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Abstract 
System-of-Systems (SoS) capability emerges from the collaboration of multiple systems, which 
are acquired from independent organizations. Even though the systems contribute to and benefit 
from the larger SoS, the data analytics and decision-making about the independent system is 
rarely shared across the SoS stakeholders. The objective of the research presented in this paper 
is to identify how the sharing of datasets and the corresponding analytics among SoS 
stakeholders can lead to an improved SoS capability. Our objective is to characterize how 
appropriate use of data sets may lead to deployment of different predictive (predicting an 
outcome from data) and prescriptive (determining a preferred strategy) analytics and lead to 
better decision outcomes at the SoS level. We build and demonstrate a framework for this 
objective, based on extensive literature review, which utilizes appropriate predictive and 
prescriptive methodologies for SoS analysis. Additionally, we propose to utilize machine learning 
techniques to predict the achievable SoS capability and identify sources of uncertainty derived by 
sharing partial datasets. A case study demonstrates the use of the framework and prospects for 
future improvements. 

Introduction 
Acquisition in the context of System-of-Systems (SoS) presents additional challenges 

due to the independence of stakeholders, which is a characteristic trait of this category of 
complex systems. Data availability can be affected by uncertainty due to the independence of 
stakeholder decisions. Therefore, an approach is necessary which is suitable to understand how 
different SoS scenarios in acquisition can be addressed with appropriate strategies to minimize 
the risk due to uncertainty. The use of predictive analytics to model expected behavior of 
variables of interest, combined with prescriptive analytics which will support adequate decision-
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making in the presence of uncertainty, constitutes a first step to address the difficulties in SoS 
acquisition. However, it is often important not only to identify best practices to address specific 
scenarios, but to be able to assess patterns that characterize different types of problems. We 
therefore propose to utilize machine learning techniques to assess achievable SoS capability 
that can be achieved by sharing pertinent datasets and to prescribe the information links 
between systems to enable this sharing. This combination of predictive, prescriptive, and 
machine learning methods is the foundation to our acquisition support framework.  

We use a case study to demonstrate the use of the framework and to identify future 
steps. Previous research used a Decision Support Framework (DSF), developed by researchers 
at Purdue University, to simulate and analyze a fictitious multi-domain battle scenario, where the 
different stakeholders do not agree on the relative weight of the different achievable SoS 
capabilities. This example did not make use of predictive and prescriptive methodology and 
addressed only uncertainty due to different stakeholder objectives. The case study in this work 
models an acquisition problem for an Urban Air Mobility service, where a stakeholder entering 
the market faces uncertainty in population commute data because of partial information on 
potential customers and competitor market strategies. Here we use predictive (regression 
modelling) and prescriptive analytics to provide support towards the decision-making and locally 
optimal acquisition, after properly modeling the interactions due to the dynamic nature of this 
SoS problem. This framework is then leveraged to conduct multiple experiments with varying 
scenarios for stakeholders to play out, in order to build a data set on which machine learning 
algorithms can be applied to extract key dependencies and factors in the market space. These 
insights then favor acquisition decisions to build an SoS.  

Background of Research and Literature Review 
Acquisition in a System-of-Systems Context 

System-of-Systems (SoS) capability emerges from the collaboration of multiple systems, 
which are acquired from independent organizations. The systems within an SoS serve two 
purposes: one is to meet their own independent objectives, and the second is to contribute 
some capability to the SoS from which all constituents can benefit. In recent decades, the fields 
of machine learning and data analytics have found widespread application in system design and 
acquisitions. It is unanimously understood that any organization acquiring a complex system 
employs some form of data analytics to assess a system’s independent objectives. Even though 
the systems contribute to and benefit from the larger SoS, the data analytics and decision-
making about the independent system is rarely shared across the SoS stakeholders.  

Characteristics of SoS (Maier, 1998) make them quite different from simple systems and 
the resulting behavior of a SoS is often unpredictable just by knowing its constituent parts, due 
to the interactions between those parts. Given the interdependencies in SoS, when considering 
acquisition, it is important to recognize the stakeholders, resources, operations, policies, and 
economics not only of one system, but of the entire SoS. Uncertainty and possible hidden 
information are common in SoS acquisition, and since the SoS capability is a multi-faceted 
enterprise, it is hard to formulate a single set of mathematical equations that would cover all 
cases. Therefore, in this work we develop research towards an information-centric framework 
that helps inform early-stage decisions on enterprise level.  

Important context for our work comes from the ambitious goals put forth in both defense 
and commercial sectors for Digital Engineering (DE) and its related components in various 
engineering functions, such as Model-Based Systems Engineering (MBSE) for the SE domain. 
DE and MBSE pursue the use of digital models at every phase of acquisition. Within this 
context, the overarching goal of our framework is to examine the impact that data features (e.g., 
survey categories, types of variables, ownership/privacy of data, etc.) have on the type and 
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effectiveness of predictive and prescriptive analytics that can be employed and how the 
outcome can be shaped differently by examining the connectivity of data sets. This is 
particularly important for SoS acquisition where these data sets exist at the local system level 
but may not be shared at the SoS/enterprise level or vice versa. Our objective is to characterize 
how the sharing and the connectivity of data sets may lead to deployment of different predictive 
and prescriptive analytics (due to data access) and lead to better outcomes at the SoS level.  
Overview of Data Analytics 

Predictive data analytics provides methodologies to anticipate and predict outcomes by 
collecting and utilizing prior information (Joseph & Johnson, 2013; Rehman et al., 2016; Waller 
& Fawcett, 2013). Although using data to guide decision-making has been around since the 
Babylonian times, where data was recorded on tablets to predict harvest (Lo & Hasanhodzic, 
2010), a major shift in the ability to reason over large amount of data emerged in 1940s with the 
advent of computer development, storage, and machine learning techniques. For application in 
complex systems, early usage of analytics can be traced back to the 1940s and ’50s when data 
analytics models were used to predict outcomes for the behavior of nuclear chain reactions in 
the Manhattan Project and the weather forecasting using the ENIAC computer (Lynch, 2008). 

Prescriptive data analytics, on the other hand, aims to provide an ability to 
generate/prescribe the best courses of action based on given information which may be 
obtained from a predictive data analytic outcome. Starting around World War II, the need to 
optimize courses of actions stimulated the development of operations research field, which in 
the proceeding decades led to Analytics 1.0 for introducing data-based decision making in 
organizations. As the capabilities of computing and machine learning evolved to handle 
structured and unstructured large data sets (also known as Big Data), Analytics 2.0 became the 
new paradigm across most large enterprises such as Google and Amazon (Davenport, 2013). 
Today, the Big Data landscape is shaped by the volume, variety, velocity, and veracity of data 
(known as the big four Vs of data science) and organization’s ability to include this Analytics 3.0 
in the decision-making process has become fundamental to its success and profitability. It will 
not be a generalization to state that most successful organizations employ some form of 
Analytics 3.0 for business and product development.  

For SoS acquisition and capability development, deployment of Analytics 3.0 provides a 
unique challenge where the individual organizations contributing the constituent systems 
individually employ a suite of predictive and prescriptive analytics tools. However, these 
analytics and the underlying data sets are rarely shared across the SoS stakeholders. Given 
that the SoS capability emerges from the collaboration of otherwise independent systems and 
considering the ever-increasing need of interoperability between systems for transitioning 
towards DE and MBSE, there is an imperative to connect the data sets across SoS for holistic 
Analytics 3.0 capability deployment. Previous work (summarized in the Machine Learning 
Techniques and Application in the DoD and First Steps from Previous Work: Optimal Acquisition 
with Uncertainty on Objectives sections) established the significance of utilizing Machine 
Learning techniques and predictive and prescriptive analytics to address uncertainty in SoS 
acquisition.  
Machine Learning Techniques and Application in the DoD 

This research builds upon previous work (Raz et al., 2020) which analyzed the use of 
Machine Learning techniques in DoD applications. Table 1 summarizes the findings from Raz et 
al., 2020, describing various Machine Learning methodologies, their assumptions, and 
applications in DoD research.  
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Table 1. Summary of ML Methodologies 

Method Key Features Assumptions DoD Reference 
Supervised Learning 

Linear 
Regression 

Fits quantitative/categorical predictors 
and continuous response to regression 
line using OLS  

Linear parameters, constant error 
variance, independent error 
terms, errors are normally 
distributed, random sample of 
observations, no multi-
collinearity 

Moore and White 
III (2005) 

Ridge 
Regression 

Modification of linear regression that 
uses L2 norm when multi-collinearity 
assumption in linear regression is 
broken 

Standardization of predictors, 
linear parameters, constant error 
variance, independent errors  

Huang and Mintz 
(1990) 

Lasso 
Regression 

Used as a variable reduction or feature 
selection technique that shrinks some 
predictor coefficients to exactly zero to 
reduce overfitting from the linear 
regression model 

Model has sparsity, 
irrepresentable conditions (Zhao 
& Yu, 2006) 

Wang and Yang 
(2016) 

Binary Logistic 
Regression 

Models the log odds (using logit link) of 
a categorical binary outcome variable 
as a linear combination of 
quantitative/categorical predictors 

Independent observations and 
errors, binomial distribution of 
response variable, linearity 
between logit of response and 
predictors 

Apte et al. (2016) 

Support Vector 
Machine 

Uses a linearly separable hyperplane to 
classify data into two classes 

Independent and identically 
distributed observations, margin 
is as large as possible, support 
vectors are most useful data 
points  

Wei et al. (2006) 

Artificial Neural 
Networks 

Model consisting of interconnected 
nodes that receive inputs and return 
outputs based on an activation 
function 

Independence of inputs Brotherton and 
Johnson (2001) 

K-Nearest 
Neighbors 

Used to classify data points based on 
class that appears the most among 
neighboring points (classification) or 
average of classes (regression) 

Similar inputs have similar 
outputs (Weinberger, 2018)  

Xiao et al. (2006) 

Naive Bayes 
Classifier 

Uses Bayes theorem to calculate 
probabilities of a class response and 
selects the class with highest 
probability as the output 

Predictors are conditionally 
independent of each other given 
the response 

Freeman (2013) 

Decision Tree Algorithm that recursively and 
iteratively partitions the data into 
homogeneous subsets to identify a 
target outcome 

Entire training set is at root node, 
quantitative predictors must be 
discretized 

Apte et al. (2016) 

Unsupervised Learning 

K-means Use to identify homogeneous clusters 
in a data set 

Clusters sizes are similar and 
spherical in form 

Zainol et al. 
(2017) 
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Different stakeholders might use different Machine Learning techniques for prediction 
and decision making. In the presence of stakeholder independence, it is important to recognize 
what information is available and what information will be at least partially hidden (thus causing 
uncertainty), and then choose appropriate techniques to deal with the uncertainty. When the 
uncertainty is only on the desired objectives of stakeholders, we can design experiments to treat 
multiple cases and run predictions based on possible different choices of the stakeholders. 
However, when the uncertainty is due to multiple, external factors (for example, competitors’ 
decisions, stakeholder preferences, and fluctuation of the market, as shown in Figure 1), simpler 
predictive analytics are a better choice. Predictive analytics will provide baseline scenarios for 
subsequence application of prescriptive analytics, which can support educated decision-making 
that will cause robust decision based on the expected scenarios made available by the 
predictive analytics. 

 

 
Figure 1. Conceptual Problem to Identify Impact of Data-Set Connectivity 

 

First Steps from Previous Work: Optimal Acquisition with Uncertainty on Objectives 
A precursor to this work, an application on a Naval Warfare Scenario (Raz et al., 2020) 

demonstrated the use of a Decision Support Framework (DSF) to assess optimal acquisition 
where multiple stakeholders might not agree on System-of-Systems-level objectives. The DSF 
identifies optimal portfolios of systems that, accounting for operations constraints, budget 
limitation, and uncertainty on capabilities, provide the best SoS performance.  

Since in this case the uncertainty is due to different interpretation and preferences about 
mission requirements and objectives, the DSF has been simply used to run multiple scenarios, 
each one having a different combination of preferred SoS-level objectives. The resulting optimal 
portfolios of systems have then been compared to identify common occurrences of certain 
systems in optimal portfolios for any given budget limitation and risk acceptance. At the same 
time, these results identify parts where additional information might be required to support 
optimal decisions (for example, when the difference in preferred objectives results in extremely 
different optimal portfolios).  

Figure 2 shows the different combinations of weights, representative of the importance 
given by different stakeholders to various SoS-level objectives in the Naval Warfare scenario. 
Figure 3 shows pareto fronts of optimal portfolios providing weighted SoS-level performance 
(vertical axis) based on budget (horizontal axis). The different lines represent cases from Figure 
2, i.e., different stakeholder preferences and different weights given to SoS-level objectives.  
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Figure 2. Test Runs with Variation in Weight Distribution 

 

Some stakeholder decisions result in higher SoS-level performance, and different budget 
levels cause different set of weights (and the resulting optimal portfolios) to provide better 
performance. We can therefore notice that any uncertainty in SoS capability preferences affects 
the resulting performance of the SoS portfolios. Since its point on the pareto frontier 
corresponds to a different portfolio of systems, we can compare the optimal portfolios to identify 
common systems and to assess areas where further information might be needed, if available. 

Cases Air Superiority Naval Superiority Reconnaissance
1 0.8 0.1 0.1
2 0.7 0.2 0.1
3 0.7 0.1 0.2
4 0.6 0.2 0.2
5 0.6 0.3 0.1
6 0.6 0.1 0.3
7 0.5 0.1 0.4
8 0.5 0.2 0.3
9 0.5 0.3 0.2

10 0.5 0.4 0.1
11 0.4 0.5 0.1
12 0.4 0.4 0.2
13 0.4 0.3 0.3
14 0.4 0.2 0.4
15 0.4 0.1 0.5
16 0.3 0.6 0.1
17 0.3 0.5 0.2
18 0.3 0.4 0.3
19 0.3 0.3 0.4
20 0.3 0.2 0.5
21 0.3 0.1 0.6
22 0.2 0.7 0.1
23 0.2 0.6 0.2
24 0.2 0.5 0.3
25 0.2 0.4 0.4
26 0.2 0.3 0.5
27 0.2 0.2 0.6
28 0.2 0.1 0.7
29 0.1 0.1 0.8
30 0.1 0.8 0.1

Weights



Acquisition Research Program 
Department of Defense Management - 211 - 
Naval Postgraduate School 

 
Figure 3. Variation in Pareto Frontiers Across the Cases 

 

Optimal Acquisition with Uncertainty on External Factors 
In this application, we consider much less “controllable” sources of uncertainty, and lack 

of information due to external factors. We model a scenario of Urban Air Mobility (UAM) in the 
Dallas, TX region, where a new stakeholder plans to participate as a provider of UAM services. 
The new provider has access (possibly limited) to data from the past that can suggest how 
many passengers would be willing to use UAM services. However, these data present some 
degree of uncertainty about the future, due to the many factors that can affect the number of 
passengers. Furthermore, the new stakeholder might not be fully aware of the decisions of 
competitors, which would affect the quota of available market to which the new stakeholder 
would have access. Predictive and prescriptive analytics, together with the use of Machine 
Learning, can support decision making in this context. 

We model the expected user traffic in this transportation SoS by looking at previous 
years’ data from the North Central Texas Council of Governments (NCTCOG). This is data on 
total population travel frequency between home and work districts, therefore it represents the 
total number of travelers between different locations. We then need to predict the proportion of 
travelers willing to use UAM services as an alternative to driving or using public ground 
transportation. Travelers’ decision is affected by their income, the cost of commuting by UAM 
vehicles, and the perceived value of time. Figure 4, from Maheshwari et al. (2021) shows the 
process of comparison of UAM routes against ground transportation, when there are no 
potential competitors. This comparison gets specialized to each specific region of interest.  
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Figure 4. Alternative Routes of Travel from A to B: UAM Vehicles with Different Origins and Destinations 

and Ground Transportation 

 

Urban Air Mobility Scenario and Problem Setup 
Three regions in the Dallas-Fort Worth area (called A, B, and C in the results) are 

modeled in our study as potential UAM points of operation based on the NCTCOG data on 
population travel frequency. Figure 5 shows the location of vertiports for UAM in this study and 
the density of origins and destinations pertaining to travelers who would prefer UAM 
transportation. We model 6 routes operating between these three regions. Additionally, the 
stakeholder is provided with acquisition decisions for the type of UAM vehicles with varying 
seating capacity (1, 2, and 4 maximum passengers). These vehicles have different operational 
costs and different ticket price. The stakeholder decisions to build their UAM portfolio are 
motivated to maximize the expected total income per day. Our predictive model uses historical 
data from NCTCOG to predict the population travel frequency for 2022 for which the UAM 
network is being modelled as the acquisition problem. Since the NCTCOG data is quite sparse, 
we used simple linear regression models. We run an optimization problem with constraints on 
the maximum number of allowed flights per day and the maximum licensed number of vehicles 
for UAM. The decision variables are the number of acquired vehicles per type (seating capacity) 
per route. We extend the optimization to include the uncertainty in the predicted data, after 
running the predictive analysis with a 95% confidence interval.  

 
Figure 5. Location of Vertiports (Red Stars) in the Dallas–Fort Worth Area and Areas of Preference for 

UAM Transportation 
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Within this context, we also consider that UAM operators might be carrying on their 
activities in a competitive market, where other stakeholders are present. Based on the amount 
of available data concerning the travelers’ decision (in its turn, influenced by income, cost of 
commuting by UAM vehicles and perceived value of time), the presence of competition, and 
some degree of uncertainty, we again compute the expected optimal choices for UAM operators 
to compete in the market.  
Results—PredictiveAanalytics and Optimization 

In the first example, we assumed perfect information about the number of passengers 
willing to fly with UAM vehicles, based on their income, the alternative ground-based travel time, 
and the personal perception of the value of time. The only source of uncertainty in this case is 
due to the prediction of travel frequency for 2022, based on past travel data starting in the year 
2010. We also assumed perfect knowledge about the share of the market which is already 
taken by existing competitors. The income is based on ticket price (varying by route and type of 
vehicle) and on operational costs. We ran an integer linear optimization, where the decision 
variables are the number of vehicles per type per route, and the number of passengers actually 
flying with the stakeholder’s vehicles. Constraints exist on the maximum number of vehicles that 
can be acquired and on the maximum number of flights per vehicle per day on each route. 
Results of this optimization based on the expected values for flying passengers in 2022 are 
shown in Table 2. 

Table 2. Optimal Choices with Full Data Available and Prediction for the Year 2022 in the Dallas Area 

Route 1-passenger vehicles 2-passenger vehicles 4-passenger vehicles 

AB–BA 209 0 83 

AC–CA 31 160 0 

BC–CB 0 0 157 

Passengers per day 2522 3840 11448 

Income $ 1,954,910.73 

 

Results show that on two routes with more passenger availability, larger vehicles are 
preferable even if they produce less income per passenger. The intermediate-sized vehicle is 
present only on two routes (from A to C and from C to A), together with the small vehicle. The 
expected income is about $1.955 million. However, due to uncertainty, the actual income will be 
slightly smaller. We ran 1000 scenarios according to the expected distribution and using the 
optimal choice of vehicles, which resulted in an income of $1.893 million.  

As a first step towards the study of support for decision-making in SoS, we then ran a 
scenario where the actual market share is unknown. We assumed that 33% of the passengers 
are available to fly with the new stakeholder, which is only slightly different from the actual 
market share that we used in the first case (ranging between 30% and 45%). We also increased 
the uncertainty in the predictive phase. Despite the small differences, there are already changes 
in the choice of optimal fleet, as shown in Table 3. The routes AB and BA saw an increase in 
the number of small vehicles, while more large vehicles were acquired for the routes BC and 
CB. 
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Table 3. Optimal Choices with Partial Data Available and Prediction for the Year 2022 in the Dallas Area 

Route 1-passenger vehicles 2-passenger vehicles 4-passenger vehicles 

AB–BA 218 0 67 

AC–CA 22 160 0 

BC–CB 0 0 173 

Passengers per day 2488 3840 11832 

Expected income $ 1,956,211.60 

 

The expected larger market share along the routes BC and CB suggests an income 
slightly larger than the previous case. However, despite the very small differences, the presence 
of incomplete data causes suboptimal acquisition. When running 1000 scenarios according to 
the expected distribution of flying passengers, the resulting income is $1.858 million, lower than 
the income achieved with the optimal choice in the previous case and about 5% lower than the 
expected income. These results show how even just a small amount of uncertainty can have a 
large impact on the decision-making process and its outcome. 
Machine Learning to Enhance Prescriptive Analytics 

To further extend the stochastic optimization, it can be useful not only to know the 
results of optimization in different scenarios, but also to understand how the different inputs 
(which are the source of uncertainty) affect the output variables. We therefore trained a Neural 
Network, implementing 1090 scenarios with variable parameters, which modify the optimization 
problem. For each route and type of vehicles, the parameters include the maximum number of 
flights per day, the market fraction available to the new stakeholder, and the feasible gain 
margin (that is, how much the stakeholder is desiring to earn out of selling tickets. This needs to 
overcome the operational cost, but high prices of tickets will cause fewer travelers to choose 
UAM vehicles over ground transportation). 

Figure 6 shows a neural network trained in Matlab, where the inputs are different level of 
maximum number of flights per day, market fraction available, and feasible gain margin on 
routes AB and BA for vehicles with 1 and 2 passengers. The output variables are the result of 
the optimization with full data available and prediction for the flying passengers in 2022. 

 

 
Figure 6. Neural Network for the UAM Scenario in the Dallas–Fort Worth Area 

Figure 7 shows the result of the training of this partial Neural Network. Outliers are 
caused by the fact that this network is based on a partial number of inputs. However, the fit is 
good enough to utilize the network for prescriptive analytics and to quickly run analysis of a 
large number of scenarios with changing inputs. For example, Tables 4 and 5 show the 
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outcome of the Neural Network with different inputs for the parameters. When variables 
pertaining to market fraction and maximum number of allowed flights per day increase for 1-
passenger vehicles and decrease for 2-passenger vehicles, we can notice not only how this 
impacts the route directly affected by the parameters (AB and BA in this case), but also how the 
variables on available market share and desired gain margin, united with the number of 
passengers which will decide to use UAM vehicles, affects the choice of acquiring more 4-
passenger vehicles. Limitations of this approach and solutions to overcome the limitations are 
presented in the following section. 
 

 
Figure 7. Fit of Training Runs of the Reduced Neural Network for the UAM Scenario 

 
Table 4. Output of the Neural Network with Similar Values for Max Number of Flights Per Day, Market 
Fraction, and Gain Margin for 1-Passenger Vehicles and 2-Passenger Vehicles on Routes AB and BA 

Route 1-passenger vehicles 2-passenger vehicles 4-passenger vehicles 

AB–BA 245 151 129 

AC–CA 22 94 144 

BC–CB 2 41 105 

 

Table 5. Output of the Neural Network with Higher Max Number of Flights Per Day, Market Fraction, and 
Gain Margin for 1-Passenger Vehicles with Respect to 2-Passenger Vehicles on Routes AB and BA 

Route 1-passenger vehicles 2-passenger vehicles 4-passenger vehicles 

AB–BA 274 125 179 

AC–CA 24 159 221 

BC–CB 2 45 118 
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Conclusions and Future Work 
Building on top of previous research on the use of predictive and prescriptive analytics 

for acquisition in a System-of-Systems context, we expanded our framework that deals with the 
uncertainty derived from potential lack of data and information, to treat cases where the 
uncertainty is due to external factors and can heavily affect the outcome of decisions. The 
presence of incomplete data, together with uncertainty due to fluctuation of variables in the 
future and with the presence of independent stakeholders, can produce suboptimal choices in 
acquisition. Preliminary results showed promising directions for the use of predictive and 
prescriptive analytics to address this type of problems. An application to an Urban Air Mobility 
scenario in the Dallas–Fort Worth region was used for various demonstration purposes. First, 
we showed how decision-making in the presence of full information about some variables 
(fraction of market availability) while others are affected by limited uncertainty (prediction 
models for number of passengers willing to use UAM services based on income and perceived 
value of time) produce results very close to a global optimum in the choice of UAM vehicles to 
acquire. On the other side, even small changes in the availability of data about market 
distribution can cause suboptimal decisions. To alleviate the impact of uncertainty and to be 
able to analyze many scenarios, so as to support prescriptive analytics for decision-making, we 
propose the use of Neural Networks, that can be trained to provide insight into the dependency 
of variables of interest (in this case, acquisition decisions) on multiple inputs (in this case, for 
example, desired gain margin, available market fraction, and maximum allowed number of 
flights per day). This use of various Machine Learning techniques provides a first step into 
understanding the reasons for observed outcome, and therefore a step towards robust decision-
making in the presence of uncertainty in a SoS. However, we also propose various refinements 
for future work. First, in this example we trained a Neural Network with a subset of the inputs. 
The Neural Network is trained as a whole and, other than implementing some basic 
regularization, does not quantify the impact that each input variable has on the outputs and the 
variability of these input-output relationships. Therefore, the use of Uncertainty Quantification 
can greatly improve the approach to these problems, by providing quantitative measurements of 
the importance that each input variable has on the outputs. This, in turn, will provide information 
on critical areas where more information (or more caution) is needed. Further research also 
includes extension of the case studies, to include non-recurrent and recurrent costs, and to use 
stochastic optimization techniques as additional prescriptive methodologies in support of 
acquisition decision-making. 
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