science. Model-based acquisition programs will be faced with dealing with four cited 

challenges of big data: volume: the magnitude of digital engineering information; variety: 

existence of digitized assets (e.g., drawings, etc.) that are not in themselves models; 

velocity: rapid information flow (e.g., operational digital twins sending information back 

to the digital system model); and veracity: uncertainty inherent in model data (e.g., 

artificial data from simulations, incomplete data, subjectivity in models).    

Future research is needed to explore new leading indicators (e.g., model 

volatility) that are made tractable through model-based toolsets.  Automation and 

augmented intelligence offer opportunities to support the composability of measurement 

data to provide on-demand leading indicators that exhibit reduced latency of the 

information. Further, with sufficient context information on lifecycle activities, future 

capability might include leading indicators that are ‘pushed’ to the decision makers 

rather than ‘pulled’ when a query is made.  

Design of interactive dashboards with connectivity to model-based environments 

is a rich research opportunity. Many new technologies in the commercial market are 

becoming available to support these dashboards.  Storey and Treude (2019) state their 

expectation that “artificial intelligence, natural language processing, and software bots 

will impact dashboard design”. They suggest AI and NLP could also enable gathering 

insights on how and when dashboards are used.  The design of dashboards needs to 

be investigated regarding the set of leading indicators most useful to display for a given 

role and specific decision points.  Empirical research studies are needed, as well as 

experiment-based studies to observe actual behaviors of interactive dashboard users.  

Future research is needed to further elicit ideas from the systems community on 

enterprise-level indicators. Desirable research would be to conduct industry case 

studies to learn from digital engineering early adopters concerning what metrics and 

leading indicators they have implemented, as well as novel approaches that have been 
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developed.  This includes extraction and composition of leading indicators, the 

implementation of measurement dashboards, and the specific practices used in making 

decisions with measurement information. Automation and augmented intelligence are 

two topics for future exploration. Practical limitations of this research project did not 

allow for extensive exploration of these topics, and further, these are rapidly evolving 

areas.  

The success of the leading indicators initiative has been enabled through an 

approach rooted in the foundational work of more than 20 collaborating organizations, 

with engagement of government, industry and academic stakeholders.  Continued and 

future work will build on the foundational and emerging knowledge to achieve future 

research goals, and engage with other stakeholders to validate outcomes and transition 

research to practice. 
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