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Abstract 

The exponential growth in data management has led to explosive growth in data 

analytics, big data, machine learning (ML), and artificial intelligence (AI). Despite the 

positive effects these emerging solutions have on productivity, there is a desperate need 

for information on extreme risk factors (e.g., climate change, pandemic risks, data loss, 

failure of information technology systems) impacting cybersecurity. We conducted a 

systematic review on how AI, especially ML, is being considered in military acquisitions, 

including discussions around risk management and extreme events in order to identify 

how the Department of Defense could use these findings to increase awareness of the 

hidden aspects of ML and AI, especially in the face of extreme events. 
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Introduction 

This research has the explicit goal of proposing a reusable, extensible, adaptable, 

and comprehensive advanced analytical modeling process to help the U.S. Navy in 

quantifying, modeling, valuing, and optimizing a set of nascent artificial intelligence (AI) 

and machine learning (ML) applications in the aerospace, automotive, and transportation 

industries and develop a framework with a hierarchy of functions by technology category 

and create a unique-to-Navy-ship construct that, based on weighted criteria, scores the 

return on investment (ROI) of developing naval AI/ML applications that enhance 

warfighting capabilities. 

This current research proposes to create a business case for making strategic 

decisions under uncertainty. Specifically, we look at a portfolio of nascent AI and ML 

applications, both at the Program Executive Office (PEO) Ships and extensible to the 

Navy fleet. This portfolio of options approach to business case justification provides tools 

to allow decision-makers to decide on the optimal flexible options to implement and 

allocate in different types of AI and ML applications, subject to budget constraints, across 

multiple types of ships.  

The concept of the impact of innovative technology on productivity has applicability 

beyond the Department of Defense (DoD). Private industry can greatly benefit from the 

concepts and methodologies developed in this research to apply to the hiring and talent 

management of scientists, programmers, engineers, analysts, and senior executives in 

the workforce to increase innovation productivity.  

Research Objective 

The primary objective of the proposed research is to provide a business case 

analysis and ROI estimates for AI and ML systems and applications that will improve their 

acquisitions life cycle. Currently, the DoD has a portfolio of nascent AI and ML 

applications, both at the PEO Ships and eventually extensible to the entire Navy fleet. 

The main research problem is to create business case examples on how this portfolio of 

AI/ML applications is valued and optimized. The portfolio of options approach provides 
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business case justification, providing tools to allow decision-makers to down select the 

optimal flexible options to implement and allocate in different types of AI and ML 

applications, subject to budget constraints, across multiple types of ships. 
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Literature Survey 

For the DoD, acquiring AI technology is a relatively new difficulty. Given the 

significant danger of AI system acquisition failures, it’s vital for the acquisition community 

to look at new analytical and decision-making methodologies for controlling these 

systems’ acquisitions. Furthermore, many of these systems are housed in tiny, 

inexperienced system development firms, further complicating the acquisition process 

with insufficient data, information, and processes. The DoD’s well-known challenge of 

obtaining information technology (IT) automation will almost certainly be compounded 

when it comes to acquiring complicated and dangerous AI systems. To assist in 

minimizing costly AI system acquisition disasters, more powerful and analytically driven 

acquisition approaches will be required. To complement existing earned value 

management (EVM), this study identifies, reviews, and proposes advanced analytically 

based methods of integrated risk management (IRM; Monte Carlo simulation, stochastic 

forecasting, portfolio optimization, and strategic flexibility options) and knowledge value 

added (KVA; using market comparables to determine the economic value of intangibles 

and nonfinancial government programs). 

The Real Options Valuation methodology is a new approach that has been 

effectively applied in a variety of commercial industries to measure the entire future worth 

of decisions taken when there is a significant degree of uncertainty at the time decisions 

are needed. PEO Ships needs a new methodology to assess the total future value of 

various combinations of nascent AI and ML applications and how they will enable 

affordable warfighting relevance over the full ship service life to successfully implement 

the Surface Navy’s Flexible Ships concept. 

This research project looks at how the IRM technique may be applied in the Future 

Surface Combatant Analysis of Alternatives (AoA) to estimate the entire future value and 

ROI of AI design characteristics. 
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Defense Acquisition System 

The Defense Procurement System, which supervises national investment in 

technologies, projects, and product support for the United States Armed Forces, handles 

the acquisition of new systems for the DoD (2003). Its main goal is to “acquire high-quality 

goods that meet user objectives while delivering measurable advances in mission 

capability and operational support in a timely and cost-effective manner” (DoD, 2003). 

The Joint Capabilities Integration and Development System (JCIDS), the Planning, 

Programming, Budgeting, and Execution (PPBE) process, and the Defense Acquisition 

System are three different but interrelated processes inside the DoD Decision Support 

System (DoD, 2017a). Within the Defense Acquisition System, this study focuses on 

program management rather than contract management. 

Acquisition Categories (ACAT) are assigned to acquisition programs based on the 

type of program and the dollar amount spent or expected to be spent within the program 

(DoD, 2015a). Figure 1 depicts the Defense Acquisition System’s numerous cost-based 

designations and categories. All ACAT classification dollar amounts are determined in 

Fiscal Year 2014 dollars (DoD, 2015a). ACAT I is for big defense acquisition programs 

with a Research, Development, Test & Evaluation (RDT&E) budget of more than $480 

million, or a total procurement budget of more than $2.79 billion (DoD, 2015a). ACAT IA 

programs do not meet the criteria for ACAT I and will spend more than $835 million in 

total procurement (DoD, 2015a) or more than $185 million in RDT&E. ACAT II programs 

do not meet the criteria for ACAT I and will spend more than $520 million in total life-cycle 

cost, $165 million in the total program cost, or $40 million for any single year of a program 

(DoD, 2015a). Finally, ACAT III programs are those that do not meet the requirements for 

ACAT I or ACAT II (DoD, 2015a). Because each category has varied reporting 

requirements and designated decision-makers, the multiple designations allow for 

decentralized control of a program (DoD, 2017a). 
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Figure 1. Acquisition Categories. Source: DoD (2017). 

 

 There are five phases within the Defense Acquisition System: 

• Materiel Solution Analysis (MSA)  

• Technology Maturation and Risk Reduction (TMRR) 

• Engineering and Manufacturing Development (EMD)  

• Production and Deployment (PD)  

• Operations and Support (OS)  

The acquisition process is driven by requirements for new or better capabilities, 

which are delivered through the JCIDS process (DoD, 2015a). The relationship between 

the acquisition and capabilities needs processes, as well as their interaction in the various 

acquisition phases, is depicted in Figure 2. The capabilities required from the JCIDS 

procedure are assumed to be correct and necessary in this investigation. 
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Figure 2. Interaction of Capabilities Requirements and Acquisition Process. Source: DoD (2015a). 

The Materiel Development Decision kicks off the MSA phase after an Initial 

Capabilities Document (ICD) has been validated (DoD, 2015a). Although an acquisition 

program is not legally constituted until Milestone B at the end of the phase, this choice 

initiates the acquisition process (DoD, 2015a). The goal of the MSA phase is to select the 

most promising possible acquisition process solution that will meet the ICD’s demands 

and to define the system’s Key Performance Parameters (KPPs) and Key System 

Attributes (KSAs; DoD, 2015a). An AoA is used to assess the acceptability of proposed 

acquisitions based on “measures of effectiveness; important tradeoffs between cost and 

capacity; total life-cycle cost, including sustainment; time line; the concept of operations; 

and overall risk” (DoD, 2015a, p. 17). During this stage, the program manager (PM) is 

chosen and the program office is established (DoD, 2015a). After the necessary analysis 

is completed, the decision authority—usually the Defense Acquisition Executive (DAE), 

head of the DoD component, or Component Acquisition Executive (CAE), unless 

otherwise delegated—determines whether the program will proceed to the next phase 

based on the justification for the chosen solution, how affordable and feasible the solution 

is, and how adequate the cost, schedule, and other factors (DoD, 2015a). Milestone A is 

the name given to this decision (DoD, 2015a). The MSA phase examines all possible 
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solutions to a stated demand and, as a result, may be an opportune time to investigate 

strategic techniques like KVA or IRM. 

The program enters the TMRR phase after Milestone A approval to decrease the 

risk associated with the technology, engineering, life-cycle cost, and integration of the 

program before moving on to the EMD phase (DoD, 2015a). At this step, design and 

requirement trades are carried out based on the budget, timetable, and possibility of 

completion (DoD, 2015a). Contractors prepare early designs, including competing 

prototypes if practicable within the program, to show the practicality of their proposed 

solutions to the program office, guided by the acquisition strategy authorized at Milestone 

A (DoD, 2015a). 

Technology Readiness Levels (TRLs) are a set of standards that show the level of 

risk involved with a solution maturing on time (DoD, 2015a). Technology Readiness 

Assessments (TRAs) are a metric-based technique for assessing the maturity and risk 

associated with important technology in an acquisition program (DoD, 2011). Each 

important technology in a program will be assigned a TRL by a TRA, ranging from 1 to 9 

from lowest to maximum readiness level (DoD, 2011). Additional tools, such as IRM, to 

estimate the chances of a program remaining on schedule and on budget, may be useful 

at this stage. The Publication Decision Point for Development Requests for Proposals 

(RFPs) permits the release of an RFP with firm and clearly specified program 

requirements for contractors to submit bids (DoD, 2015a). Unless the milestone decision 

authority waives it, the Preliminary Design Review (PDR) occurs prior to the completion 

of the TMRR phase (DoD, 2015a). Milestone B approves a program’s entry into the EMD 

phase, awards a contract, and establishes the Acquisition Program Baseline (APB; DoD, 

2015a). The APB is a legal commitment to the milestone decision authority that outlines 

the authorized program, especially the cost and schedule over the program’s life (DoD, 

2015a). 

Once Milestone B has been approved, EMD can commence. Prior to production, 

the material solution is conceived, produced, and tested to ensure that all requirements 

have been met (DoD, 2015a). The hardware and software designs have been finished, 

and prototypes have been developed to detect any design flaws that will be uncovered 
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during developmental and operational testing (DoD, 2015a). Federal regulation requires 

DoD procurement projects with a contract value higher than $20 million to utilize EVM to 

track and report program progress, which begins during this phase (DoD, 2019a). The 

manufacturing or software sustainment methods, as well as production capabilities, must 

be appropriately proven once a stable design that meets the given requirements has been 

validated (DoD, 2015a). Milestone C verifies that these requirements have been met and 

authorizes the start of the PD phase (DoD, 2015a). 

The goal of the PD phase is to deliver a product that meets the standards 

established earlier in the process (DoD, 2015a). Low Rate Initial Production (LRIP) for 

manufactured systems or limited deployment for more software-intensive programs 

occurs first, with the system undergoing Operational Test[ing] and Evaluation (OT&E) to 

verify that stated criteria were satisfied (DoD, 2015a). Full-rate manufacturing occurs 

when the fielded systems have been approved, and the product is deployed to operating 

units (DoD, 2015a). At this time, design changes are limited, however, some may still be 

made in response to identified flaws (Housel et al., 2019a). During this phase, contracts 

often revert to a fixed pricing strategy, lessening the PM’s focus on cost and schedule 

variance (Housel et al., 2019b). 

The operating system is meant to keep the product supported and perform well 

throughout its life cycle, which ends with the system’s disposal (DoD, 2015a). Because 

operational units are using the product while production is ongoing, the OS phase 

overlaps with the PD phase, starting after the production or deployment decision (DoD, 

2015a). PMs will maintain the system running by following the Life Cycle Sustainment 

Plan (LCSP) set during the purchase phase and providing the appropriate resources and 

support (DoD, 2015a). Technological upgrades, modifications due to operational needs, 

process enhancements, and other activities that may necessitate LCSP updates are all 

examples of sustainment and support (DoD, 2015a). 

PMs employ six different models to develop their program structure, four of which 

are standard and two of which are hybrid, depending on the type of system being 

purchased (DoD, 2015a). These standard models serve as templates for hardware-

intensive projects, defense-specific software-intensive programs, software-intensive 
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programs that are incrementally deployed, and expedited acquisition programs (DoD, 

2015a). The hybrid models, as seen in Figure 3, combine the progressive character of 

software development with a hardware-centric program. Before attaining the Initial 

Operating Capacity (IOC), software development is arranged through a sequence of 

tested software builds that will climax with the completely required capability (DoD, 

2015a). The incremental builds are timed to coincide with prototype hardware testing and 

other developmental requirements (DoD, 2015a). With the exception of the accelerated 

program, all other models use the same basic foundation across the five phases. 

 
Figure 3. Hardware-Dominant Hybrid Program. Source: DoD (2015a). 

AI and IT systems, as well as their connections to weapon systems, facilities, and 

Command, Control, Communications, Computers, Intelligence, Surveillance, and 

Reconnaissance (C4ISR), are becoming more common within the DoD (2015b). As a 

result of the integration, enemies pose a greater security risk, emphasizing the 

significance of good cybersecurity skills and processes (DoD, 2015b). The DoD manages 

cybersecurity policy using the Risk Management Framework (RMF), which employs 

security measures based on risk assessments throughout a system’s life cycle (DoD, 

2015b). “All DoD IT that receives, processes, stores, displays, or transmits DoD 

information” (DoD, 2014, p. 2) is covered by RMF. RMF’s definition of cybersecurity goes 

beyond information security to include things like stable and secure engineering designs, 

training and awareness for all program users, maintainers and operators, and the 
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response, recovery, and restoration of a system after an internal or external failure or 

attack (DoD, 2015b). Figure 4 depicts the six steps of the RMF’s procedure, which occurs 

throughout the acquisition process. 

 
Figure 4. Risk Management Framework Process. Source: DoD (2014). 

 

The first stage is to categorize the system, which includes assessing the possible 

impact of a breach and describing the system and its boundaries (DoD, 2014). The RMF 

team is formed, the security plan is implemented, and the system is registered with the 

DoD Component Cybersecurity Program (DoD, 2014). The ICD includes cybersecurity 

standards, which drive MSA concerns during the AoA phase (DoD, 2015b). A 

cybersecurity breach might have serious consequences for missions, according to the 

risk assessment (DoD, 2015b). The RMF provides a somewhat objective technique for 

determining the cybersecurity risk level, as well as the baseline security controls that must 

be incorporated in the system’s purchase strategy (DoD, 2015b). 

The RMF team determines security measures in Step 2, including those that are 

common to other DoD programs (DoD, 2014). A plan is designed and recorded for 

regularly monitoring the effectiveness of the controls (DoD, 2014). The security plan is 
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subsequently submitted to the DoD Components, who examine and approve it (DoD, 

2014). During the MSA phase, the acquisition and cybersecurity teams collaborate to 

ensure that the proper level of security is applied throughout the program’s life cycle, as 

well as in the system architecture and design (DoD, 2015b). During the MSA, the 

continuous monitoring strategy and security plan are also designed (DoD, 2015b). 

The approved security procedures are then implemented in accordance with DoD 

specifications (DoD, 2014). The implementation must be well documented in the security 

plan for the system (DoD, 2014). In the TMRR phase, cybersecurity requirements are 

included in the system performance requirements (DoD, 2015b). 

The RMF team must then create, review, and approve a Security Assessment Plan 

that will allow the security controls to be properly assessed (DoD, 2014). Following 

approval, the security of the system is evaluated in line with DoD assessment processes 

and the Security Assessment Plan, during which vulnerabilities are assigned severity 

levels and the security risk for both the controls and the whole system is established 

(DoD, 2014). This is documented in the Security Assessment Report, which is necessary 

before any system is authorized and security control repair activities are carried out (DoD, 

2014). Prior to issuing an RFP, the Capability Development Document’s cybersecurity 

criteria are evaluated throughout the TMRR process (DoD, 2015b). The cybersecurity 

parts of the PDR, which is also done during the TMRR process, will ensure that the 

authorized plan is executed in the chosen design and risks are reduced to an appropriate 

level (DoD, 2015b). All computer code follows applicable standards and secure coding 

practices as the system grows in the EMD phase, with evaluations undertaken and 

documented in the security plan (DoD, 2015b). 

A Plan of Action and Milestones (POA&M) is produced based on the identified 

vulnerabilities, which identifies activities to mitigate the vulnerabilities, resources required 

to fulfill the plan, and milestones for completing tasks (DoD, 2014). The Security 

Authorization Package is given to the authorizing official, who will decide whether the risk 

level is appropriate before authorizing the system (DoD, 2014). The POA&M is created 

during the MSA phase and continues throughout the system development process (DoD, 

2015b). 
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Finally, security controls must be monitored throughout the system’s life cycle to 

ensure that any changes to the system or environment do not compromise cybersecurity 

(DoD, 2014). If vulnerabilities are discovered, the necessary remedy will be carried out, 

and the security strategy will be updated (DoD, 2014). The cybersecurity of a system is 

monitored in line with the continuous monitoring strategy and security plan once it has 

been approved and operationally implemented (DoD, 2015b). When the system, its 

surroundings, or the anticipated use of the system change, new risk assessments are 

done (DoD, 2015b). If a vulnerability is discovered, the PM changes the security plan and 

the POA&M to specify how the issue will be resolved (DoD, 2015b). 

Portfolio Modeling in Military Applications 

Optimization is a long-standing and legendary subject that involves using data and 

information to assist decision-making in order to achieve an optimal, or near-optimal, 

result. Despite the fact that they collect more data than ever before, “government 

agencies have been significantly slower to apply these approaches to boost efficiency 

and mission effectiveness” (Bennett, 2017). Optimization solutions for these government 

agencies can make use of enormous volumes of data from many sources to give decision-

makers alternative options that best match agency goals. 

Standard economic indicators such as the internal rate of return (IRR), net present 

value (NPV), and ROI are often employed in evaluating commercial-based research and 

development (R&D) projects to assist in finding optimal alternatives, as Greiner et al. 

(2001) accurately stated. However, in their commercial form, such economic criteria are 

of little utility in appraising weapon system development efforts. As a result, this study 

looks at the difficulties the DoD has in estimating the value of weapon systems during the 

R&D portfolio selection process. 

Beaujon et al. (2001) used a mathematical formulation of an optimization model to 

choose projects for inclusion in an R&D portfolio, subject to a range of constraints, to 

balance and optimize a portfolio of R&D projects (e.g., capital, headcount, strategic intent, 

etc.). There does appear to be widespread consensus that all of the recommended 

methods are fraught with risk. The authors devised a method for examining the sensitivity 

of project selection decisions to changes in the measure of value. 
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Burk and Parnell (2011) looked at how portfolio decision analysis is used in military 

applications such as weapon systems, force types, installations, and military R&D 

initiatives. They began by contrasting military and commercial portfolio challenges in 

general, as well as outlining the military decision environment’s distinctive characteristics: 

aggressive and adaptive opponents, a public decision process with various stakeholders, 

and high system complexity. The authors concluded that, based on their research, the 

“most widely prominent element of these applications is the rigorous modeling of value 

from numerous objectives” (Burk & Parnell, 2011). “Quantitative approaches of evaluating 

and valuing risk are surprisingly infrequent, given the high level of uncertainty in the 

military environment” (Burk & Parnell, 2011), they discovered. Their investigation focused 

on how military analysts model portfolio values, weight evaluations, restrictions and 

dependencies, and uncertainty and risk in portfolio applications. 

Davendralingam and DeLaurentis (2015) used a system of systems (SoS) 

technique to analyze military capabilities. According to the authors, this technique poses 

major technical, operational, and programmatic obstacles in terms of development. There 

aren’t any tools for deciding how to construct and evolve SoS that takes performance and 

risk into account. To aid decision-making within SoS, they used methods from financial 

engineering and operations research perspectives in portfolio optimization. To address 

intrinsic real-world challenges of data ambiguity, internodal performance, and 

developmental risk, the authors suggested using more robust portfolio algorithms. The 

paper used a naval battle scenario to demonstrate scenario applications for finding 

system portfolios from a candidate list of accessible systems. Their findings reveal that 

by allowing the optimization problem to handle the mathematically intensive components 

of the decision-making process, the optimization framework effectively minimizes the 

combinatorial complexity of trade-space exploration. As a result, the authors argued that 

human decision-makers should be entrusted with selecting suitable risk aversion weights 

rather than the portfolio’s mathematical constructions when making final decisions. 

A portfolio management analysis was conducted by Sidiropoulos et al. (2014) with 

the goal of identifying and evaluating current commercial off-the-shelf (COTS) Portfolio 

Analysis (PA) software tools and solutions. Portfolio models were created using Risk 

Simulator. These models were filled with pertinent data before being run through a 
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sufficient number of simulation iterations to evaluate candidate projects in terms of risk 

and expected military value (EMV). Portfolio Management Analysis (PMA) is discussed 

in this paper through examples and models at various levels of project management and 

systems engineering. The PMA aim is achieved after the full project design infrastructure 

is in place and the end users’ instruments are ready to use. The authors wanted to find 

“approaches and tools to incorporate PMA net-centric strategies to meet war fighter and 

business operations requirements while maintaining current levels of service, ensuring 

manpower conservation, and meeting infrastructure resource requirements” 

(Sidiropoulos et al., 2014). 

Flynn and Field (2006) examined quantitative metrics to assess the Department of 

the Navy’s (DoN’s) procurement portfolio in order to improve business operations through 

better analytical tools and models. The authors discovered that the DoN’s time would be 

better spent if it shifted its focus away from individual acquisition projects (which have 

now been well examined) and toward a portfolio of systems as a whole. This strategy is 

similar to the methodology used in the commercial sector as a best practice. According 

to the study, this high-level view offers senior military officials useful metrics for assessing 

cost, capability, and requirement risks and uncertainties. Senior leaders can make better 

decisions from a set of plausible portfolios armed with these indicators in order to meet 

the Navy’s national security objectives. To complement their research, financial 

management and acquisition staff picked a portion of the then-current DoN portfolio to 

test a portfolio analysis approach in the field of Mine Countermeasures, a diverse, 

representative system of projects. This pilot model was a multiphase process that 

included gathering life-cycle cost data for the various systems to be analyzed, 

establishing a scoring system with subject matter experts (SMEs) to determine how well 

current and future systems match capabilities to requirements, and developing a way to 

display results so decision-makers can examine risk–reward analysis and trade-offs. The 

researchers’ ultimate goal was to use portfolio analysis to evaluate military investments. 

The GAO (1997, 2007) stressed the importance of adjusting a portfolio mix in order 

to reduce risk and maximize returns. Despite the fact that the DoD creates superior 

weapons, the GAO found that it has failed to deploy weapon systems on time, on budget, 

and with the intended capabilities. While recent improvements to the DoD’s procurement 
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process have the potential to enhance outcomes, major cost and schedule overruns 

continue to plague programs. The GAO was tasked with looking into how the DoD’s 

mechanisms for determining needs and allocating funding could be improved to better 

support weapon system program stability. According to the report, the GAO compared 

the DoD’s policies for investing in weapon systems to the best practices used by 

successful commercial organizations such as Caterpillar, Eli Lilly, IBM, Motorola, and 

Procter & Gamble to produce a balanced mix of new products. According to the studies, 

successful commercial enterprises that the GAO studied employ an integrated, portfolio 

management approach to product development in order to establish a balanced mix of 

executable development programs and ensure a favorable return on their investments. 

Companies evaluate product investments collectively from an enterprise level, rather than 

as separate and unrelated activities, using this method. These commercial entities use 

established criteria and methods to weigh the relative costs, benefits, and risks of 

proposed products and select those that can exploit promising market opportunities while 

staying within resource constraints and moving the company toward its strategic goals 

and objectives. Investment decisions are regularly reconsidered in these enterprises, and 

if a product fails to meet expectations, companies make difficult go/no-go judgments over 

time. Effective portfolio management necessitates a governance structure with committed 

leadership and clearly aligned roles and responsibilities, portfolio managers who are 

empowered to make investment decisions, and accountability at all levels of the 

organization, according to the GAO’s examination of companies. The DoD, on the other 

hand, authorizes new initiatives with far less regard for the broader portfolio and commits 

to them sooner and with less knowledge of cost and feasibility. Despite fighting as a joint 

force on the battlefield, the military services define needs and allocate resources 

individually, utilizing fragmented decision-making processes that do not allow for an 

integrated portfolio management approach like that utilized by successful commercial 

firms. As a result, the DoD might be less certain that its investment decisions meet the 

correct mix of warfighting demands, and it begins more programs than current and likely 

future resources can support, resulting in a fiscal tsunami. If this pattern continues, 

Congress will be forced to choose between diverting funds from other high-priority federal 

programs to pay DOD acquisitions or accepting gaps in warfighting capability. 
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The Army has adopted the Army Portfolio Management Solution (APMS) to enable 

the collection and analysis of information needed to prioritize the thousands of IT 

investments in its portfolio (Wismeth, 2012). Warfighter, Business, and Enterprise 

Information Environment Mission Areas, each of which is overseen by a three- or four-

star general officer or senior executive, are the three mission areas that IT investments 

serve. 

Government agencies and the DoD, according to Botkin (2007), require decision-

support systems when making funding decisions for portfolios of programs or projects. 

When it comes to selecting potential programs, government agencies have had some 

success with Project Portfolio Management (PPM); however, once programs are up and 

running, financial managers are faced with funding optimization decisions that are similar 

to those faced by private-sector stock market portfolio managers. Government finance 

managers lack an analogous “stock-price” metric for program or project performance, 

whereas private-sector portfolio managers rely on financial portfolio analysis based on 

“stock price” to guide decision-making. According to Botkin’s (2007) research, the 

government’s Earned Value Management System (EVMS) indicators can be utilized to 

provide a good proxy for financial portfolio analysis. Risk and return trade-offs can be 

quantified and used to make portfolio decisions based on the results of this study. Botkin’s 

study includes an example utilizing representative EVM data. Recommendations on the 

technique’s potential usefulness and limits are presented. 

The Office of Naval Research (ONR) is in charge of establishing and sponsoring 

the R&D required to support the Navy and Marine Corps’ current and future requirements. 

According to Silberglitt et al. (2004), the ONR must fund a broad range of research to 

achieve this purpose, ranging from basic research to open up new long-term choices to 

extremely near-term advanced technology development to support the current fleet. In 

the face of uncertainty, the ONR must make R&D funding decisions (uncertainty in 

required capabilities, uncertainty in performance requirements, and uncertainty in the 

feasibility of a technology or R&D approach). The application of a RAND R&D portfolio 

management decision framework was presented in the Silberglitt et al. (2004) study. 
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The DoD should support dynamic and innovative solutions for tomorrow’s 

warfighter by building acquisition portfolios that deliver an integrated suite of capabilities 

(Janiga & Modigliani, 2014). Today’s program executive officers are sometimes tasked 

with executing a dozen or more identical but separate programs. Large commercial 

businesses, on the other hand, oversee integrated product lines that include everything 

from automobiles and electronics to software and health services. The DoD might use 

this technique to build portfolios of similar initiatives that yield improved capabilities in 

shorter time frames. 

Jocic and Gee (2013) developed a method for comparing space services given by 

several systems in a portfolio that allows for a normalized value of diverse system 

properties and can be displayed using a three-dimensional graph with capability, cost, 

and scheduling axes. Portfolio optimization is achieved by remaining within the cost–

capability plane’s efficient performance frontier, maintaining within the cost–schedule 

plane’s budgetary restrictions, and reducing the likelihood of a capability gap in the 

schedule–capability plane. The required portfolio capability is obtained from the military 

utility analysis–generated combat scenario outcomes. 

Under an assignment headed “Portfolio Optimization Feasibility Study,” the 

Institute for Defense Analyses (IDA) prepared a document for the Office of the Director, 

Acquisition Resources and Analysis (Weber et al., 2003). The goal was to see if it was 

possible to use optimization technology to improve long-term defense acquisition 

strategy. The model provided in this document is an example of optimization techniques 

that can estimate and optimize Acquisition Category I program production schedules over 

an 18-year period. 

The modern warfighter, according to Vascik et al. (2015), operates in an 

environment that has substantially evolved in sophistication and interconnection over the 

last half-century. With each passing year, acquisition officers have more challenges in 

making decisions about potential joint capability programs due to the infusion of ever 

more complicated technology and integrated systems. Furthermore, despite efforts since 

2010 to ensure system affordability, large cost overruns in recent acquisition programs 

demonstrate that more work is needed to develop improved methodologies and methods. 
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Vascik et al. presented research that expands on previous work that looked at system 

design trade-spaces for affordability under uncertainty and applied it to programs and 

portfolios. Exogenous factors that change over time, such as resource availability, 

stakeholder needs, or production delays, can affect the potential for value contribution by 

constituent systems throughout the course of a portfolio’s life cycle, making an initially 

appealing design less appealing. By combining features of Epoch-Era Analysis with 

aspects of Modern Portfolio Theory, Vascik et al. (2015) presented a method for 

conducting portfolio design for affordability. The process is demonstrated through the 

creation of a carrier strike group portfolio that includes the integration of different legacy 

systems as well as the purchase of new vessels. 
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State of the AI 

Machine Learning 

Intelligence is the ability to process a specific sort of data, allowing a processor to 

solve significant problems (Gardner, 1993). Beyond the traditional idea of a person’s 

analytic intelligence quotient (IQ), which can sometimes evaluate merely how well 

someone performs on an IQ test rather than their natural talents, psychologists have 

postulated many categories of intelligence. Howard Gardner proposed a theory of multiple 

intelligence, which suggests that traditional psychometric views of intelligence are too 

narrow and that intelligence should be expanded to include more categories in which 

certain processors, in this case, people, are better at making sense of different stimuli 

than others. Visual-spatial, linguistic-verbal, interpersonal, intrapersonal, logical-

mathematical, musical, body-kinesthetic, and naturalistic intelligence are some of the 

categories of intelligence (Gardner, 1993). A counterargument would be that these 

categories simply represent learned and disciplined habits that people develop through 

time as a result of their personality and environment. Regardless, both definitions of 

intelligence (traditional and many) are relevant to the stages involved in developing an AI 

machine. 

A computer can execute computations depending on the input data and produce 

an a priori defined outcome. It can be built and reprogrammed to repeat particular stages 

or algorithms, and even change its conclusions based on previously calculated results 

using error-correcting techniques. The underlying principle of ML is a combination of 

these two phases. A computer system is fed data that are structured in such a way that 

the algorithm can identify the data, deduce patterns, and make assumptions about any 

unstructured data that is presented later (Greenfield, 2019). In an X-ray learning 

algorithm, this is shown in Figure 5. 
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The image shows the steps an AI algorithm goes through in order to make a recommendation to a 
physician on where a missing body part should be. It takes in structured data and develops its 
understanding of what “right” looks like. When given unstructured data, the algorithm compares the 
image against previously trained models and identifies the abnormality with a recommendation on 
where to apply a fix, such as a prosthetic.  

Figure 5. AI Training Algorithm. Source: Greenfield (2019). 

The basic concept of ML is illustrated in Figure 5, although the current research 

focuses on the many types of learning from the standpoint of procurement. The following 

are interpretations of different forms of learning in procurement algorithms provided by 

Sievo (2019), an AI procurement software business. 

Supervised Learning 
The patterns are taught to an algorithm using previous data, and the algorithm then 

recognizes them automatically in new data. Humans give supervision in the form of the 

right responses, which train the algorithm to look for patterns in data. This is a term that 

is widely used in procurement sectors like spend classification (Sievo, 2019). 

Unsupervised Learning 
The algorithm is set up to look for novel and fascinating patterns in brand-new 

data. The algorithm isn’t expected to surface specific accurate answers without 

supervision; instead, it hunts for logical patterns in raw data. Within important 

procurement functions, this is rarely employed (Sievo, 2019). 

Reinforcement Learning  
The algorithm determines how to act in specific scenarios, and the behavior is 

rewarded or punished based on the outcomes. In the context of procurement, this is 

mostly theoretical (Sievo, 2019). 
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Deep Learning  
Artificial neural networks gradually develop their capacity to accomplish a task in 

this sophisticated class of ML inspired by the human brain. This is a new opportunity in 

the procurement world (Sievo, 2019). 

Natural Language Processing 

Anyone who has used devices that appear to be able to understand and act on 

written or spoken words, such as translation apps or personal assistants like Amazon’s 

Alexa, is already familiar with Natural Language Processing (NLP)–enabled AI. NLP is a 

set of algorithms for interpreting, transforming, and generating human language in a way 

that people can understand (Sammalkorpi & Teppala, 2019). Speech soundwaves are 

converted into computer code that the algorithms understand. The code then translates 

that meaning into a human-readable, precise response that can be applied to normal 

human cognition. This is performed by semantic parsing, which maps the language of a 

passage to categorize each word and forms associations using ML to represent not just 

the definition of the word, but also its meaning in context (Raghaven & Mooney, 2013). 

Figure 6 depicts this categorization and analysis process in the context of a procurement 

contract. 
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Figure 6. Semantic Parsing in Procurement. Source: Sievo (2019). 

 

Robotic Process Automation 

Robotic Process Automation (RPA) is not AI; rather, it is an existing process that 

has been advanced by AI, as explained in the third section of this paper. RPA is defined 

as “the use of technology by employees in a firm to set up computer software or a robot 

to capture and interpret current applications for processing transactions, altering data, 

triggering reactions, and communicating with other digital systems” (Institute for Robotic 

Process Automation and Artificial Intelligence [IRPA & AI], 2019, p. X). When used 

correctly, robotic automation offers numerous benefits because it is not constrained by 

human limitations such as weariness, morale, discipline, or survival requirements. 

Robots, like their human creators, have no ambitions. Working harder will not get you 

more money or get you promoted, and being permanently turned off will have no effect 

because robotic automation just duplicates the practical parts of the human intellect, not 

the underlying nature of mankind (Zarkadakis, 2019). (Note, however, that ML relies on 

an incentive system to make judgments about positive or negative reactions.) 

A future AI-enabled RPA option is for a machine to learn how to control the source 

of positive reinforcement fully independent of the rules required to achieve its aim. Things 
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that survive develop to do so because of positive reinforcement from their environment 

and the fact that they continue to act in a way that is considered survivable. This should 

be taken into account in any future AI efforts, and especially in the case of why a human 

must always be present when final judgments are made. Regardless of whether AI 

systems have a perfect track record or not, they should not be entirely trusted. 

Technology Trust 

The Turing Test was created to test the capabilities of AI, as detailed in the third 

section of this report. Google developers designed Duplex, a spoken-word NLP tool, in 

2018 to interface with its AI assistant. Its goal is to make phone calls on behalf of humans, 

converse with other humans, and respond to inquiries in a natural manner, all while 

sounding human (Leviathan, 2018). The algorithm can search for the information required 

as if it were a human searching for it on Google, for example. The AI assistant then calls 

a restaurant, for example, to schedule an appointment with the assistant’s human. After 

being given oral information from a person hearing the orders, the software stutters, 

pauses, and elongates certain vowels as though it has to think about what it is saying, 

and responds with other recommendations within its limitations. 

The authors questioned an AI NLP program named 1558M about one of the 

research issues twice for the purposes of this paper, and the machine responded with an 

unusual “opinion” of a negative and cautionary character (Figure 7). This tool was built to 

allow users to experiment with Open AI’s new ML model (King, 2019). What’s noteworthy 

about these responses is that they are all original, which means a search of the phrases 

turns up no copies. However, the language and tone make them sound like they’re coming 

from a knowledgeable source, with just enough small evidence on the topic to be credible. 

However, the program does not finish its last phrase, making it unfinished but noteworthy. 

Clearly, such AI capabilities has a lot of potential for helping someone integrate with the 

DoD. 
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Figure 7. Two Separate Results From an AI Called 1558M. Source: King (2019). 

 

Explainable Reasoning 
One of the barriers to AI adoption is the ability to explain how the algorithm arrived 

at its conclusions, which is necessary for auditing (Knight, 2017). It would be irresponsible 

to utilize AI for military or financial goals without the capacity to track how judgments were 

made. Figure 8 depicts how AI currently categorizes data. The AI programs that produce 

the required outcome come up with their own means of navigating multiple layers of 

complexities to develop output for the plethora of training data that went into creating the 

program. 

Fortunately for the DoD, the Defense Advanced Research Projects Agency 

(DARPA), which is already ingrained in the defense ecosystem, is leading the charge on 

explainable AI research (Gunning, 2017). DARPA 

has taken the lead in pioneering research to develop the next generation of 
AI algorithms, which will transform computers from tools into problem-
solving partners. DARPA research aims to enable AI systems to explain 
their actions, and to acquire and reason with common sense knowledge. 
DARPA R&D produced the first AI successes, such as expert systems and 
search, and more recently has advanced machine learning tools and 
hardware. DARPA is now creating the next wave of AI technologies that will 
enable the United States to maintain its technological edge in this critical 
area. (Defense Advanced Research Projects Agency [DARPA], 2019) 
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The mechanics of how a Deep Neural Network navigates its trained data to identify 

different photographs can be seen in Figure 9. Photos can be used to train an AI software, 

and associations of these trained data can then be used in the neural network to classify 

an input and eventually reach a conclusion. As a result, if the DoD decided to pursue 

human–machine cooperation in areas like contracting, its organic system would enable it 

to do so. 

 
To identify the output layer, the Simple Neural Network uses a set of input data that only passes 
through one hidden layer. To better identify the output data, the Deep Learning Neural Network 
transmits the input data through numerous layers. The Deep Learning Neural Network goes 
through simple to more detailed layers of trained data that correspond with dog features to make a 
90% confidence classification that the picture is a dog and a 10% possibility that it is a wolf to 
classify input data to determine if the given picture is a dog. 

Figure 8. Simple Neural Network Compared to Deep Learning Network. Adapted from Golstein 
(2018), Parloff (2016). 



Acquisition Research Program 
Naval Postgraduate School - 26 - 

 
Figure 9. Visualization of Explainable AI. Source: DARPA (2019). 

 

Human–Machine Partnership 
Because sensor, information, and communication technologies generate data at 

rates faster than people can digest, comprehend, and act on, DARPA believes AI 

integration is vital as a human–machine symbiosis (DARPA, 2019). Machines are better 

at certain things, as they were throughout the industrial revolution, and using machines 

for those activities frees humans to become more productive in other areas. Separate 

areas of processing are where humans and machines flourish. Consider the following 

contrasts between computers and humans: calculate versus decide, compare versus 

make judgments, apply logic versus empathizing, unaffected by tiresome repetition 

versus preferences, deals with enormous data versus intuitional concentration on the 

most important (Darken, 2019). And, while AI is capable of performing some jobs on its 

own, it performs better when paired with a human partner. Without sufficient restrictions, 

AI is a trusting learning system that can be manipulated by evil actors. According to 

certain studies, AI can be misled in ways that humans cannot owing to human intuition. 

Other study has been able to deceive a self-driving car into thinking a benignly tampered 
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with stop sign was a speed limit sign (Figure 10), which would almost certainly result in 

collisions if the car were left unattended (Eykholt et al., 2018). 

Many people are aware of contemporary intelligent machine relationships that they 

may encounter on a regular basis without even realizing it. Google is the most popular 

search engine on the Internet because it gives more user happiness than its competitors, 

as stated with its other apps (Shaw, 2019). Google is so widely used as the primary 

search engine that many refer to it as “Googling” while looking for something online. This 

is a good example of humans engaging organically with a Bidirectional Encoder 

Representations from Transformers (BERT)–based AI system (Nayak, 2019). This is a 

strategy that trains a machine to answer a user’s inquiry based on the meaning of the 

words in the context of the question rather than on individual phrases. For example, when 

asking what time it is right before lunch, the user is really asking when they can eat; the 

outright answer would give the actual time, and the asker would deduce eating time, which 

was the underlying meaning of the question. Another example of human contact with 

intelligent machines is so-called self-driving automobiles. The user mostly sits in a 

supervisory role while the automobile takes over one of the most dangerous moments in 

their lives and handles all road tasks autonomously to drive (Darken, 2019). 
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An AI program in a self-driving car has trained data about a stop sign in its algorithm. When a target 
sign is seen in its environment, it references the trained data. As a test, researchers attached 
benign interruption markers on the sign, which confused the AI program to think the stop sign was 
a speed limit sign.  

Figure 10. AI System Interpreting a Stop Sign. Source: Eykholt et al. (2018). 
 

Contractors that rely on an AI system to make all of their decisions are vulnerable 

to deliberate misdirection by adversaries providing hostile information for competitive 

advantage or disruption. Fraudsters can learn how to manipulate computer algorithms, 

but only humans can assess the outcomes. AI software, on the other hand, can quickly 

extract data and explain contract content. It can swiftly gather and organize renewal dates 

and terms from a large number of contracts. It can help businesses evaluate contracts 

faster, organize and locate vast amounts of contract data more readily, reduce the risk of 

contract disputes and adversarial contract negotiations, and improve the number of 

contracts the business can negotiate and execute (Rich, 2018). 

Case Study of Private Sector AI Application to Contracting 
To compare DoD procurement options, we look at analogous situations in the 

private sector in the United States. Lawgeex is an example of a startup that is integrating 

AI into the procurement process in the private sector. An example contract component, 

the Nondisclosure Agreement (NDA), demonstrated that AI software could outperform 

U.S.-trained lawyers with an average accuracy of 94%, compared to 85% for humans 
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(Lawgeex, 2018). Large firms that rely on contracts to engage with partners, suppliers, 

and vendors have an 83% dissatisfaction rate with their organization’s contracting 

processes, according to the report (Lawgeex, 2018). Another example is Icertis, which 

provides services to huge and well-known firms like 3M, Johnson & Johnson, and 

Microsoft, to name a few (Icertis, n.d.-a). Icertis offers a cloud-based AI platform that 

learns from the client’s contracts, as well as control measures, to generate and help in 

contract setup, contract operations, governance, risk, and compliance, and reporting 

(Icertis, n.d.-a). 

The fact that business is more acclimated to putting professional papers on digitally 

accessible storage infrastructure, whether local hard drives or the cloud, makes this 

practical now, rather than when it was initially theorized decades ago (Betts & Jaep, 

2017). Nontechnical barriers to a completely automated contract review and analysis 

process now exist, such as the gathering of contract performance data, the disclosure of 

private contracts and their associated performance data, and changes in ethical limits on 

computer usage in legal practice (Betts & Jaep, 2017). The authors of these barriers also 

propose policy solutions to address them: begin using contract management software as 

a forcing function to create data in an AI teachable format, expand copyright protection 

for vendors to protect their intellectual property, and develop new rules to help mitigate 

AI risks so that it can work (Betts & Jaep, 2017). 

Cloud-Based AI 
We look at the concept of cloud computing to understand how AI may be 

disseminated throughout a system, update regulations, and learn from various human 

teachers in real time. When it comes to DoD technology adoption, the term “speed of 

relevance” is frequently used. The term “cloud” is used in the 2018 DoD Cloud Strategy 

to refer to an offsite physical IT infrastructure (Shanahan, 2018). This external 

infrastructure connects to a user’s personal computer through the Internet to access data 

servers that store information and run centrally managed operating systems like Microsoft 

Windows. This means that every user has the same software computing capacity and 

access to the most recent software, regardless of their organization’s IT professional 

talent or software budget. Organizations can have as much or as little access to what they 

need for projects as they need it, and they are unaffected by surges in demand or periods 
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of inactivity, which now add to the cost of DoD systems (Shanahan, 2018). DoD’s goal is 

to have AI-assisted rapid decision-making in a secure and visible data environment for 

increased operational efficiency. 

Data stored in an enterprise DoD cloud will be highly available, well-
governed, and secure. Data will be the fuel that powers those advanced 
technologies, such as ML and AI. This critical decision-making data will be 
made available through modem cloud networking, access control, and cross-
domain solutions to those who require access. Common data standards will 
be a key part of the Department’s methodology for tagging, storing, 
accessing, and processing information. Ensuring an enterprise cloud 
environment will increase the transparency of this data, and drive the velocity 
of data analysis, processing, and decision making. Leveraging advances in 
commercial cloud security technologies will ensure the Department’s 
information is protected at the appropriate level. (Shanahan, 2018, pp. 5–6) 
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Methodologies 

Knowledge Value Added (KVA) 

Benefits 
KVA is a way for measuring the value produced by a system and its subprocesses 

that are objective and quantitative. Analysts can compare the obtained ratios to the ratios 

from other subprocesses to establish their relative efficacy because each process’s value 

measurements employ ratio scale numbers. KVA translates all process outputs into 

common value units, resulting in a consistent productivity performance ratio across all 

operations. PMs can compare the value added by IT processes to the value generated 

by the human component. PMs can use these measurements to build meaningful ratios 

in their study of the program’s performance thanks to the scales. Return on knowledge 

(ROK; i.e., a process’s common unit outputs) is divided by the process cost necessary to 

produce the outputs, and for ROI calculations, the ratio is monetized outputs minus cost 

divided by cost. The ROKs and ROIs, which are always 100% associated, inform 

managers about the amount of value a process provides versus the amount of money 

invested to achieve that value. Unlike any other methodology, KVA assigns these figures 

to both the process and subprocesses, not only the company as a whole (as is done in 

standard, generally accepted accounting practice metrics used in standard financial 

ratios). 

Conducting a KVA analysis of a program will provide a PM with a clearer 

understanding of the value of the program’s operational components. While most firms 

utilize cost/schedule metrics to assess the success of a project or operation, ROK will 

provide them with additional value-based data to help them make better management 

decisions. The relative predicted baseline value of the program’s components can be 

determined using PMs. Knowing that a certain job or subprocess produces the same 

output value as another process but at a different cost can help you understand why the 

entire system is performing differently. As a result, experienced managers have the 

information they need to dedicate resources to specific program components that need 

improvement or should be used more frequently, resulting in increased value added. It 
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also enables for estimations of the potential value added of an AI system feature that was 

not originally planned for the project. 

While a KVA study can provide information to aid in program or project 

management, it does not necessitate significant changes to organizational structure or 

reporting systems. Without bringing complicated new measures into the system, the 

review can be carried out as part of standard reporting procedures. The learning time, 

process instruction (e.g., work breakdown structure [WBS] can be used as a surrogate 

for this technique), and binary query method are all dependent on data from the project 

description and requirements documents. To validate the accuracy of the presented data, 

a modest amount of hands-on measuring may be required. As a result, the analysis can 

be completed faster than other standard assessment approaches (e.g., activity-based 

costing), providing PMs with more timely access to relevant data. 

Challenges 
The value of the components that produce the outputs of the subprocesses will be 

quantified using KVA, which is a ratio-scale number. It does this, however, only with 

processes that have known a priori outputs. The intangible objects that occur within the 

human brain, such as creativity and imagination, cannot be quantified using this method, 

or any other method for that matter. In reality, because there is no formula for creativity, 

no present method can effectively quantify these types of intangibles within a process. 

Because the creative process cannot be learned or described algorithmically, these 

factors are not common to the ordinary user and hence cannot be specified using any of 

the KVA methods—learning time, binary query, or process description. Once creativity 

has been used to create an AI capacity, KVA can be used to algorithmically describe its 

productivity. KVA assigns a process’s current value, but it can’t forecast the value of 

potential future additional outputs unless they can be described using one of the KVA 

methods. 

Although KVA will supply ratio-scale data to assist in analyzing processes inside a 

program, the ratios are frequently only useful for comparisons between projects. 

Benchmarking the raw figures against other organizations or other divisions within the 

same organization will give a useful benchmark for assessing predicted ROK 
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performance. The resulting ROK, ROI measurements will be comparable among 

organizations (for business and nonprofit) that create diverse products or services, 

regardless of the language used to describe outputs. Because these output descriptions 

are in standard units, they can be viewed as a value constant across all processes, with 

the value of a component subprocess or core process determined solely by the number 

of outputs. The end outcome of any correctly completed research will yield similar ROK 

and ROI estimations, which is KVA’s ultimate purpose. 

Integrated Risk Management (IRM) 

To forecast when various projects will be completed, all organizations rely largely 

on project planning software. Completing projects on schedule, on budget, and to a set 

value is crucial to the effective operation of a business. Many factors can influence a 

timetable in today’s high-tech world. When it comes to technical capabilities, they 

frequently fall short of expectations. In many circumstances, requirements may be 

insufficient and require more elaboration. Tests might produce unexpected results, both 

good and harmful. Cost rises, timetable lapses, and value variations can all be caused by 

a variety of factors. In rare circumstances, we may be blessed with good fortune, and the 

schedule can be accelerated without jeopardizing the project’s productivity. 

Project time lines are inherently insecure, and changes are expected. As a result, 

we should anticipate changes and devise the best strategy for dealing with them. So, why 

do projects take so much longer than expected? The inaccuracy of timetable estimation 

is one of the reasons. The following discussion describes the flaws in standard timetable 

estimation approaches, as well as how simulation and advanced analytics can be used 

to remedy these flaws. 

It is crucial to first comprehend the IRM process and how the various 

methodologies are related in the context of risk analysis and risk management. From a 

qualitative management screening process to provide clear and concise reports for 

management, this framework contains eight separate steps of a successful and complete 

risk analysis implementation. The process was based on past successful risk analysis, 

forecasting, real options, valuation, and optimization projects in both consultancy and 
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industry-specific settings by the author. These phases can be completed independently 

or in order for a more thorough integrated study. 

The procedure can be broken down into eight easy steps: 

• Qualitative Management Screening 

• Forecast Predictive Modeling 

• Base Case Static Model 

• Monte Carlo Risk Simulation 

• Real Options Problem Framing 

• Real Options Valuation and Modeling 

• Portfolio and Resource Optimization 

• Reporting, Presentation, and Update Analysis (Mun, 2016a). 
 

Qualitative Management Screening 
The first stage in every IRM process is qualitative management screening. In 

accordance with the firm’s mission, vision, goal, or overall business strategy, 

management must determine which projects, assets, initiatives, or strategies are viable 

for further analysis, which may include market penetration strategies; competitive 

advantage; and technical, acquisition, growth, synergistic, or globalization issues. That 

is, the initial list of initiatives should be qualified in terms of how well they would achieve 

management’s objectives. When management frames the entire problem to be solved, 

the most important insight is often generated. The numerous dangers to the firm are 

identified and flushed out in this step. 

Forecast Predictive Modeling  
If historical or comparable data are available, the future is projected using time-

series analysis or multivariate regression analysis. Other qualitative forecasting methods 

may be employed instead (subjective guesses, growth rate assumptions, expert opinions, 

Delphi method, etc.). Future revenues, sale price, quantity sold, volume, production, and 

other key revenue and cost drivers are projected at this stage in the financial process. 

Time series, nonlinear extrapolation, stochastic process, Autoregressive Integrated 

Moving Average (ARIMA), multivariate regression forecasts, fuzzy logic, neural networks, 
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econometric models, Generalized Autoregressive Conditional Heteroskedasticity 

(GARCH), and other methods are examples of methodologies. 

Base Case Static Model  
A discounted cash-flow model is generated for each project that passes the initial 

qualitative tests, whether it is for a single project or numerous projects under 

consideration (KVA analysis uses the market comparables approach to monetize 

processes and activities). Using the anticipated values from the previous phase, a net 

present value is generated for each project using this model as the base case analysis. 

The traditional approach of modeling and forecasting revenues and expenses, then 

discounting the net of these revenues and costs at an appropriate risk-adjusted rate, 

yields this net present value. Here the ROI, as well as other profitability, cost–benefit, and 

productivity indicators are calculated. 

Monte Carlo Risk Simulation 
Because the static discounted cash flow only provides a single-point estimate, 

there is often little trust in its accuracy, especially given the significant uncertainty 

surrounding future events that affect expected cash flows. Next, Monte Carlo risk 

simulation should be used to better evaluate the actual worth of a project. The discounted 

cash-flow model is normally subjected to a sensitivity analysis first; that is, by designating 

the net present value as the outcome variable, we can vary each of the previous variables 

and see how the resulting variable changes. As they go through the model, revenues, 

costs, tax rates, discount rates, capital expenditures, depreciation, and other prior factors 

all have an impact on the net present value number. By tracing back all of these previous 

variables, we can change each of them by a predetermined amount and assess the effect 

on the resulting net present value. Due to its shape, the most vulnerable preceding 

variables are depicted first, in descending order of magnitude, on a graphical depiction 

that is frequently referred to as a tornado chart. With this information, the analyst can 

evaluate which crucial aspects are deterministic in the future and which are very 

uncertain. The uncertain important variables that drive the net present value and, thus, 

the decision are known as critical success drivers. For these critical success criteria, 

Monte Carlo simulation is an excellent fit. Because several of these critical success 

determinants are linked—for example, operational costs may rise in proportion to the 
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quantity sold of a particular product, or prices may be inversely associated to quantity 

sold—a correlated Monte Carlo simulation may be required. The majority of the time, 

historical data can be used to make these relationships. When you run correlated 

simulations, you get a lot closer to the real-world behavior of the variables. 

Real Options Problem Framing 
The dilemma now is what to do after quantifying hazards in the previous stage. 

The risk data gathered must be transformed into actionable intelligence in some way. So 

what, just because risk has been estimated as such and such using Monte Carlo 

simulation? And what do we do about it? The solution is to apply actual options analysis 

to mitigate these risks, value them, and position yourself to profit from them. The act of 

defining the problem generates a strategic map, which is the first stage in real possibilities. 

Certain strategic options for each project would have been obvious based on the overall 

problem identification that occurred during the initial qualitative management screening 

phase. The strategic options could include, for example, the ability to expand, contract, 

abandon, switch, choose, and so on. The analyst can then choose from a list of choices 

to investigate further based on the identification of strategic options that exist for each 

project or at each stage of the project. Real options are incorporated to projects to protect 

against downside risks and to profit from upswings. 

Real Options Valuation and Modeling 
The resulting stochastic discounted cash-flow model will have a distribution of 

values thanks to Monte Carlo risk simulation. As a result, simulation models, analyzes, 

and quantifies each project’s unique risks and uncertainties. As a result, the NPVs and 

project volatility are distributed. We assume that the underlying variable in real options is 

the project’s future profitability, which is represented by the future cash-flow series. The 

results of a Monte Carlo simulation can be used to calculate the implied volatility of the 

future free cash flow or underlying variable. Usually, the volatility is measured as the 

standard deviation of the logarithmic returns on the free-cash-flow stream (other 

approaches include running GARCH models and using simulated coefficients of variation 

as proxies). Furthermore, in real options modeling, the present value of future cash flows 

for the base case discounted cash-flow model is used as the initial underlying asset value. 
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Real options analysis is used to determine the strategic option values for the projects 

using these inputs. 

Portfolio and Resource Optimization 
Portfolio optimization is a step in the analysis that can be skipped. Because the 

projects are usually associated with one another, management should view the results as 

a portfolio of rolled-up projects if the analysis is done on numerous projects. Viewing them 

individually will not offer the actual picture. Because businesses don’t just have one or 

two initiatives, portfolio optimization is essential. Because certain projects are 

interconnected, there is potential for risk hedging and diversification through a portfolio. 

Portfolio optimization takes all of these factors into account to build an optimal portfolio 

mix because firms have limited budgets, as well as time and resource constraints, while 

also having needs for particular overall levels of returns, risk tolerances, and so on. The 

research will determine the best way to allocate funds across multiple projects. 

Reporting, Presentation, and Update Analysis  
Until reports can be created, the analysis is not complete. Not only should the 

results be communicated, but so should the process. A complex black box set of analytics 

is transformed into transparent processes by clear, simple, and exact explanations. 

Management will never accept outcomes from black boxes if they don’t know where the 

assumptions or data come from, or what kind of mathematical or financial manipulation 

is going on. Risk analysis presupposes that the future is uncertain, and that management 

has the authority to make mid-course corrections when these uncertainties or risks are 

resolved; the analysis is typically performed ahead of time, and therefore ahead of such 

uncertainty and risks. As a result, if these risks are identified, the analysis should be 

updated to integrate the decisions made or to revise any input assumptions. Several 

iterations of the real options analysis should be undertaken for long-horizon projects, with 

future iterations being updated with the newest data and assumptions. 

Understanding the processes required to complete the IRM process is critical 

because it reveals not only the technique itself but also how it differs from previous 

analyses, indicating where the traditional approach finishes and the new analytics begin. 
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Applying IRM: Schedule and Risk Management 
A list of tasks is usually the starting point for traditional schedule management. 

Following that, the tasks are ordered and linked from predecessor to successor for each 

task. They’re usually shown in the form of a Gantt chart or a network. The network 

diagram is the focus of our discussion in this section. After that, the duration of each task 

in the network is calculated. Even though we know from experience that this estimate 

should be a range of values, each task’s projected duration is provided a single-point 

estimate. As a result, the first error is relying on a single-point estimate. Furthermore, 

many people who make duration estimates try their hardest to put their best foot forward 

and give the most optimistic or best-case scenario. If we assume that the probability of 

attaining this best-case estimate for one task is 20%, then the probability of meeting the 

best case for two tasks is only 4% (20% of 20%), and only 0.8% for three tasks. There is 

simply an infinitesimal possibility of meeting the best-case timetable in a real project with 

many more tasks. The network is built and the various paths within the network are 

tracked after the job duration estimates have been created. Each of these path’s job 

durations is added together, and the one that takes the longest is designated as the critical 

path. 

Using example data, Figure 11 depicts a network and critical path (Mun, 2016a). 

The project completion date is calculated as the sum of task durations along the critical 

path. From the beginning to the finish of the network, there are four paths shown. With a 

total time of 22 days, Tasks 1-2-3-10-11 is the shortest/quickest path. Tasks 1-7-8-9-10-

11 is the next shortest path at 34 days, followed by path 1-4-5-6-10-11 at 36 days. Finally, 

the crucial path for this network is 1-4-8-9-10-11, which takes the longest at 37 days. 

Assume that this network of tasks is part of a bigger effort and that another effort 

upstream has gone over by a day. To get the entire effort back on track, a supervisor has 

requested a cut of the schedule by 1 or 2 days. Traditional schedule management has 

only one goal: to reduce the critical path’s longest duration item. Another option is to 

reduce the length of each task along the critical path. Let’s say we’ll employ the first 

strategy because it’s more focused, more likely to succeed, and causes fewer disputes 

on our team. As a result, we will wish to lower Task 8 from 9 to 10 days in order to shorten 

our timetable and satisfy our boss or customer. Let us quit the usual methods at this point, 



Acquisition Research Program 
Naval Postgraduate School - 39 - 

content with our efforts but eager to investigate alternatives. To improve project 

management, the next step is to look into simulation and risk analytics. We’ll use Monte 

Carlo risk simulations on each task’s predicted budget and schedule, resulting in a 

probabilistic and risk profile picture of the network’s cost and schedule. 

 
Figure 11. Complex Network Task  

 

Probabilistic Schedule Management  
If we accept that job durations can fluctuate, then schedule models should account 

for this uncertainty. A scheduling model can be created by defining a probability 

distribution for each task, which represents the probability of finishing the task in a certain 

amount of time. The complete range of probable project durations can then be forecasted 

using Monte Carlo simulation techniques. 

An appropriate probability distribution to employ to describe the uncertainty for the 

length of a work is a basic triangle distribution. It’s a perfect fit because when we ask 

someone to provide a range of duration values for a certain job, they often provide two of 

the distribution’s elements: the lowest and maximum durations. To complete the triangular 
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distribution, we only need to inquire or determine the most likely duration. Customers and 

supervisors alike appreciate the parameters since they are clear, intuitive, and easy to 

grasp. Other, more sophisticated distributions, such as the Beta or Weibull, could be 

employed, but there is little benefit, if any, because determining the estimated parameters 

for these distributions is prone to error, and the method of determination is not clearly 

explainable to the customer or employer. 

To obtain the most accurate estimations, we should consult numerous sources for 

estimates of the task duration’s least, most likely, and maximum values. We can talk to 

the contractor, the project manager, and the employees who are really doing the work, 

and then develop a list of time estimates. Historical data can also be used, although 

caution should be exercised because many initiatives are similar to previous projects but 

frequently contain numerous distinct aspects or combinations. Figure 12 might be used 

as a reference. Minimum values should indicate optimal resource consumption. Maximum 

values should account for significant issues, but it is not necessary to account for the 

absolute worst-case scenario in which everything goes wrong and the issues compound. 

Note that the most likely value is the one that is encountered the most frequently, but in 

most circumstances, it is less than the median or mean. The least, most likely, and highest 

values indicated in Figure 13 will be used for our example situation (see Figure 11). We 

may utilize Risk Simulator software to build triangular distributions based on these lowest, 

most likely, and maximum parameters by setting input assumptions. Figure 13 shows a 

column of dynamic duration values that was constructed by randomly selecting one 

sample from each of the corresponding triangular distributions. 
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Figure 12. Triangular Distribution 
 

The next stage is to use the scheduling network to determine the paths after the 

triangular distributions have been formed. From beginning to end, there are four paths 

through the network in the example problem presented in Figure 11. These pathways, 

together with their related durations, are depicted in Figure 14. The total duration of the 

entire schedule is the longest of the four paths. That figure would be designated as an 

Output Forecast in Risk Simulator. We are not concerned about critical path/near-critical 

path situations in probabilistic schedule analysis because the calculations automatically 

account for all path durations. 

We can now perform a Monte Carlo simulation in Risk Simulator to generate a 

schedule duration forecast. The outcomes for the example problem are shown in Figure 

15. Let’s go back to the numbers that the standard method produces. The project was 

supposed to be finished in 37 days, according to the original estimate. Based on the 

Monte Carlo simulation, we can predict the likelihood of completing the task in 37 days if 

we utilize the left-tail function on the forecast chart. In this situation, there is only an 8.27% 

chance of finishing in the allotted 37 days. This outcome demonstrates the old method’s 

second flaw: Not only is the point estimate wrong, but it also places us in a high-risk 

overrun situation before the work ever begins! The median value is 38.5 days, as 

illustrated in Figure 14. For most circumstances, some industry standards propose 

utilizing the 80% certainty estimate, which in the example problem translates to 39.5 days. 

 

 

Mode Mean 

Minimum Most Likely 

Maximum 

Optimal utilization of 
resources, no problems 
and Murphy stayed at 

home. 

Time and cost are more likely to overrun than to 
underrun. 

50% 
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Task 
# Task Name Min Likely Max 

Point 
Estimate 

1 Stakeholder Analysis 4.5 5 6 5 
2 Objectives Hierarchy 4.5 5 6 5 
3 Decision Metrics Development 5.5 6 7 6 
4 Functional Analysis 6 7 9 7 
5 Primary Module Requirements 7 8 10 8 
6 Primary Module Development 9 10 13 10 

7 
Secondary Module Functional 
Analysis 4.5 5 6 5 

8 
Secondary Module 
Requirements  9 10 12 10 

9 
Secondary Module 
Development 8 9 10 9 

10 Trade Studies 2.5 3 4 3 

11 
Final Development 
Specification 2.5 3 4 3 

 

Figure 13. Range of Task Durations 
 

Path 
1 

Time 
1 

Path 
2 

Time 
2 

Path 
3 

Time 
3 

Path 
4 

Time 
4 

1 5.78 1 5.78 1 5.78 1 5.78 
2 4.79 4 7.78 4 7.78 7 5.20 
3 6.16 5 9.22 8 10.05 8 10.05 
10 3.33 6 10.12 9 9.40 9 9.40 
11 3.76 10 3.33 10 3.33 10 3.33 

  11 3.76 11 3.76 11 3.76 
Totals 23.82  39.99  40.10  37.52 
Overall Total 
Schedule 40.10 

(Max of all the 
totals)  

 

Figure 14. Paths and Durations 
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Figure 15. Simulation Results 

 

Let us now return to the boss’s proposal to cut the entire schedule by 1 day. Where 

should we focus our efforts in order to shorten the overall duration? We don’t use the 

critical path when we employ probabilistic schedule management, so where do we begin? 

We can determine the most effective targets for reduction efforts using Risk Simulator’s 

Tornado Analysis and Sensitivity Analysis features. The tornado chart (Figure 16) shows 

which variables (tasks) have the largest impact on the overall timetable. This graph shows 

the optimal objectives for lowering the mean/median values. 

However, we can’t talk about mean/median without talking about variety. The 

Sensitivity Analysis tool identifies which variables (tasks) contribute the most to the overall 

schedule output variation (see Figure 17). We can observe that the variation in Task 4 is 

the primary contributor to the overall schedule variation in this situation. Another intriguing 

finding is that variance in Task 6, which is not on the critical path, accounts for roughly 

9% of the total variation. 

In this case, decreasing the schedule duration for Tasks 4, 8, and 9 would yield 

the greatest savings in terms of overall schedule length. Finding the root causes of the 

significant variation in Tasks 4, 6, and 8 would undoubtedly provide more insight into 

these processes. The variance in Task 4 could, for example, be due to a lack of 

manpower. Management activities could be implemented to devote workers to the 

endeavor and significantly minimize variation, reducing overall variation and improving 
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schedule predictability. Much more than merely asking the troops to minimize their work 

completion time, digging into the reasons for variation will lead to objectives where 

management interventions will be most beneficial. 

 
Figure 16. Tornado Analysis 

 

 
Figure 17. Sensitivity Analysis 
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We can also test other reduction strategies using the network schedule model. For 

example, under the traditional method, removing 1 day from Tasks 4, 8, and 9 would 

result in a 3-day reduction; however, if we reduce the Most Likely value for Tasks 4, 8, 

and 9 by 1 day and run the Monte Carlo risk simulation, we find that the median value is 

still 37.91, indicating only a 0.7-day reduction. This tiny decrease demonstrates the 

importance of addressing the variation. If we cut the variation in half, preserving the 

original lowest and most likely values but lowering the maximum for each distribution, the 

median falls from 38.5 to 37.91, which is roughly the same as lowering the most likely 

values. Taking both steps (lowering the most likely and maximum numbers) lowers the 

median to 36.83, giving us a 55% chance of finishing in less than 37 days. The most 

effective measure, according to this study, is to reduce the most likely value and overall 

variation. 

To get to 36 days, we’ll need to keep working through the list of tasks in the 

sensitivity and tornado charts (Figure 16 and Figure 17), one by one. If we apply the same 

procedure to Task 1, lowering the most likely and maximum numbers, we can complete 

the project in 36 days with a 51% certainty, and in 37 days with a 79.25% certainty. The 

entire schedule’s maximum value is lowered from more than 42 to less than 40 days. 

However, to reach 36 days at the 80% certainty level, significant managerial efforts would 

be required. 

Use the best-case numbers while managing your production time line. If we choose 

the most likely values, or even worse, the maximum values, production employees will 

not strive to achieve the best-case results, resulting in a self-fulfilling prophecy of delayed 

completion. When budgeting, we should plan for the most likely outcome while still 

acknowledging that the real world is full of risk and uncertainty. Provide the values that 

correspond to the 75% to 80% assurance level when explaining the schedule to the 

customer. Customers prefer predictability (on-time completion) over potentially faster 

completion with high risk in most circumstances. Finally, accept that the “worst-case” 

scenario is possible and devise contingency plans to safeguard your company in the 

event that it does happen. If the “worst-case”/maximum value is unsatisfactory, make the 

necessary changes to the process to reduce the outcome’s maximum value to a level that 

is acceptable. 
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There is just one response for the scheduled completion date when using 

traditional schedule management. Each activity is given a time estimate, which is only 

correct if everything goes as planned, which is unlikely. Thousands of trials are done to 

explore the range of possible schedule duration results with probabilistic schedule 

management. A time estimate distribution is assigned to each task in the network, which 

appropriately reflects the task’s uncertainty. To more effectively replicate real-world 

behavior, correlations might be entered. The output forecast distribution will appropriately 

reflect the whole range of probable outcomes because critical and near-critical paths are 

automatically considered. We can improve the effectiveness of our management efforts 

by using tornado and sensitivity assessments to limit schedule fluctuations and, if 

required, reduce the total timetable with high certainty. 

Complex Tasks in Projects 
The cost and schedule risk modeling is more difficult to describe and compute in 

complicated projects when there are nonlinear bifurcating and recombining paths (Figure 

18). For example, we can see that after Task 1, future tasks can be done in parallel in the 

Project A tab of the basic example (Tasks 2, 3, and 4). Tasks 3 and 4 are then recombined 

to become Task 8. The user can design such complicated path models by simply adding 

tasks and integrating them in the visual map, as shown in Figure 18, with the appropriate 

icon tools. When the Create Model button is pressed, the software will generate an 

analytical financial model for you. That is, you will be taken to the Schedule & Cost page, 

where you will find the same configuration as before for entering data for this complicated 

model. The user will just need to conduct the relatively simple duties of creating the 

complex network path connections since the complex mathematical connections will be 

formed automatically behind the scenes to run the computations. 



Acquisition Research Program 
Naval Postgraduate School - 47 - 

 

Figure 18. Complex Path Project Management 

 

 

Figure 19. Complex Project Simulated Cost and Duration Model With Critical Path 
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Critical Path Models (CPM) in Projects with Complex Tasks 
Following the execution of the model, the complex route map displays the project’s 

highlighted critical path (Figure 18), which is the one with the greatest potential for 

bottlenecks and delays in finishing the project on time. Figure 19 shows the exact path 

specifications and odds of being on the critical path (e.g., there is a 56.30% probability 

that the critical path will be along Tasks 1, 3, 8, 10, 13, 14). 

The portfolio view (Figure 20) evaluates all projects and implementation paths for 

the user to make a better and more informed risk-based decision if there are many 

projects or prospective project path implementations. For comparison, the simulated 

distributions might be overlaid (Figure 21). 

Users can see all of the projects that were modeled at a glance in Figure 22. Each 

project modeled can be a distinct project or the same project modeled with multiple 

assumptions and implementation choices (i.e., different means of carrying out the project) 

to assess which project or implementation option path makes the most sense in terms of 

cost and scheduling risks. The “Analysis of Alternatives” radio button selected allows 

users to see each project as a stand-alone project in terms of cost and schedule: single-

point estimate values, simulated averages, and the probabilities that each of the projects 

will have (as opposed to Incremental Analysis, where one of the projects is selected as 

the base case and all other projects’ results show their differences from the base case). 

Of course, the Risk Simulation analysis provides a more complete picture of the 

uncertainties and risks in the project, allowing users to see all of the simulation statistics 

and choose which confidence and percentile values to display. The simulated cost and 

schedule figures are also charted using bubble and bar charts in the “Portfolio Analysis” 

tab for a visual representation of the important outcomes. 
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Figure 20. Portfolio View of Multiple Projects 
 

Comparing and Overlaying Simulated Results 
Figure 21’s overlay chart displays the relative spreads, position, and skew of 

numerous projects’ simulated costs or time lines stacked on top of one another to 

highlight their relative spreads, location, and skew of the findings. We can plainly see 

that the project whose distribution is on the right has a significantly higher cost to 

complete than the project on the left, as well as a somewhat larger level of cost spread 

uncertainty. Finally, Figure 22 depicts a comparison of the simulated project results using 

the AoA method. Figure 22 depicts the simulated outcomes, while Figure 20 depicts the 

expected value of the project costs and time line (not simulated, static, single-point 

estimations). 
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Figure 21. Overlay Charts of Multiple Projects’ Cost or Schedule 
 

 
Figure 22. Analysis of Alternatives 
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Benefits 
IRM is a great tool for improving the quality of information accessible while making 

decisions because it combines multiple proven strategies. When applied to the 

examination of potential initiatives and investments, dynamic Monte Carlo simulation 

depicts the risks connected with the projects in a more realistic manner than traditional 

methodologies. Static forecasting based on assumptions and past performance provides 

a restricted view of a project’s potential outcomes. Decision-makers can acquire a more 

full understanding of the project’s uncertainty by running thousands of simulations or 

more while altering the variables within realistic possibilities. Increasing the amount of 

relevant and correct information available to managers will increase the quality of the 

leadership team’s decisions. 

IRM takes a methodical strategy to deal with AI investments. Following the eight 

phases is a simple procedure that aids in the quantitative decision-making process. 

While the functions within each phase can be sophisticated and require additional 

training, the overall process is straightforward and simple to follow. Because the IRM 

approach is fully defined, it may be integrated into existing procedures without requiring 

a complete reengineering. IRM uses data from existing approaches and expands the 

data to improve the scope of a project’s evaluation. The true possibilities are quantified, 

and the outcome diverges from what is expected. The systemic design of IRM allows 

different members or teams to finish the process without having to re-collect data and 

start from the beginning. Analysts should be able to continue the procedure from any 

point in the approach after completing IRM training. 

Real options analysis provides managers with the probability of certain project 

results, allowing them to select the best way to proceed with a project. Real options were 

offered not only at the start of the program, with three different routes in which the 

program may go, but also at each stage of the chosen strategy. By drafting a contract 

that allows an organization to modify its course of action as more information becomes 

available, the corporation can reduce losses from failing programs while maximizing 

gains from initiatives that are succeeding or showing promise. Fortunately, many viable 

possibilities are already ubiquitous in DoD buys. Contracts are frequently canceled by 
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the government due to changes in budgetary policy, inability to satisfy requirements, or 

other factors. Including other genuine choices in contracts isn’t an entirely new concept. 

The use of common units to make strategic decisions about a system’s value is a 

core component of the IRM methodology. Leadership can see a statistical range 

reflecting the potential value of a project by incorporating KVA values into the static and 

dynamic IRM models. The present values of the genuine option strategies were 

calculated using the market comparable prices produced by the value analysis. The 

effectiveness of most other ways is determined only by the program’s cost, presuming 

that the value is inherent owing to the needs that were produced. IRM can provide 

decision-makers with information on both the expenses of a proposed investment in an 

initiative and the value of that project in comparable units.  

Challenges 
While IRM is a very useful analytical tool, it does have some disadvantages. The 

method’s multiple techniques might be challenging to master (Housel et al., 2019a). To 

do a full study, it is a hard process that necessitates a solid understanding of both finance 

and statistics. While computing tools can help with the analysis, the inputs are more 

involved than simply typing a few numbers into a program and receiving the results. An 

analyst can generate the essential information to enable decision-makers access to the 

proper comparison material to make an informed decision if they have a good 

understanding of the core principles, enough training, and the right tools (Housel et al., 

2019b). The amount of data gathered during statistical analysis can be overwhelming. 

The simulations and their conclusions appear to originate from a quantitative black box 

to individuals without a strong statistics background (Mun, 2016b). If decision-makers 

don’t comprehend why an analyst makes a recommendation, it’s simple to dismiss the 

advice and fall back on tried-and-true methods. To tackle this possible issue, create 

detailed and complete reports for management review, as well as knowledgeable 

presentations to allay worries about the unfamiliar procedures. To take advantage of 

actual options, they must be reviewed before a decision is made to implement any of 

them. When writing contracts, leadership must consider the future option to ensure that 

certain alternatives stay available. Some alternatives, such as expanding, can be 

implemented very easily by building a new project based on the first investment’s 



Acquisition Research Program 
Naval Postgraduate School - 53 - 

success. However, if the contract does not include relevant conditions, project managers 

may not have as much flexibility in abandoning the project. Vendors must be willing to 

accept the possibility of subcontract cancellation when they are not at fault, which may 

increase the cost of completing a task. Managers must perform a careful study of which 

prospective options may be exercised in the future before signing contracts with vendors, 

due to the potential increased cost associated with contracting genuine options. 

IRM, like all financial forecasting, makes projections based on previous data. 

Decision-makers can gain more insight from predictions that incorporate current 

information rather than relying just on historical trends. Meteorologists, for example, 

compile weather forecasts from a variety of sources: Current weather conditions are 

monitored using Doppler radar, satellites, radiosondes (weather balloons), and 

automated surface-observing systems (National Oceanic and Atmospheric 

Administration [NOAA], 2017). The data from multiple sources is run in models based on 

known historical patterns for the region using numerical weather prediction (NOAA, n.d.). 

Knowing the present conditions is just as crucial to a meteorologist as knowing the past 

models (NOAA, n.d.). Similarly, the models would deliver even more precise information 

if the project analyst could add pertinent information that is up to the minute (or to the 

requisite quality). Because of previous projects with historical data, outsourcing, lowering 

manning, and retaining the current structure all offer statistics that could be used in 

simulations. Despite the fact that this weakness is not exclusive to the IRM technique, 

executives should be aware of it in any financial forecast. 

Finally, the DoD does not currently reward PMs who reap the rewards of risk. The 

risk framework in DoD acquisitions is intended to reduce project costs and schedule 

overruns. DoD contracts are structured in such a way that they do not incentivize vendors 

or the project as a whole to improve their capabilities or performance. When a for-profit 

company invests in an initiative that may fail, it does so because the potential upside 

gain outweighs the risk of failure. For example, if an aircraft’s design target is to attain 

250 knots and the design threshold is 200 knots, the budget will be allocated to the 

threshold rather than the objective. Unless the PM is able to reallocate resources 

internally, the program will not be able to meet its objectives. The acquisitions process 

considers the cost of achieving the goal rather than the worth of the goal. Performance 
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is rewarded in for-profit businesses, which is evaluated by revenue. The DoD’s implicit 

surrogate for revenue is cost reductions, which has a different value than improving a 

project’s worth. Acquisitions by the DoD, on the other hand, are only made when the 

negative implications have been mitigated to the maximum extent practicable. The 

upside risk is unimportant to the PMs; all that matters is that the program is finished on 

time and on budget. Although it is still important to look at how potential projects fit into 

the DoD’s broader collection of acquisitions and current assets, the contract structure 

limits certain of IRM’s portfolio optimization features. 

Comparison of Key Attributes 

The type of methodology to use should be determined by the nature of the project 

at hand, including the level of commitment required from the organization, the 

organization’s desire to align strategic goals with the project, the methodology’s 

predictive capability, the flexibility required, and the amount of time available. While 

others in the business must understand concepts in order to comprehend status reports, 

EVM just requires the management team to track the project’s cost and schedule against 

the baseline because there is no predetermined goal alignment with the organization. 

While the CPI and SPI can assist in estimating the ultimate cost and schedule, EVM has 

no true predictive potential because it is assumed that the schedule would follow the 

baseline regardless of historical performance volatility. In EVM, sticking to the baseline 

is critical, and altering requirements can substantially affect the baseline, lowering the 

methodology’s effectiveness. For an AI project with its many unknown components and 

capabilities a priori, setting up, monitoring, and reporting the cost/schedule performance 

of each work item inside the WBS can be a time-consuming and costly operation. 

To assess the value of a process or component output, KVA simply requires the 

KVA analyst and the process owner, who serves as the SME supporting the requirement 

to match the project with an organization’s productivity goals. They can model the 

present baseline as-is process ROK and compare it to the proposed to-be process model 

ROK using this approach, resulting in a straightforward forecast of the improvement 

between the models. Because KVA can be used with any description language that 

defines process outputs in common units, analysts can choose the method that is most 
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helpful for the system in question, allowing for flexibility. This analysis may be conducted 

quickly, with a rough assessment available in a few of days. To assess how a project fits 

into an organization’s portfolio, the project’s present value (PV), and potential real 

possibilities, IRM requires organizational leadership, portfolio and project managers, and 

the analyst. IRM gives a prediction of a project’s anticipated performance by analyzing 

and simulating alternative situations, allowing managers to build in flexibility via genuine 

options at the right spots within the project. Assuming that the data required for the 

analysis are available, the process can be done quickly. 

Methodologies in AI Acquisition 

As previously stated, each methodology has strengths and weaknesses that 

make it more appropriate for certain applications than others. The iterative nature of 

software development is the most difficult aspect of adopting EVM when gaining AI. To 

be most successful, EVM requires well-stated, specific requirements for intermediate 

phases. While software program outputs are well specified, the methods required to 

produce the software are not, causing challenges when estimating cost and schedule. 

EVM can adequately monitor the progress if the software is not complex or comprises of 

well-known operations. Integrating software and hardware is also difficult with EVM since 

there are various elements of the program that must be merged to achieve the objectives, 

requiring additional debugging and recoding. When used to manage the physical 

production of systems or infrastructure, EVM is more efficient. It can track the cost and 

schedule progress of software work packages, but it’s not as good at determining their 

worth. 

Any IT system can use KVA to offer an objective, ratio-scale measure of value 

and cost for each core process and its subprocesses or components. Managers can then 

examine productivity ratios information, such as ROK and ROI, using the two factors to 

determine the efficiency of a process in relation to the resources utilized to create the 

output. This can assist the manager in deciding how to allocate resources for system 

updates or estimating the future value of a system that is being purchased. Managers 

can iterate the value of system real options analysis using simulation and other ways by 

combining KVA and IRM data. IRM can also use past data to evaluate risks and 
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anticipate performance probability for metrics of potential success for programs and 

program components. It is a tool that can help with investment strategy and can be used 

to acquire any form of AI. It is not, however, intended to assist in the procurement of an 

AI program or in determining how to meet the program’s specific criteria. 

Summary 

The scope, capabilities, and limitations of various AI systems are demonstrated 

by examining the benefits and challenges of the proposed approaches. It also aids in 

determining which areas and phases of the Defense Acquisition System life cycle. The 

following section offers suggestions based on the findings. 
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Conclusion 

Simply put, how might certain advanced analytical decision-making processes be 

applied in the acquisition life cycle to supplement existing procedures to ensure a 

successful acquisition of AI technologies? 

As previously stated, EVM is the sole program management methodology that the 

U.S. government requires for all DoD acquisition initiatives worth more than $20 million. 

Regardless of this necessity, EVM is a methodology that offers a systematic approach 

to IT acquisition through program management processes that can assist in keeping an 

acquisition program on track and below cost estimates. However, there are substantial 

drawbacks to utilizing EVM for AI acquisitions, the most prominent of which is that EVM 

was not built to manage AI acquisitions that follow a highly iterative and volatile course. 

Organic AI acquisitions necessitate a high level of flexibility in order to deal with the 

unknowns that surface during the development process, as well as value-adding 

opportunities that were not anticipated. Furthermore, EVM lacks a uniform unit of value 

metric that would allow typical productivity metrics like ROI to be calculated. When a 

program’s worth is determined by how closely it adheres to its initial cost and schedule 

projections, the program’s performance may suffer in terms of output quality when 

intended program activities become iterative, as in the development of many AI 

algorithms. EVM is not designed to recognize disproportionate increases in value if an 

AI acquisition program is going toward cost and schedule overruns, but the ensuing value 

added of the modifications to the original requirements offers disproportionate increases 

in value. 

To address EVM’s shortcomings in AI acquisitions, the methodology should be 

combined with KVA and IRM, which can be useful during the EVM requirements and 

monitoring phases by ensuring that a given AI acquisition is aligned with organizational 

strategy and that a baseline process model has been developed for establishing current 

performance prior to the acquisition of an AI system. After the AI has been obtained, a 

future process model that forecasts the value added of incorporating the AI can be used 

to set expectations that can be tested against the baseline model. IRM can be used to 

anticipate the value of strategic real choices flexibility that an acquired AI might bring, 
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allowing leadership to choose the alternatives that best meet their desired goals for AI in 

defense core activities. 

KVA should be utilized in AI acquisitions because it gives an objective, 

quantitative measure of value in common units, allowing decision-makers to better 

comprehend and compare different strategic options based on their value and cost. Only 

by employing KVA to determine the value inherent in the system can AI systems be given 

an ROI. PMs benefit from this information since it gives them a more full picture of the 

current and future systems’ performance. 

When obtaining AI through the Defense Acquisition System, it’s also a good idea 

to use IRM. The risk estimates associated with the components and subcomponents of 

a program, in terms of potential cost overruns, value variabilities, and schedule delays, 

can be improved by using dynamic and stochastic uncertainty and risk-based modeling 

techniques to predict likely and probabilistic outcomes. Analyzing multiple real-world 

options in the context of the models’ outputs will assist PMs in making the best decisions 

possible when defining the future of a program. 

As is now done, PMs should only employ EVM throughout the EMD phase. EVM, 

on the other hand, will operate best in hardware manufacturing solutions with fully mature 

technology prior to the program’s start. EVM is not well suited for AI development 

because many AI acquisition efforts involve upgrading current technology and 

generating new software solutions to meet requirements. Nonetheless, PMs can employ 

a variety of agile EVM strategies to complete projects on time and on budget if the proper 

procedures are done when establishing the baseline. Requirements must be broken 

down into tiny, simply defined tasks, with risk and uncertainty elements appropriately 

accounted for in the timetable. Other approaches, such as KVA and IRM, should be used 

in conjunction with EVM to guarantee that these elements are based on verifiable 

measurements rather than assuming how much more time, money, and value may be 

required to execute complex tasks. 

KVA and IRM will assist in determining the value of the various options evaluated 

in the AoA process during the MSA phase. KVA can objectively assess the value of the 

current, as-is system as well as potential future systems. Then IRM can leverage other 



Acquisition Research Program 
Naval Postgraduate School - 59 - 

aspects like cost, value, complexity, and schedule to value the alternatives in terms of 

their respective parameter values. As the chosen solutions mature during the TMRR 

phase, a revised KVA analysis will reassess initial estimations and provide a predicted 

ROI that may be incorporated into an IRM risk and actual alternatives analysis for the AI 

solution before entering the EMD phase, if necessary. 

Limitations and Future Research 

This study looked into whether the various methodologies—EVM, KVA, and 

IRM—could be used to improve AI acquisition inside the Defense Acquisition System. 

Future research should look at how these approaches interact with or improve other 

acquisition system components. This comprises the specific procedures of JCIDS and 

PPBE, as well as the interactions between JCIDS, PPBE, and the Defense Acquisition 

System as a whole. Certain approaches, such as IRM, may be more useful when applied 

to the full acquisition process rather than just a part of it. Future research might also look 

into how these diverse methods could be utilized to acquire things that aren’t related to 

AI or IT. 

The study focused on AI as a whole, rather than individual types of AI. Future 

research should look into whether acquisition methods, strategies, and methodologies 

differ depending on the type of AI being acquired. This is particularly relevant when it 

comes to AI and its subsets. Based on their complexity, intricate nature, developing 

technology, and amount of risk, ML, intelligence with a specific emphasis or field of 

specialty, and general or universal intelligence will likely use different ways in the 

acquisition process. 

Another area of prospective investigation is the use of these approaches in 

commercial AI acquisition. The focus of this study was solely on the application of the 

strategies in the DoD acquisition process. Commercial entities, on the other hand, face 

challenges when adopting extensive or complicated AI and IT systems, especially when 

the technologies are used at the enterprise level. Further research may reveal whether 

these same techniques could be useful to private-sector decision-makers during the 

development, adoption, or customization of commercial AI. The hype cycle for AI and 

automation is on the rise, as highlighted in the literature, and the demand to buy such 
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technology is as relevant for the private sector as it is for the DoD. In addition, the current 

pandemic triggered by Coronavirus Disease 2019 (COVID-19) has compelled a 

permanent shift in society toward permanent distant labor. Because these trends are 

expected to continue in the near future, more automation tools will be needed to support 

this workforce. As part of the Fourth Industrial Revolution and Industry 4.0, these 

developments could be investigated for their consequences. 

Finally, this study looked at only the most promising approaches out of a wide 

range of options. Other program management tools, management philosophies, analytic 

tools, or other approaches, as well as their benefits while adopting AI, should be 

investigated in future research. While the approaches investigated were chosen because 

they are likely to enhance the process and assist EVM improvements, other systems 

may be more appropriate in certain phases or provide additional benefits not seen in this 

study. 
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