
Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

SIT-SE-22-003

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Risk Quantification of Acquisition Programs Through Systems
Complexity Measures

October 8, 2021

Dr. Roshanak Rose Nilchiani, Associate Professor
Stevens Institute of Technology

Dr. Antonio Pugliese, Assistant Professor,
Embry-Riddle Aeronautical University

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Disclaimer: This material is based upon work supported by the Naval Postgraduate School Acquisition
Research Program under Grant No. HQ0034-19-1-0005. The views expressed in written materials or
publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official
policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or
organizations imply endorsement by the U.S. Government.

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition
Research Program of the Graduate School of Defense Management at the Naval
Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to
print additional copies of reports, please contact the Acquisition Research Program
(ARP) via email, arp@nps.edu or at 831-656-3793.

file://Special/acqnresearchprogram$/ARP%20REPORTS%20FOLDER/FY20/NPS-__-20-003_Maule/Drafts/arp@nps.edu

Acquisition Research Program
Graduate School of Defense Management - i -
Naval Postgraduate School

Abstract

The objective of this research is to mathematically formulate and manage the

relationship between the quantitative complexity level of an acquisition or engineering

development program and its relationship to the increased technical and

programmatic risk, respectively. This research builds upon the PIs previous research

experience and grants (NPS BAA 14-002, NPS BAA 15-001, NPS FOA 16001). This

research aims to discover and determine the relationship between the quantitative

complexity value of an acquisition program (at various points in its lifecycle) as a

measure of increased actual technical and programmatic risk respectively. The main

goal is to improve the current inaccurate subjective practice of assessment of risk in

different stages of a wide range of engineered system development programs as well

as acquisition programs.

Currently lifecycle risk assessment methodologies such as color-coded risk

matrix are heavily subjective in their nature and therefore weak in the assessment of

the actual risk. As a result, acquisition programs frequently are exposed to unforeseen

technical and programmatic risks and failures; cost and schedule overruns that are

due to inaccurate risk identification and assessments. This research proposal focuses

on expanding and examining the novel set of new complexity measures that are

recently created by our team (with the PIs previous NPS research grants) as pre-

indicators of emergence of risks at different stages of a systems development process

and lifecycle. The detailed set of created complexity measures, will be modified and

categorized based on their application category in physical/hardware/software

systems as well as DoD System of Systems level studies. The refinement and

categorization of the complexity/risk measures will be applied to and examine several

historical case studies of engineered systems success or failures. The focus of this

part of research will be on discovering the suitability of each of the 12 complexity/risk

measures for application to the right type and category of subsystem/system/SoS of

acquisition programs or complex engineered systems. The focus of the case studies

chosen will be at refinement and choice of complexity/risk metric to appropriately fit a

particular complex engineered system to various manifestation of increased (or

Acquisition Research Program
Graduate School of Defense Management - ii -
Naval Postgraduate School

decreased) technical as well as some programmatic risks. Multiple historical and

theoretical cases of design of complex engineered systems will be studied.

The results of this research project will have a broad public purpose in systems

development community in various domains of engineering by improving the

quantitative assessment of risk from the preliminary and critical design phase,

manufacturing and testing, implementation, operation and the retirement of the

system. The research result is expected to be applied to a variety of cyber-physical

systems as well as DoD systems of Systems (SoS). The complexity-based risk

assessment can be applied to various domains of applications such as

telecommunication satellite design, regional power infrastructure design and

operation, and the next generation of human spaceflight vehicle and many more. The

suggested improved methodology can warn the program manager and the other

stakeholders on assessing the alternative courses of action at each stage in systems

lifecycle as well as reduction and management of the complexity content to mitigating

some of the technical risk that a system is facing.

Acquisition Research Program
Graduate School of Defense Management - iii -
Naval Postgraduate School

SIT-SE-22-003

ACQUISITION RESEARCH PROGRAM
SPONSORED REPORT SERIES

Risk Quantification of Acquisition Programs Through Systems
Complexity Measures

October 8, 2022

Dr. Roshanak Rose Nilchiani, Associate Professor
Stevens Institute of Technology

Dr. Antonio Pugliese, Assistant Professor,
Embry-Riddle Aeronautical University

Disclaimer: This material is based upon work supported by the Naval Postgraduate School Acquisition
Research Program under Grant No. HQ0034-19-1-0005. The views expressed in written materials or
publications, and/or made by speakers, moderators, and presenters, do not necessarily reflect the official
policies of the Naval Postgraduate School nor does mention of trade names, commercial practices, or
organizations imply endorsement by the U.S. Government.

Acquisition Research Program
Graduate School of Defense Management - iv -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - v -
Naval Postgraduate School

Table of Contents

Introduction .. 1

Tasks, Scope, and Proposed Work ... 5

Literature Review and State of the Research .. 7

Methodology and Process ... 11

Results and Insights .. 15

Linear Correlation Analysis .. 17

Trends Over time ... 21

Conclusion ... 23

Bibliography ... 25

Acquisition Research Program
Graduate School of Defense Management - vi -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 1 -
Naval Postgraduate School

Introduction

Defense acquisition programs are essential and fundamental to the goals of

the United States in terms of defense and peace-keeping activities. The 2016 report

on Performance of the Defense Acquisition System states that long-time issues such

as large cost growth, heavy changes in requirements, and responsiveness in initiating

new programs, which have been addressed in years of research in acquisition

management, are now under control (Kendall, 2016). The same report warns future

leaders to not neglect system “-ilities” when evaluating a system, claiming that well-

engineered systems are more often effective. Reliability, availability, and

maintainability are prerequisites to the system performing its function (Kendall, 2016).

The study of “-ilities” in systems engineering has been fundamentally

connected to the evaluation of system complexity in recent years (Pugliese, Enos, &

Nilchiani, Acquisition and Development Programs Through the Lens of System

Complexity, 2018; Nilchiani & Pugliese, 2017; Fischi, Nilchiani, & Wade, 2015; Enos,

Farr, & Nilchiani, 2019; Salado & Nilchiani, 2013). Complexity has been inherent to

defense acquisition programs where technology and human organizations interface.

Complexity can be inherent to design of a defense system/system-of-systems, at the

organizational layers of defense systems, and in the environment, occasionally

imposing its unpredictability or non-linearity to an acquisition program. System “-ilities”

such as flexibility, reliability, modularity, etc. are most successful when they are

embedded in large-scale programs where a fundamental understanding of the

complex structure and behavior of such systems exists. Therefore, it is necessary and

urgent to better understand, model, measure, and formulate such defense programs

considering their complex behavior. Increased knowledge and understanding of

defense systems complexity can shed light on various unknown and emergent

behavior of such systems, as well as guide us to better solution sets when facing major

decisions or challenges.

The goal of our research is to identify, formulate, and model complexity in

technical segments of defense acquisition programs, as the heightened level of

complexity contributes to increased fragility and potential failure of the system. In other

Acquisition Research Program
Graduate School of Defense Management - 2 -
Naval Postgraduate School

words, complexity measure is an indirect measure of risk in complex systems. The

future direction of our research aims at replacing a large portion of subject matter

experts’ opinions on technical systems risk assessment with actual complex risk

measures and therefore improve the decision-making process by enabling it to be

more objective.

In software systems, complexity can be defined as “a measure of the resources

expended by a system while interacting with a piece of software to perform a given

task” (Basili, 1980). From this general definition many can be derived depending on

the choice of the specific system interacting with the software under study (Mens,

2016). If the interacting system is a computer, we are looking at theoretical complexity,

which can be of two types: algorithmic complexity, if the focus is on the time and

storage space required to execute the computation, or computational complexity, if

the focus is on the complexity of the problem at hand, regardless of the algorithm used

to solve it. Efficient algorithms will have an algorithmic complexity that is close to the

computational complexity of the problem at hand (Mens, 2016). If the interacting

system is the user of the software system, then the corresponding complexity is

complexity of use, usually referred to as a common system characteristic: usability

(Mens, 2016). If the interacting system is a software developer, the type of complexity

is structural complexity (Darcy, Kemerer, Slaughter, & Tomayko, 2005).

Software structural complexity focuses on the software architecture, defined as

the organization of the components of the software and how they relate to each other.

A structural complexity analysis is performed by looking at the source code of the

software under study and is therefore dependent on the programming language and

on a specific implementation of the solution. Depending on the level of granularity at

which the software is analyzed, this static analysis, as it is also known among

computer scientists, can consider as atomic units of the system the modules or files,

inner constructs, such as classes and functions, or single instructions. A finer level of

granularity can lead to a more detailed understanding of the dependencies but

requires the software to be completed before this analysis can be carried out.

Acquisition Research Program
Graduate School of Defense Management - 3 -
Naval Postgraduate School

Based on the above-described circumstances, the research project for which

this report presents the results set out to develop a static analysis method for source

code of software. As such, the following sections will first outline the tasks and scope

of the work as well as the initially proposed steps. Following the scope, a literature

review is presented that provides the current state of the research and relation to other

publications. Subsequently, the applied methodology and process is outlined. Based

on the applied methodology, the results will be presented and finally, a conclusion will

be provided that also considers the initial tasks and scope.

Acquisition Research Program
Graduate School of Defense Management - 4 -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 5 -
Naval Postgraduate School

Tasks, Scope, and Proposed Work

At the proposal stage, five tasks were planned to be executed. Each task was

divided into sub-tasks that were addressed successively over the course of the

project. The exact task list is shown hereinafter and also reconsidered in the

conclusion.

Task 1. Selection of metrics among the ones created. Some metrics have shown

inaccurate prediction of complexity characteristics, and more data is

needed to justify their elimination or presence in future research.

1. Analysis of developed metrics

2. Selection of metrics based on representation of complexity

Task 2. Selection of data. The data coming from GitHub is accurate and can be

parsed with ad-hoc software. Interesting projects with public information

available regarding their scale and overall success will be targeted for this

research effort.

1. Collection of datasets

2. Selection of most informative datasets

Task 3. Development of architecture-generating software. The developed software

allows for the generation of architectures based on functional

dependencies, at the file level granularity. The generation of a finer

architecture, or ones based upon different interface types need

modifications to the code.

1. Selection of alternative interfaces

2. Development of architecture-generating software

3. Selection of alternative programming languages of the SOI

4. Development of architecture-generating software

5. Selection of deeper granularity levels

6. Development of architecture-generating software

Acquisition Research Program
Graduate School of Defense Management - 6 -
Naval Postgraduate School

Task 4. Evaluation of complexity metrics for the generated architectures. The

selected complexity metrics will be evaluated based upon the architectural

data.

1. Evaluation of complexity metrics

2. Evaluation of complexity metrics

3. Visualization of results

Task 5. Analysis of results. The complexity results will be compared to public data

regarding the project scale, cost, and development issues.

1. Analysis of results

Based on this scope, the sections described in the introduction correspond to

the tasks listed above. As such, Task 1 is addressed by the literature review, Tasks 2

and 3 are outlined as part of the methodology and process, and lastly, Tasks 4 and 5

are presented in form of the results and insights. Table 1 below shows the structure

of the report regarding the tasks above:

With this scope, the next section will begin with the literature and state of the

research.

Table 1 - Twelve examples of spectral structural complexity metrics

Task Number Report Section

Task 1 Literature Review and State of the Research

Task 2
Methodology and Process

Task 3

Task 4
Results and Insights

Task 5

Acquisition Research Program
Graduate School of Defense Management - 7 -
Naval Postgraduate School

Literature Review and State of the Research

When looking at software architecture (SA) in its general form and where the

architectural aspects originated from, the history shows that the first approaches that

are now all combined in SA can be traced back all the way to the early 70s of the

twentieth century. Especially over the last 30 years, software architecture emerged as

an important field for both research and practice (Shahin, Liang, & Babar, 2014). On

a general level, SA can be defined as the representation and definition of software

and the software system. Such a representation includes descriptive elements which

cover the relationships between elements and sub-elements (Angelov, Grefen, &

Greefhorst, 2009; Avci, Tekinerdogan, & Athanasiadis, 2020; Garlan & Shaw).

Early on, in the 1960s and 1970s, research emerged that addressed data and

data structures, which lead to an accentuation of certain structural elements above

the level of the software code itself. This accentuation led to an abstraction and

organizational understanding, and as a result, software architecture emerged in the

following decades (Garlan & Shaw). The first appearances and mentions of SA can

be found in the publication of Parnas in 1972 (Parnas, 1972). In this work, the author

described the concept behind the module decomposition structure. Specifically,

Parnas describes criteria that can be used to decompose the structure of systems into

modules. Throughout the 1970s, Parnas published various other papers that outlined

additional aspects of structures, and over time, the field of SA progressed and more

nuances were added to differentiate between various forms of structures (Bass,

Clements, & Kazman, 2012).

From the aforementioned time till around 1990, architecture in scientific fields

was mostly related to systems (Kruchten, Obbink, & Stafford, 2006). Yet, SA as a

separate discipline in research and science emerged in the 1990s (Kruchten et al.,

2006; Perry & Wolf, 2000) and has been flourishing since then, also including

empirical research approaches (Qureshi, Usman, & Ikram, 2013). The first book about

SA was also published during these beginning times in 1994 (Witt, Baker, & Merritt,

1994).

Acquisition Research Program
Graduate School of Defense Management - 8 -
Naval Postgraduate School

Because of the pace increase, numerous approaches were developed in the

1990s in academia but also by companies, such as Lockheed Martin and IBM, for

instance. Kruchten (Kruchten et al., 2006) lists various approaches that resulted from

these efforts: Software Architecture Analysis Method (Kazman, Bass, Webb, &

Abowd, 1994), the 4+1 view (Kruchten, 1995), Siemens’ four views (Soni, Nord, &

Hofmeister, 1995), and numerous other patterns that address the design of SA

(Buschmann, Meunier, Rohnert, Sommerlad, & Stal, 1996) as well as Architecture

Description Languages (ADLs) (Shaw & Clements, 2006).

Figure 1 - Classification of relevant architectural structures for software systems

Building upon the momentum, more companies started to participate in SA and

its methodologies since the beginning of the third millennium. Two notable approaches

for general architecture were standardized to unify certain efforts: RM-ODP (ISO/IEC,

1995; Linington, 1995; Putman, 2000) and IEEE 1471 (IEEE, 2000). Overall, a lot of

pre-made platforms and architectures ready to use have been developed and are

today available. Open-source software adds to this abundance. It is thus safe to say

that SA has reached what Shaw & Clements describe as “Popularization” (Shaw &

Clements, 2006). Therefore, new trends and explorations also must be considered

since they are a natural continuation of the described state.

Looking at the last five years, a few trends in SA emerge. The first of these

trends is cloud and service related and addresses the question how SA is connected

to such fields and how it can be utilized (Amal, Sliman, Kmimech, Bhiri, & Raddaoui,

2018; Bahsoon, Ali, Heisel, Maxim, & Mistrik, 2017; Hästbacka et al., 2019; Malavolta

& Capilla, 2017). Second, a focus on intelligent architecture can be seen, which

Acquisition Research Program
Graduate School of Defense Management - 9 -
Naval Postgraduate School

introduces topics such as machine learning into the field of SA and enables

phenomena such as emergent architectures that only appear during runtime and are

not pre-managed or set (Woods, 2016). This trend also increases the reliance of SA

on data and algorithms, which will require rethinking of previously mentioned

approaches, such as the 4+1 View, which did not originally include any views for data

or underlying information (Kruchten, 1995; Woods, 2016). Third, also related to the

previous one, the use of SA in agile environments has become more and more

important and has thus moved into the focus of research as well (Dingsøyr, Moe,

Fægri, & Seim, 2018; Venters et al., 2018). Agile and SA propose different viewpoints

with the former advocating for flexible as well as iterative implementation of changes

and the latter standing for fundamental decisions that might even be deferred until

they can be made in an informed manner if they are not defined up-front (Dingsøyr et

al., 2018; Wilhelm Hasselbring, 2018). Hence, the integration of architecture into agile

environments has been seen as a trend as well (Dingsøyr et al., 2018). Lastly, a focus

on sustainability also in relation to longevity and scalability can be seen. Since

scalability can be an issue with integrated databases due to their high coherence (W.

Hasselbring, 2002), the applicability and longevity of SAs can become problematic if

they are tightly vertically integrated. Thus, approaches such as Microservices

(Francesco, Malavolta, & Lago, 2017; Newman, 2015; Taibi, Lenarduzzi, Pahl, &

Janes, 2017) and other solutions to these problems (Capilla, Nakagawa, Zdun, &

Carrillo, 2017), which then also address sustainability (Cabot, Capilla, Carrillo,

Muccini, & Penzenstadler, 2019; Venters et al., 2018), are being pursued.

Lastly, for the research at hand, a categorization approach and characterization

within SA is critical to allow for a methodological analysis. Thus, the most frequently

used and applied structures were researched and are described hereinafter. On an

overarching level, structures in SA can be seen as threefold (Bass et al., 2012):

Decomposition Structure, Use Structure, and Class Structure. Each of these three

categories can again be subdivided into more nuanced categories, but such detailed

subdivisions can be strongly dependent on the case of application. Thus, for the work

at hand, three of the sub-categories of the Module Structure shall be outlined as they

Acquisition Research Program
Graduate School of Defense Management - 10 -
Naval Postgraduate School

are directly related to the research presented as depicted in Figure 1: Decomposition

Structure, Use Structure, and Class Structure.

Based on the above-described literature and research, the tasks outlined in the

previous section were approached. As such, the source code of an open-source

Python library, Snorkel was analyzed. This analysis was conducted in a static manner

which focuses on the module structure. In particular, the codebase is parsed to

generate a class structure, which includes details about modules, classes, and

methods. A series of relationships between these entities allow us to define a

particular case of a use structure, which was used as the basis of the static analysis.

Acquisition Research Program
Graduate School of Defense Management - 11 -
Naval Postgraduate School

Methodology and Process

As mentioned above, a static analysis of the source code of a software package

developed using the Python 3 programming language was developed and conducted.

The source code is parsed using the Abstract Syntax Tree (AST) module in the Python

Standard Library. This module is based on the parser used in the native Python

compiler and is continuously updated with any grammar change in the language. This

parsing process leads to the creation of a graph where functions and classes are

nodes and inheritance, and functional calls are edges.

The resulting graph is known as a module dependency graph and has been a

subject of a number of graph-theoretical research efforts (MacCormack, Rusnak, &

Baldwin, 2006). The module dependency graph is a particular case of a use structure.

In this research, the module dependency graph will be analyzed with a series of

complexity metrics based on the eigenvalues of various representations of the graph

(A. Pugliese & Nilchiani, 2019). These metrics are based on other metrics, such as

graph energy (Gutman, 2001) and natural connectivity (Jun, Barahona, Yue-Jin, &

Hong-Zhong, 2010).

Figure 2 - Types of dependencies among graph elements

Acquisition Research Program
Graduate School of Defense Management - 12 -
Naval Postgraduate School

The module dependency graph is built using an ad-hoc model of Python objects

and interdependencies. This version introduces function-level granularity, from file-

level of the previous one, and is based on the Python AST module instead of simply

parsing the code. The graph is built using the following rules:

• A file that imports code from another file is dependent on that file
• A class that inherits from another class is dependent on that class
• A function that calls another function is dependent on that function
• A file that contains a class is dependent on that class
• A file that contains a function is dependent on that function
• A class that contains a function is dependent on that function

Figure 2 above shows the types of dependencies among the elements of the graph.

The analysis of the module dependency graph is carried out using a set of

spectral complexity metrics developed by our research group and represented using

the following formula:

𝐶𝐶(𝑆𝑆) = 𝑓𝑓 �𝛾𝛾�𝑔𝑔�𝜆𝜆𝑖𝑖(𝑀𝑀) −
𝑡𝑡𝑡𝑡(𝑀𝑀)
𝑛𝑛 �

𝑛𝑛

𝑖𝑖=1

�

where 𝑓𝑓1(𝑥𝑥) = 𝑥𝑥, 𝑔𝑔1(𝑦𝑦) = |𝑦𝑦|, 𝑓𝑓2(𝑥𝑥) = ln 𝑥𝑥 , 𝑔𝑔2(𝑦𝑦) = 𝑒𝑒𝑦𝑦 are the possible values for the

functions 𝑓𝑓 and 𝑔𝑔 , the coefficient 𝛾𝛾 can be 𝛾𝛾1 = 1, 𝛾𝛾2 = 𝑛𝑛−1 , and the matrix

representation of the graph can be either 𝑀𝑀1 = 𝐴𝐴,𝑀𝑀2 = 𝐿𝐿,𝑀𝑀3 = ℒ, which have been

defined in our previous publication (Nilchiani & Pugliese, 2016).

Table 2 below shows the metrics that can be derived from this formula through

combinations of the described parameters. Two sets of functions, two values for the

coefficient 𝛾𝛾, and three matrices yield twelve possible metrics. Hereinafter, the metrics

are referred to using acronyms: graph energy (GE), Laplacian graph energy (LGE),

normalized Laplacian graph energy (NLGE), natural connectivity (NC), Laplacian

natural connectivity (LNC), normalized Laplacian natural connectivity (NLNC). Where

the acronym has a trailing n, such as in (GEn), the factor 𝛾𝛾 = 1/𝑛𝑛,

Acquisition Research Program
Graduate School of Defense Management - 13 -
Naval Postgraduate School

Table 2 - Twelve examples of spectral structural complexity metrics

Adjacency Matrix Laplacian Matrix Normalized Laplacian
Matrix

𝜸𝜸 = 𝟏𝟏
𝐺𝐺𝐺𝐺 = �|𝜆𝜆𝑖𝑖|

𝑛𝑛

𝑖𝑖=1

 𝐿𝐿𝐿𝐿𝐿𝐿 = ��𝜇𝜇𝑖𝑖 −
2𝑚𝑚
𝑛𝑛
�

𝑛𝑛

𝑖𝑖=1

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = �|𝜈𝜈𝑖𝑖 − 1|
𝑛𝑛

𝑖𝑖=1

𝑁𝑁𝑁𝑁 = ln��𝑒𝑒𝜆𝜆𝑖𝑖
𝑛𝑛

𝑖𝑖=1

� 𝐿𝐿𝐿𝐿𝐿𝐿 = ln��𝑒𝑒𝜇𝜇𝑖𝑖−
2𝑚𝑚
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

� 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = ln��𝑒𝑒𝜈𝜈𝑖𝑖−1
𝑛𝑛

𝑖𝑖=1

�

𝜸𝜸 =
𝟏𝟏
𝒏𝒏

 𝐺𝐺𝐺𝐺𝐺𝐺 =
1
𝑛𝑛
�|𝜆𝜆𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
1
𝑛𝑛
��𝜇𝜇𝑖𝑖 −

2𝑚𝑚
𝑛𝑛
�

𝑛𝑛

𝑖𝑖=1

 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
1
𝑛𝑛
�|𝜈𝜈𝑖𝑖 − 1|
𝑛𝑛

𝑖𝑖=1

𝑁𝑁𝑁𝑁𝑁𝑁 = ln�
1
𝑛𝑛
�𝑒𝑒𝜆𝜆𝑖𝑖
𝑛𝑛

𝑖𝑖=1

� 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = ln�
1
𝑛𝑛
�𝑒𝑒𝜇𝜇𝑖𝑖−

2𝑚𝑚
𝑛𝑛

𝑛𝑛

𝑖𝑖=1

� 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = ln�
1
𝑛𝑛
�𝑒𝑒𝜈𝜈𝑖𝑖−1
𝑛𝑛

𝑖𝑖=1

�

Acquisition Research Program
Graduate School of Defense Management - 14 -
Naval Postgraduate School

THIS PAGE LEFT INTENTIONALLY BLANK

Acquisition Research Program
Graduate School of Defense Management - 15 -
Naval Postgraduate School

Results and Insights

This section presents the results of analysis on the module dependency graph

for the Snorkel project published on GitHub. The project was selected due to its

relatively small size of ~2,600 commits and less than 300MB of code as of March

2021, which allows us to run our analytical programs on a laptop. The number of

contributors (50), the history of commits, and the prevalence of Python code were

other attributes that affected this choice. Future and optimized versions of the code

will aim at analyzing larger codebases.

The evolution of the graph at indicated time stamps is depicted in Figure 3. In

these plots, the nodes are colored according to their type: file (blue), library (black),

class (red), and function/method (green). These images suggest how even a relatively

small project, such as Snorkel, can become eminently complex to manage and

architect.

Acquisition Research Program
Graduate School of Defense Management - 16 -
Naval Postgraduate School

Feb 2016

Jul 2016

Nov 2016

May 2017

May 2018

Mar 2021

Figure 3 - Evolution of the module dependency graph at select points in time for the Snorkel

project. Snapshots are taken at intervals of approximately 530 commits.

Acquisition Research Program
Graduate School of Defense Management - 17 -
Naval Postgraduate School

Linear Correlation Analysis

A linear correlation analysis of the metrics is described hereinafter. Using the

Pearson correlation coefficient (r), it is possible to see if any of the metrics evaluated

for the dependency graph are linearly co-dependent. These dependencies can

provide insights regarding characteristics of the Snorkel code base.

As shown in Figure 4, the following group of metrics show 𝑡𝑡𝑡𝑡 > .99 in all pairwise

comparisons: GE, LGE, NLGE, n, m.

Figure 4 - Comparison of GE, LGE, NLGE, number of nodes, and number of edges

Acquisition Research Program
Graduate School of Defense Management - 18 -
Naval Postgraduate School

As shown in Figure 4, the following group of metrics show 𝑟𝑟 > .99 in all pairwise

comparisons: GE, LGE, NLGE, n, m.

The linearity between number of nodes (𝑛𝑛) and number of edges (𝑚𝑚) can be

seen as a symptom of localized development. The addition of a module to the source

code is followed by the connection of this module to one or more others. If for each

additional module a low number of connections are made, it means that the module

is only being used in that specific part of the code. While a percentage of additions

are justifiably of this type, most modules might also be reused in other locations and

therefore should create more additional connections. A long-lasting linear relationship

between 𝑛𝑛 and 𝑚𝑚 suggests a need for refactoring.

The linear relationship between GE and LGE is common in graphs with a close

to uniform distribution of node degrees. In star graphs, GE would grow super linearly

with the number of nodes while LGE’s behavior would converge to linear. The

dissimilarity between the current dependency graphs and graphs with highly skewed

distribution of node degrees is also seen in NLGE, which would be zero for star

graphs.

Figure 5 shows a linear relationship (𝑟𝑟 > .99) in three pairwise comparisons

between LNC, LNCn, and the maximum node degree. A linearity between LNC and

LNCn is a characteristic of star graphs and wheel graphs. For graphs with more

uniform degree distribution, the value of LNCn plateaus quickly with the number of

nodes, while LNC’s growth slows down more gently. This result is in contrast with the

insights found in Figure 4, and adds a new research question regarding the

relationship between these metrics and fundamental graph characteristics.

Acquisition Research Program
Graduate School of Defense Management - 19 -
Naval Postgraduate School

Figure 5 - Comparison of LNC, LNCn, and maximum node degree

The linear relationships of LNC and LNCn with the maximum node degree of

the graph indicate that these metrics are connected to the size of the largest hub in

the graph. This linearity is also found in star graphs, while in complete graphs, where

there are no hubs by definition, and each node is equivalent to all the others, LNC

would grow with a descending rate, and LNCn would plateau asymptotically towards

1.

Acquisition Research Program
Graduate School of Defense Management - 20 -
Naval Postgraduate School

Figure 6 - Comparison of uncorrelated metrics

Figure 6 shows the pairwise comparisons of all the metrics which do not

present a clear linear correlation in the Snorkel code base. Some of these

relationships are planned to be analyzed in subsequent research efforts, but an effort

in narrowing the pool of metrics and towards a more purposeful metric design will be

necessary to measure meaningful characteristics of software architectures.

Acquisition Research Program
Graduate School of Defense Management - 21 -
Naval Postgraduate School

Trends Over time

The linear correlation analysis allows the connection of different metrics, in an

effort to characterize the topology of the dependency graph. The actual development

and creation of the codebase over the five-year period, can be analyzed by plotting

some of these metrics over time. The evolution of the dependency graph presented in

Figure 3 is depicted below by the values of four of the metrics: GE, NC, GEn, and

NCn.

Figure 7 - Trends for GE, NC, GEn, and NCn over 6 years of project development

Figure 7 presents a series of time plots for this select subset of metrics. For

each metric, the green shaded area represents the frequency of commits in the project

at a specific point in time. This frequency is not connected to the values on the y-axis.

The plots show that the development of the project was very active in 2016 and 2017,

with a smaller spike of activity in 2019, when, according to the commits, the project

underwent a small overhaul, with frequent additions and removals of code. This allows

Acquisition Research Program
Graduate School of Defense Management - 22 -
Naval Postgraduate School

us to better contextualize the changes in each metric and see how they react when

the codebase is changed.

Graph energy (GE) quickly rises during the initial development, and fluctuates

significantly during the overhaul, only to settle at essentially the same level afterwards.

Natural connectivity (NC) on the other hand rises also after the overhaul, suggesting

that the changes made to the codebase in 2019 increased the cohesion of the whole

project, without unnecessarily increasing coupling.

The comparison between GE and GEn shows the effect of the normalization

factor 𝛾𝛾 = 1
𝑛𝑛
, which was introduced to allow a comparison of graphs of different size

(number of nodes). In this case, this normalization affects GEn to the point that the

metric only seems to capture the frequency of the commits, and not the growth of the

graph (as expected). This behavior is not the case when this normalization is applied

to NC as NCn still seems to be affected by the graph growth.

Acquisition Research Program
Graduate School of Defense Management - 23 -
Naval Postgraduate School

Conclusion

The report presented a methodology to study the behavior of complex software

systems in terms of their structural complexity with a focus on the modifiability of the

code base. This approach is based on the parsing of the code and the creation of a

dependency graph, a particular case of architectural structure that focuses on the

dependency between software modules and the various ways they can call each

other.

The dependency graph has been analyzed through the evaluation of a series

of spectral metrics, which have shed light on some characteristics of the graph and

given insights on the quality of the development effort. It is important to note that this

approach forgoes the analysis of the actual lines of code and the dynamic effects that

they will have at runtime and is therefore to be considered limited in scope and

applicability.

In parallel to this analysis being carried out, the behavior of each metric is also

being discovered, thus bootstrapping their applicability to the metrics. Behind the

scenes, the metrics have been applied to conventional graphs, but the use case of a

real software project is necessary to gauge the limitations of this approach.

As a result of the proposal structure outlined in the second section, the following

list shows the completed tasks:

Task 1. Completed including al sub-tasks

Task 2. Completed including all sub-tasks

Task 3. Completed except for sub-task 3, which turned out to be not

feasible

Task 4. Completed including all sub-tasks

Task 5. Completed including all sub-tasks

Future research will continue the effort of connecting these and other metrics

to important attributes of software code bases. Improvements to our own software

tools will allow for analysis of projects with larger repositories, and with a longer

development time frame, where the effects of technical debt might be more

Acquisition Research Program
Graduate School of Defense Management - 24 -
Naval Postgraduate School

pronounced. Additional improvements are also planned for the visual representation

of modifiability in software systems.

Acquisition Research Program
Graduate School of Defense Management - 25 -
Naval Postgraduate School

Bibliography

Basili, V. R. (1980). Qualitative software complexity models: A summary. Tutorial on
models and methods for software management and engineering.

Darcy, D. P., Kemerer, C. F., Slaughter, S. A., & Tomayko, J. E. (2005). The structural
complexity of software an experimental test. IEEE Transactions on Software
Engineering, 31, 982-995.

Enos, J. R., Farr, J. V., & Nilchiani, R. R. (2019). IDENTIFYING AND QUANTIFYING
Critical ilities in the ACQUISITION of DoD Systems. Defense Acquisition
Research Journal: A Publication of the Defense Acquisition University, 26.

Fischi, J., Nilchiani, R., & Wade, J. (2015). Dynamic Complexity Measures for Use in
Complexity-Based System Design. IEEE SYstems Journal.

Gutman, I. (2001). The energy of a graph: old and new results. In Algebraic
combinatorics and applications (pp. 196-211). Springer.

Kendall, F. (2016). Performance of the Defense Acquisition System. Department of
Defense.

MacCormack, A., Rusnak, J., & Baldwin, C. Y. (2006). Exploring the structure of
complex software designs: An empirical study of open source and proprietary
code. Management Science, 52, 1015-1030.

Mens, T. (2016). Research trends in structural software complexity. arXiv preprint
arXiv:1608.01533.

Nilchiani, R. R., & Pugliese, A. (2016). A Complex Systems Perspective of Risk
Mitigation and Modeling in Development and Acquisition Programs. Tech. rep.,
Stevens Institute of Technology Hoboken United States.

Nilchiani, R. R., & Pugliese, A. (2017). A Systems Complexity-based Assessment of
Risk in Acquisition and Development Programs.

Pugliese, A., & Nilchiani, R. (2019). Developing Spectral Structural Complexity
Metrics. IEEE Systems Journal.

Pugliese, A., Enos, J., & Nilchiani, R. (2018). Acquisition and Development Programs
Through the Lens of System Complexity. 136-154.

Salado, A., & Nilchiani, R. (2013). Using Requirements-Induced Complexity to
Anticipate Development and Integration Problems: Analysis of Past Missions.
AIAA SPACE 2013 Conference and Exposition, (p. 5357).

Acquisition Research Program
Graduate School of Defense Management - 26 -
Naval Postgraduate School

Wu, J., Barahona, M., Yue-Jin, T., & Hong-Zhong, D. (2010). Natural connectivity of
complex networks. Chinese physics letters, 27, 078902.

Acquisition Research Program
Graduate School of Defense Management
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Introduction
	Tasks, Scope, and Proposed Work
	Literature Review and State of the Research
	Methodology and Process
	Results and Insights
	Linear Correlation Analysis
	Trends Over time

	Conclusion
	Bibliography

