
Acquisition Research Program
Department of Defense Management
Naval Postgraduate School

SYM-AM-22-074

Excerpt from the
Proceedings

of the
Nineteenth Annual

Acquisition Research Symposium

Acquisition Research:
Creating Synergy for Informed Change

May 11–12, 2022

Published: May 2, 2022

Disclaimer: The views represented in this report are those of the author and do not reflect the official policy
position of the Navy, the Department of Defense, or the federal government.

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943.

Acquisition Research Program
Department of Defense Management
Naval Postgraduate School

The research presented in this report was supported by the Acquisition Research
Program at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to
print additional copies of reports, please contact any of the staff listed on the
Acquisition Research Program website (www.acquisitionresearch.net).

http://www.acquisitionresearch.net/

Acquisition Research Program
Department of Defense Management - 218 -
Naval Postgraduate School

Tips for CDRLs/Requirements when Acquiring/Developing AI-
Enabled Systems

Bruce Nagy—is an applied Research Engineer at the Naval Air Warfare Center, Weapons Division
(NAWCWD) at China Lake California. His focus is on integrating game theory and machine learning to
create recommendation engines that handle complex, highly dimensional battle management scenarios.
He also uses causal learning techniques to provide explainable, statistically based solutions to
wargaming stratagem. When he served in the Navy, Nagy qualified as an Engineering Duty Officer. In
that capacity, Nagy developed statistically-based algorithms to enhance satellite communications. He was
also a technical troubleshooter for NRO and received honors for his efforts in recovering a failing national
defense program that jeopardized U.S. global security. In addition to his wargaming and machine learning
research, he is driving a joint effort to create standards that establish an appropriate level of rigor for the
acquisition and/or development of AI-enabled systems for deployment. He has received four degrees in
math, science and engineering, and has done postgraduate work analyzing brainstem to muscle group
neurology. [bruce.m.nagy.civ@us.navy.mil]

Abstract
The Department of Defense (DoD) is challenging Acquisition professionals to manage the
development of systems incorporating AI functions either as upgrades or new programs of record.
But, AI functions present unique challenges associated with requirements and subsequently
when creating a suitable Contract Data Requirements List (CDRL). The problem stems from the
ability to ensure the quality and quantity of training data sets which can limit the reliability of AI
performance. Currently, there is limited guidance regarding topics for discussion during an AI
requirements review or as to what AI related information should be required in CDRLs. However,
a recent investigation into the lack of AI development guidelines prompted a NOSSA-funded
project. Using an AI “sandbox” approach, a DoD representative program, involving AI/ML
algorithms supporting a mission planner with autonomous vehicle selection and navigation, was
used to determine realistic requirements specific to systems incorporating one or more AI
functions. As a result of their analysis, this paper presents contents for an AI Development Plan
(AIDP) to be part of a CDRL. Within the AIDP, measurements and new evaluation methods are
also offered, as well as questions and considerations to support quality AI development.

Common AI Acquisition and Development Issues
Issues facing the acquisition professional managing a program implementing AI are: (1)

heavy use of AI jargon where folks among the data science community can’t seem to agree on
common definitions, (2) a lack of understanding of the core workings of various AI algorithms
and thereby turning a function into a seemingly magical black box. However, once the
vocabulary is understood, I believe the acquisition professional is much further ahead. The core
workings of an algorithm require only an understanding of the mechanics without needing to go
into the detailed math, i.e., system engineering constructs in terms of DoD Architecture
Framework (DoDAF), Unified Modeling Language (UML), etc.—those are things that can be left
to AI software engineers. And finally (3) having confidence that the training data accurately
represents what the AI algorithm will experience during “stressful” deployment periods.

The first problem, less technical and more cooperative, can be solved by the program
sponsor and the prime contractor agreeing upon a common AI dictionary of terms. The
dictionary can be created by either the DoD, commercial sector or a self-created source. The
second problem, educating program participants in the basics of AI, is also a potentially solvable
issue through training. The third problem is the Achilles heel for anyone acquiring an AI-based
system. There is currently no “official” guidance on how someone involved in AI development
should view training data in terms of quality and quantity. Does it need to be created from “live”
operational environments or will M&S synthetic data be sufficient? Current work in this area

Acquisition Research Program
Department of Defense Management - 219 -
Naval Postgraduate School

demonstrates that AI training data issues cause a significant amount of redo work, cost
overruns, and schedule delays. M&S synthetic data has both pros and cons associated with its
use as training data. For the acquisition professional, knowing how to address these issues is
absolutely necessary. Because of the deficiency gap in AI policies, guidelines, and tools,
acquisition professionals, from PM, SE, and T&E, as well as system safety practitioners need
education/training regarding how to assess AI development to ensure confidence in the
behavior of current WD weapons programs implementing AI upgrades. Because of these
deficiencies and by direction of DoD, many working groups are attempting to understand AI’s
unique software requirements, architecture, design, code, and test without any reference as to
what works and what does not, instead are using ad-hoc approaches. This is dangerous!

Background to Determining Documentation Content
Naval Ordnance Safety and Security Activity (NOSSA) funded this research over a two

year period to investigate unique AI/ML policies, guidelines, tools and techniques to assess
safety in identified critical functions. The project, as shown in Figure 1, involved two
autonomous robots delivering packages, using an intelligent route planning system that
considered the degree of difficulty with the routes, including crime, weather conditions, and
human factors. The sandbox approach was used to mock-up an AI development process for the
purpose of creating AI system of systems analysis to examine process and requirements. From
this work, documentation structures became evident.

Figure 1. Operational Use Case

From this sandbox approach: (1) DoDAF and UML diagrams were created that identified
MSG, API and SQL protocol requirements, (2) detailed architecture and designs were reviewed,
and (3) software code was written, including a simulation program that modeled the use case
described above—this allowed for training data to be acquired consisting of five classes and 17
attributes. Using the sandbox development approach allowed for the creation of level of rigor
(LOR) tasks appropriate for each of the five stages. Through this analysis and development
process, LOR was created in the form of practical questions and considerations to rigorously
ensure AI/ML systems are built to have confidence in their functional behavior associated with
the five stages: (1) Requirements, (2) Architecture, (3) Algorithm Design, (4) Algorithm Coding,
and (5) Test and Evaluation. This paper focused on the requirements portion of this research as
described in various documentation formats.

Acquisition Research Program
Department of Defense Management - 220 -
Naval Postgraduate School

Contract Data Requirements List (CDRL)
A common CDRL approach is to list a Software Development Plan (SDP). However,

SDP’s have a wide range of content formats without a common structure. The DoD attempted to
create a standard but found it difficult. The closest standard as guidelines can be found in DOD-
STD-7935A, Military Standard: DoD Automated Information Systems (AIS) Documentation
Standards (1988). “These standards provide guidelines for the development and revision of the
documentation for an automated information system (AIS) or applications software, and specify
the content of each of the 11 types of documents that may be produced during the life cycle of
an AIS” (DOD-STD-7935A, 1988).

Many standards have come and gone, e.g., MIL-STD-498, DOD-STD-2167A, and DOD-
STD-1703, due to lack of flexibility. Issues like a standard focus on waterfall project
management styles, versus Agile type development, or not using modern software development
tools, such as Computer-Aided Software Engineering (CASE) tools.

The SDP goal is to determine the scope of a software development effort, with
guidelines in place to ensure quality development. However, based on history with regard to
software, it’s been difficult to create a one size fits all solution. A solution to this approach is in
using MIL-STD-31000 Technical Data Packages (TDPs), which allows for customized content
development. Another approach is in using DI-MISC-80508B, Data Item Description: Technical
Report-Study/Services 2006), which also allows for customization.

Due to this challenge, this paper recommends a separate document, an AI Development
Plan (AIDP), learning from common practices involved with customized SDPs, TDPs, and
Technical Report Studies. The AIDP focused on AI process and guidelines that follow a level of
rigor approach derived from the previously mentioned sandbox research. Therefore, the
suggestions are in the form of questions and considerations listed specifically to the topic
associated with various sections. The questions and considerations support an increased
confidence in the behavior of an AI system when deployed.

Tips for CDRL Documentation
Five types of AI focused documents will be discussed with an emphasis on content: (1)

AI Justification Report—3 Sections, (2) Best Practices Report—2 Sections, (3) Measurement
Report—3 Sections, (4) Test and Evaluation Readiness Report, and (5) Missing and Sparse
Class Tables—4 Sections. Each document type has a specific purpose as will be discussed.
These five types of documents comprise the AIDP.
AI Justification Report

Section 1—AI identification: Conduct AI Type Function analysis of the proposed
functions to determine if it includes an AI algorithm. If it is identified as an AI Type Function,
then the document types and related sections contained in this report are suggested.
The hypothesis is that a function is an AI Type Function candidate if one or both criteria are met:

• (Criteria 1—Data Approximations) The function requires the use of data approximations
to build/train its algorithm. Approximations can sometimes lead to inaccuracies. For
example, it might use a single value, like average speed. An algorithm might use
average speed to determine a time instead of the actual speeds encountered during
deployment. This could lead to a decision error. Another example of data approximation
which could also lead to decision errors is the use of text to represent values. For
instance, representing many altitudes by the word “high.” In this case, the data
approximation “high” represents an infinite number of altitude values above a certain
threshold. The function may be designed to make a decision when the data input states

Acquisition Research Program
Department of Defense Management - 221 -
Naval Postgraduate School

“high,” potentially causing a decision error. Simulations use data approximation to model
dynamics. AI algorithms might use synthetic training data sets, again potentially causing
algorithm performance errors. A common approximation data inaccuracy concern is
when training sets are synthetically generated. The concern is whether the data
generated is replicating “realistic” background noise. This type of data approximation
inaccuracy found in synthetic data has been noted as a main cause of an AI algorithm’s
poor performance when deployed. In game theory, the payoff tables are normally based
on mathematical approximations called expected utility functions (EUF). If an algorithm
uses a payoff table to make a decision, the EUF approximation might cause decision
errors.

• (Criteria 2—Data Samples) The function requires the use of data samples to
build/design its algorithm. For training, data normally consists of a representative subset
of all the data contained in a larger population. Sample representations of the larger
population can sometimes lead to inaccuracies. Subsets can be created from “live” or
synthetically generated (simulation) sources. If the function requires the use of synthetic
data that created the samples, the concern would be how much of the model
approximated “reality” and how much of the total population was synthetically covered
within the created subset? An example of using samples from “live data sources” would
be snapshots of images describing facial expressions. The concern is whether the
collected facial expressions within the training set represent all images that a person
might express over a period of time when deployed in a variety of situations. If the
subset of images collected of facial expressions do not adequately represent the
deployed experience, then the training of the algorithm is limited. Will this limitation
caused by the subset cause the algorithm to have performance issues? Another
challenge associated with creating adequate data sample representation is when
collecting information from experts or other authorities to create a decision tree. Decision
trees requires input and output rules. Normally only a subset of all possible input and
output combinations are used. Again, because only a subset is used, how well this
subset represents deployed input and output challenges will determine the algorithm’s
performance.

Section 2—AI Scope: Discuss and document a justification for the proposed use of the
AI algorithm vs. using a more traditional software, firmware or hardware technique. The goal is
to explain why an AI algorithm is a “better” fit to the functional requirement.
Verify that an AI/ML function is needed by asking the following questions:

• For Criteria 1, data approximations: Can the algorithm be traditionally built using data
approximations? Why or why not? A question to consider is, “Could another developer
create a different set of statistics under the same conditions?” If no, then maybe this
algorithm is not an AI Type Function. If yes, then there are data approximations and
determining how one approximation is better than another needs to be considered. As
an example, if a statistical model of the function was developed, how accurate were the
approximations used in creating the function. In other words, how close do these
approximations fit the physics of the real-world regarding operational deployment? How
accurate is the distribution? Another consideration is investigating if the data
approximation can be decomposed into greater detail, thereby reducing the size of the
approximation. The goal is to have accurate data approximations that will result in quality
training sets.

• For Criteria 2, data samples: Can algorithm be broken into subpopulations to allow
development of traditional code? Why or why not? Another question to consider is,
“What is the actual population size of the training set?” If the training set is equal to the

Acquisition Research Program
Department of Defense Management - 222 -
Naval Postgraduate School

actual population size, then the function does not need an AI approach and can be
handled traditionally. Consider the most basic ML algorithm, a regression line. If all the
points that will ever occur for this function are used on the scatter plot to approximate the
curve, why use a regression line? If all the ML algorithm inputs and outputs are known,
why use ML and not traditional code, i.e., if this, then that? Again, if traditional code can
address the needs of the function, then that should be the approach used. If the function
is based on simulation results creating data samples, then the concern is the “garbage
in, garbage out” issue—poor real world representative synthetic data will result in an
inferior model. The goal is to have comprehensive data samples that will result in robust
training sets.

Section 3—AI Autonomy: Discuss and document a justification for the AI algorithm’s
level of autonomy, i.e., lack of supervision. The goal is to explain why an AI/ML algorithm
requires the selected level of autonomy based on functional performance requirements and not
a lower level.

a) Document how the design can or cannot include human in the loop oversight or
traditional hardware/software technology acting as a guiderail/guard to provide checks
and balances.

b) If checks and balances are limited, provide documentation as to operational limitations
by:

1. Describe weaknesses of each AI/ML technique, e.g., expected success rate of the
function. For example, if AI/ML is built on data approximations (using AI Type
definition), how much bias will the data approximations add to the functional
outcome? Or, if AI/ML is built on data samples, how representative are the samples
to the population?

2. Determine how the training data is being generated, e.g., truth, synthetic,
combination. Are these sources valid? Why?

3. Where is the training data coming from? Is it enough? (Remember the more
sophisticated the AI/ML software, the more likely that it needs larger amounts of
training data)

4. Will an outside independent source review the training, validation and test data
created? Why or why not?

5. Will an outside independent source validate the success rate of the AI/ML function as
compared to other AI/ML functions used in industry? Why or why not?

Best Practices Report
Section 1: Modality Type

What Machine Learning Training Data modality type are you representing in your
deployed system and your data generation process? When creating training data, it is important
to understand the operational environment being represented in order to ensure adequate
development of the machine learning (ML) algorithms. The training data is either found from live
events or synthetically created to match the operational scenario that will be provided as input to
the ML algorithm. Therefore, the ML algorithm must learn how to perform under these
conditions. Three types of modality represent various operational environments that can be
encountered during deployment, where the type of modality defines how the ML algorithm
needs to be trained. Understanding ML training data modality is fundamental to developing a
reliable AI system (Nagy, 2021).

Acquisition Research Program
Department of Defense Management - 223 -
Naval Postgraduate School

ML Training Data Modality 1: This modality, shown if Figure 2, supports training data
sets that are based on an operational environment from multiple data sources, where each
source contains one or more attributes. The various sources of separate data attributes are
either found from live events or synthetic simulations created to match the deployed operational
scenario. Therefore, the input for the ML algorithm for training needs to replicate the input that
will be received during deployment.

Figure 2. Example of Modality 1 Receiving Attribute Values from Various Sources

ML Training Data Modality 2: Training data sets that are based on an operational

environment from a single data source, where the single data source contains multiple data
attributes, as shown in Figure 3. The one stream set of aggregated attributes is either found
from live events or synthetic simulations created to match the deployed operational scenario.
Therefore, the input for the ML algorithm for training needs to replicate the input during
deployment.

Figure 3. Examples of Modality 2 Training Requiring Images (a, b and c) or Fused Attribute Data (d)

ML Training Data Modality 3: Training data sets that are based on an operational

environment from a combination of multiple data sources, shown in Figure 4; each source

Acquisition Research Program
Department of Defense Management - 224 -
Naval Postgraduate School

contains one or more attributes from various sources and from a single source containing
multiple aggregated data attributes. It is a combination of Modality 1 and 2 that the algorithm
uses for categorization or regression.

Figure 4. Example of Modality 3, a Combination of Modality 1 and 2

Instances/samples comprising training sets are composed of a combination of attributes,

sometimes called features. When a feature is identified within an image, it is described as a
piece of information contained in the content of the image. In this case, the feature describes a
specific region of the image, which has certain properties, as opposed to another popular
definition of a feature, a single pixel in an image.

The aggregation of attributes can be contained in one source, e.g., a camera taking a
facial picture, or from many sources, e.g., various sensor inputs, such as radar and
communication links. In this paper, we will distinguish whether attributes are generated from one
or multiple sources based on their modality.

Adversarial ML is not considered a system safety issue, but does affect AI model
confidence. It is important to know that it introduces challenges in the behavior of an AI model.
Adversarial ML is modality dependent. Adversarial ML is most-times designed to cause an error
in the output of the AI model being targeted.

Based on modality design, how can the deployed AI model be exploited by an
adversary? Is this a consideration in Operational and Systems Requirements
Discussions/Reviews in terms of the behavioral confidence of the algorithm or training set
adequacy?

If Adversarial Networks/attacks become a consideration for any of the AI Functions
under review, then an analysis by the developer to support the concern should be provided that
includes describing how the balance between quality and vulnerability of the training set is being
achieved with some form of objective, measured precision.
Section 2: Dataset Structure

Part 1—Representation: Does the synthetic or live data represent all the training data
needed to train the algorithm to identify each label/class within the needed success rate?

Acquisition Research Program
Department of Defense Management - 225 -
Naval Postgraduate School

Examples of classes are various types of targets, described by a label, that are determined from
the output of the algorithm. Using data sets to train the algorithm to identify an object is a typical
ML process.

If not, how are classes being represented; are values being determined by using ML for
regression? This question relates to how classification or regression is accomplished. For
classification, algorithms can have two to many classes. For regression, then some form of
analysis is used to determine a number or range of numbers. It’s important to understand how
the algorithm needs to perform and what type of data is being used to train an algorithm to
perform adequately.

Note: A class, also referred to as target, label, or category, is what a categorization
algorithm labels an input. For instance, if only an image of a cat or dog is used as input/training
data for an ML algorithm, then the algorithm only has two classes either a cat or dog. To make a
determination, each class would normally have a threshold value that would have to be met. If
that threshold value is not achieved, by either class, then the AI model would fail to determine
the input. For example, if the input was a coffee cup instead of a cat or dog, the threshold value
would not be sufficient for either class and the input would not be determined.

Part 2—Fitness of the Data: Does each class have an appropriate number of attributes,
or values that can be learned by the algorithm for the class/number being determined? In other
words, has overfitting and underfitting been considered for each class/number with regard to the
quantity of attributes/values simulated/collected and does that quantity reflect real world
operations?

• Overfit. Indicates that there is an issue with the quality of the quantity of training data
used. Overfit occurs when the algorithm’s success is limited to a small amount of input
variations when compared to the original training data. Limited input variations mean that
as long as the input instance/sample closely matches an instance/sample of the training
data, then it will accurately categorize/approximate, otherwise the algorithm will likely
generate an error. Overfit states that it has a very low tolerance for input data that is not
close enough to the original training data input.

• Underfit. Indicates that there is a quantity issue with the training data used. Underfit
occurs when there is an insufficient amount of training data which causes missed
categorizing of the correct class/approximation.
Both indicate a poor level of performance. Therefore, how will it be determined that the

training data, attributes, or values within the instances used for categorization/regression, be
sufficient to maximize success for data inputs not in the original training set? Note: This
discussion must evolve around how the algorithm will be operationally deployed.

Part 3—Mission Alignment: How do we know that the synthetic or live data creating the
training data is aligned with the mission parameters?

• Was a traceability study performed to support adequate coverage?

• Have statistics been shown on the number of configurations available and the number
trained using data sources?

• How are we avoiding overfitting and underfitting based on training mixes and sets?

• Is the training data organized in terms of attributes to be able to represent missing and
sparse data occurrences from related sources?
These questions are a follow-on to the question in Section 3. Not only is the correct

proportion of training data needed, but the proportion must be in alignment with the reality of the

Acquisition Research Program
Department of Defense Management - 226 -
Naval Postgraduate School

system being deployed. In other words, what the algorithm will experience if involved in a
mission.

• How many operational use cases were created and then translated into training data
requirements?

• Were the data sources feeding the input to the AI adequately assessed and how does
anyone know?

• What intelligence sources were used and how reliable were those sources?
Creating a training mix means that the developer is assuming that the algorithm will

need to perform in an imperfect world, and some of the primary sources for the algorithm may
not exist. Were secondary sources considered or even tertiary sources? Primary, secondary,
and tertiary sources are considered mixes within the training set and can address the missing or
sparse data reality during deployment.

• Missing Data: This refers to the data input to the AI model. For our purposes, missing
data occurs when the model is expecting certain features but does not receive them
because of an issue with the data collection mechanism feeding the model. For
example, a sensor states a ship is moving at 1000 knots and therefore has been
considered erroneous data. In this case, velocity is considered missing, reported as an
empty field in the input stream. The missing data feature comes from some form of data
collection failure and can be represented in a field as a blank field, i.e., no data shown.
This causes a need for secondary or tertiary attributes mixes.

• Sparse Data: This refers to the data input to the AI model. For our purposes, sparse data
occurs when the model is expecting certain features but doesn’t receive them, but not
because of any issue with the data collection mechanism feeding the model. In other
words, sparse data occurs when the system is working but no data is available to fill a
field. An example of sparse data might be a fully functional radar system not receiving
any blips because there’s no target to reflect back. Most times sparse data will be
represented by a zero where as a blank field represents missing data. This causes a
need for secondary or tertiary attributes mixes.
Part 4—Mission Alignment: How are we ensuring that the algorithm being deployed,

after using training data, provides the correct answer when data input issues occur? This
question relates to understanding how the training data will be created/curated with regard to
potential deployment errors represented by the training data.

• Is analysis of the algorithm’s success rate a function of attribute availability within its
anticipated operational environment?"

• Will the training set represent the reality of data input issues during deployment? If so,
then how will the success rate be affected, i.e., will the success rate be assessed; before
errors, without operational issues, after errors are injected, or with operational issues?
Part 5—Oversight: Can other control entities (such as a human operator) be inserted

into the loop to reduce the autonomy? One way to answer this question is through
Interdependency Analysis (IA). IA allows an objective review to determine which function is best
performed by automation or a human operator to create an optimal relationship. The approach
helps to optimize performance and understand how best to reduce autonomy with human
oversight or guardrail/gate control of critical functions. Requirement content needed for an IA
analysis should include:

• Identification of AI enabled functions at the subsystem composition detail.

Acquisition Research Program
Department of Defense Management - 227 -
Naval Postgraduate School

• Identification of performers, both machine and human, involved with that function.

• Identification of the method(s) used to ensure the interaction between the human and
the machine in terms of observability, predictability, and directability.

• Description of the multiple paths through the key function where applicable.

• Description of how necessary metrics can be obtained to objectively support any
subjective determinations to reduce autonomy discovered through the IA process.

• IA failure walk through, including any failure modes associated with AI/ML enabled
functions.
Part 6—Sparse and Missing Data: There are three subparts to sparse and mission data

content questions and considerations.
Subpart A: What are the ratio requirements of sparse and missing data occurrences to

normal operations when creating training data from synthetic or live data?
Assuming that sparse and missing data are part of the training data, this question

focuses on an expected ratio of occurrence in an operationally deployed environment. If an
Instance consists of attributes that the AI algorithm is learning to analyze; and Sparse and
Missing data indicate noise in the attributes, making it more difficult for the algorithm to perform,
then what ratio of noisy instances make up the training data? This should be a ratio that can be
measured for validation and defined in a requirements document. It should not be left to the
developer or to chance. Once a ratio is determined, the developer should have confidence,
whether it be synthetic data or live data, that it will perform as defined.

Subpart B: Will there be secondary or tertiary attributes supporting the mission or sparse
data issues? In other words, if primary attributes are not available for algorithm analysis, will
less important attributes be available, e.g., background environment or habit factors? When
primary attributes are unavailable due to potential real-world issues, secondary or tertiary
sources can increase the success rate of an algorithm’s analysis. Therefore, they should be
considered when defining a training data ratio.

Something else to consider when determining secondary or tertiary attributes and
related types of ratios for:

• Modality 1: How are higher priority attributes that experience sensor malfunction,
message corruption and human input errors being mitigated by forcing mixes of lower-
level attribute training data to ensure the algorithm deals with “real” operational issues?

• For Modality 2: If there is corruption in parts of an instance, e.g., a blurred image,
especially containing higher priority attributes, are secondary and tertiary attribute mixes
of training data ensuring the algorithm can deal with “real” operational issues?

• For Modality 3: Are combinations of modalities 1 and 2, regarding training of the
algorithm, able to deal with “real” operational issues?
Subpart C: Will the architecture, design and code support sparse and missing data

management, or more specifically, will it filter or use a selection of less significant attributes to
do the calculations? Note: This question provides discussion regarding the mix of data and how
the architecture, design and code will support this mix.

• How will the effects of missing and sparse data be minimized within the architecture,
design and code, from a requirements point of view?

Acquisition Research Program
Department of Defense Management - 228 -
Naval Postgraduate School

• Will secondary and tertiary attributes be included in the training data, and if so, will
secondary and/or tertiary attributes be used as a way to deal with missing and sparse
data? If this isn’t considered and potentially included as a requirement, it may cause
poor success rate performance during deployment of the algorithm.
If this consideration becomes a requirement, implementation of an approach to deal with

this issue should be traced throughout the process of development.

• For Modality 1: Will sensor, communication link or human input content elements take
priority over the others to improve the success rate when training a ML algorithm under
normal to stressed operational conditions?

• For Modality 2: Which attributes, within the single data source, take priority for improving
the success rate when training the ML algorithm under normal to stressed operational
conditions?

• For Modality 3: What data source content is more significant, with regards to normal to
stressed operational conditions? When dealing with separate streams, which of the
following: sensor, communication link or human input content elements takes precedent,
for improving the success rate when training a ML algorithm under normal to stressed
operational conditions? When dealing with combined streams, which attributes within the
single data source are identified as primary, secondary and tertiary, regarding
importance for ML algorithm to improve success rate, under normal to stressed
operational conditions?
Part 7—Data Curation: What processes are being defined, to support data management

curation, to ensure that the ML algorithm provides accurate data input?
Data Curation. Is the organization and integration of data collected from various sources.

Data curation involves annotation, publication and presentation of the data such that the value
of the data is maintained over time, and the data remains available for reuse and preservation.
Data curation normally supports a targeted machine learning goal, where the organization is
based on the classification or regression needs of the algorithm.

• How does your data curation approach avoid “garbage in, garbage out”?

• What definitions will be used to constitute “garbage in, garbage out”?
 These questions ensure that the data curation process for handling data and the
creation of training data is understood at the requirements phase. The emphasis will be on
ensuring that the data curation process can determine, with some level of measurable certainty,
whether accurate data input is being achieved.

For all three modalities: What is the priority list (from highest to lowest) of attributes
being used for training? How much more emphasis is placed on the quantity of training data
variations with a higher priority than lower?

Part 8—Battle Complexity: How well does the particular ML algorithm support increased
battle complexity and how does that affect sparse and missing data issues?

Battle Complexity: A situation described by a series of events, caused by actions
between opposing participants, where the outcomes can be significantly affected by factors
categorized as: (1) “known-knowns” (facts); (2) “known-unknowns” (assumptions); (3)
“unknown-knowns” (absent data); and (4) “unknown-unknowns” (surprises).

Acquisition Research Program
Department of Defense Management - 229 -
Naval Postgraduate School

• “Known-knowns” (facts) are factors that participants depend on as “fact” to win the
engagement; these can include own participant’s technical capabilities, geo-spatial,
temporal situational awareness, interoperability, tactical actions and strategy pros/cons.

• “Known-unknowns” (assumptions) are factors that each participant needs to “assume”
about variations (of the facts) regarding battle conditions, these can include the third-
party involvement, weather forecast, kinetic and non-kinetic effectiveness, opponent’s
attack surfaces and related vulnerabilities, heroism and initiative on all sides, opponent’s
priorities, and difficulty in overcoming manmade and natural obstructions.

• “Unknown-knowns” (absent-data) are factors that cause a participant to be “absent of
data,” sometimes decision critical info; these factors can include human mistakes,
sensor failures and communication issues.

• “Unknown-unknowns” (surprises) are factors that will “surprise” participants during the
engagement; these include unforeseen technology and anything not anticipated in the
previous three categories.
Trust is gained through the LOR descriptions. For example, understanding the modality

of the training data (as facts); or as will be described in follow-on LOR descriptions, conducting
TSAT and StAR-n analysis to support variations to the input (as assumptions) and providing
missing and sparse data class tables (as absent-data). The challenge involves the inability to
prepare the AI model to handle unbound data issues (as surprises). Unbound data by its
inherent definition means that confidence in the performance/behavior of the AI model cannot
be predicted and therefore cannot be trusted.
Given the above definition, consider the following when discussing the topic of trust:

• Can we trust that the training data factually represents the real world when deployed,
e.g., use of correct attributes/features, noise/background, etc.?

• Can we trust that the assumptions regarding input variations from the training data are
within expected scope as not to cause an error in the output, e.g., miscategorization?

• Can we trust that the absence of data when needed to the AI model has been
adequately anticipated and compensated to maintain success rate?

• Even if the previous three answers are all “yes,” the AI model, by definition, is not trained
to handle surprise inputs, i.e., unanticipated, unbounded data! Historically, we can
always expect surprises in warfare because intel will never be 100% accurate, i.e.,
expect the unexpected. Unanticipated/unbounded inputs are known to cause the AI
model to have radical, undesirable failures. It is a noted limitation in deep network
algorithms, i.e., neural networks with many layers.
Autonomy and AI systems are designed to handle some level of “known-unknowns,”

based on the “assumptions” about the variation in the training data input, and are challenged
with “unknown-knowns,” relating to missing and sparse, “absent data” issues; but it’s the
“unknown-unknowns” that create the more significant concerns regarding “surprises” of
unwanted behaviors. In order to represent a realistic operational set of training data, complexity
of the deployed environment needs to be considered.

• How will this complexity be considered when synthetically creating or finding data to use
for training?

• How will the requirements be defined with regard to complexity?

• Will guard rails/gates be used?

Acquisition Research Program
Department of Defense Management - 230 -
Naval Postgraduate School

Measurement Report
Section 1: Dataset Quality

For each ML class, define requirements that rank the importance of attributes, i.e.,
creating a priority list, within each instance that the AI algorithm will be trained to recognize. This
ranking represents a baseline to determine if a quality training set is being used. As an aid to
determining requirements that rank the importance of attributes, a process might be to create
operational scenarios looking at nominal and extreme cases. Ranking must be done by class,
so the scenarios must be class based with a focus on attribute input to the algorithm.

As an example, a Training Set Alignment Test (TSAT) supports the requirements group
in ranking all attributes that will be used by each class. The approach allows the project to
assess the training data to determine if the initial ranking is statistically similar to the statistically
determined ranking of the training set. Statistical ranking determination is based on a number of
occurrences of each attribute within the entire training set. The result of comparing the initial,
required ranking to the statistically based ranking is calculated as a single numeric value. The
single numeric value represents how well the requirements group’s ranking matches the training
set compositions. For example, a number of 5.0 out of 10 indicates that the training set only
matches 50% of what was required in terms of attribute priority/importance. Having a 100%
match is unrealistic, but something above 50% or even 75%, a 7.5 score out of 10, might be a
reasonable expectation. The key is ensuring that the attributes within the instances of the
training set represent priorities for the algorithm to learn. Priority learning for an algorithm is
viewed as how often the attributes and their varying representations repeat. If training on a
facial recognition program has only a small percentage of instances that contain nose
variations, then the algorithm will not be sufficiently trained to handle and/or properly categorize
variations in noses.

• Are attributes for the algorithm ranked in order of priority?

• How does that compare with the actual training data?
These are important questions that need to be addressed and adding these

requirements becomes vital to the understanding of whether or not the algorithm is using a
quality training set?

Figure 5. Training Set Alignment Test (TSAT)

Acquisition Research Program
Department of Defense Management - 231 -
Naval Postgraduate School

Figure 5 is an example of a TSAT where a Design of Experiments (DOE) ranked a
series of 17 attributes supporting 5 classes, LT being a class in the TSAT example, as
compared to a series of Monte Carlo simulations that determined the ranking based on the
percent/frequency of simulations that used those attributes. The above score for the example is
8.3 out of 10, and would indicate attribute occurrence within the data set are aligned with
expected deployed priorities.
Procedure for calculation:

1. Determine a scale for grading from 1 to “m,” where “m” means greatest attribute
priority/significance based on operational deployed needs.

2. Identify attributes a1 to an to grade, such that “n” is the number of attributes being graded
out of r total attributes available. Therefore n ≤ r and n ≤ m, where grading ai with grade
“m” indicates ai (m) is the most important attribute based on operational needs.
Additionally, attribute grading range is (m-n+1) to m, consecutively, where lowest grade
indicates least operationally important (possibly DOE analysis and/or SME
determination).

3. Identify the n attributes that occur the most times in the training data. Using the same
scale “m,” grade attributes b1 to bn based which attribute occurred the most often within
the training set (this can be a statistical number, e.g., 70% of the time bi attribute was
used in simulations or 70% of the samples/instances were collected, e.g., images, that
contained attribute bi). Again, grade “m” indicates bi occurred the most and (m-n+1)
indicates bj occurred the least within the training set.

Section 2: Dataset Quantity
Once attributes are ranked in terms of priority, the next question should be, “Does the

ranking indicate a grouping of attributes based on the importance and availability of data during
a mission?” In other words, can ranking from (1 to m) represent primary attributes or more
specifically, are the key attributes that the algorithm depends on used? If so, then attributes
ranked (m + 1) to n represent secondary attributes. When some of the primary attributes are
missing, secondary attributes may be used as input for the algorithm to produce a more
successful categorization rate. This also means that a mix of primary and secondary attributes
are needed as part of the training data. It should be noted that primary attributes should occur
more often than secondary in the training data, based on what is most important for the
algorithm to learn.

Primary, secondary, tertiary, and etc., will be based on how often a grouping of attributes
are expected as input to the algorithm during deployment. If they were all considered primary,
what happens when there is missing and sparse data issues during deployment? Missing and
sparse data, by definition, means primary attributes were not available. Therefore, to support
realism, should secondary and tertiary attributes be considered? If considered, what should be
the ratio of primary to secondary and tertiary attributes? Can this be a requirement?

• Specifically, how will the priority and ratio of a grouping of attributes be determined and
how will it be used for testing?

Acquisition Research Program
Department of Defense Management - 232 -
Naval Postgraduate School

As an aid to determining priority and ration of a grouping of attributes, a process might
be to create operational scenarios looking at nominal and extreme cases. Warning, this is only
an optional starting point. The focus is on impact to the input attributes to the algorithm, i.e.,
mission or sparse data events. Manually developing even dozens of scenarios would not be
enough. Each scenario manually developed would likely needs fifty or more variations in
attribute values for algorithm training. For creating training data, total of all scenarios developed
should consist of ten to many hundred thousand variations, balanced by class, as will be
discussed. These variations need to be either collected, instances itemized attribute by attribute
or instances synthetically created with the goal of creating the desired ratios. For synthetic
generation, a Generative Adversarial Network (GAN) inspired approach provides a randomness
associated with the creation of large sets of data covering a range of potential issues that the
algorithm might encounter during deployment.

The reason why randomness is important is because of the inability to predict future
deployed engagement events. Randomness of attribute values within scenarios ensures greater
readiness to handle unknown future events. It is because tens of thousands of variations
increase the likelihood of the algorithm being trained to handle unanticipated deployed
situations. These attribute combinations associated with classes need to be assessed based on
their ranking of importance determined earlier.

As an example, the Source to Attribute Ratios for 1, 2, 3 (nth) (StAR-n) Order Matrix
approach can support the development of requirements based on attributes (primary,
secondary, or tertiary groupings, e.g., a third order matrix) representing highest significance
(priority/rating defined in TSAT). Higher priority grouping, e.g., primary, should occur in greater
numbers of instances within the training set, by class, than a lower significance grouping of
attributes, e.g., secondary. The comparison of numbers can be analyzed as ratios.
Why should developers verify that primary instances have greater numbers than secondary, and
so on?

• With live data collection, it might be difficult to find all the training data that includes the
appropriate noisy environments that might cause missing and sparse data issues; and

• With synthetic data creation, simulation may be too ideal, not representing the
appropriate noisy environments. (Remember that there’s most likely an infinite number
of possibilities in terms of training data variations and simulation time to meet schedule
demands might get strained.) What should be the priority when considering or designing
your synthetically created training data?
The StAR-n Order Matrix focuses on the quantity of how often attributes occur, by their

grouping, within the training set. StAR-3 looks at the ratios of primary, secondary and tertiary
attributes, as they are defined through requirements.

As stated earlier, training data is key to the AI/ML algorithms development and therefore,
the question becomes, “How much of the training data consists of primary vs. secondary vs.
tertiary attributes that are dependent on data sources that will be available in the field?” Again,
the issue becomes dealing with missing and sparse data during deployed operations.

StAR-n provides confidence that there’s an adequate quantity of training data, whether
generated from live events or synthetically created to train the algorithm. StAR-n represents
these ratios in the form of a matrix, consisting of three colors, to relate the amount of justification
needed to support the training data quantity required. This is similar to a risk matrix coloring
scheme. Once the matrix is defined, the actual training data ratios of primary, secondary,
tertiary, etc. can be placed within the matrix to determine rigor documentation needed.

Acquisition Research Program
Department of Defense Management - 233 -
Naval Postgraduate School

The color zones are:

• Zone Green: Evidence of data by showing appropriate n-th order groups of training sets,
collected from “live” data or generated by the simulations, including success rates as
well as the TSAT results.

• Zone Yellow: Zone Green evidence plus justification of why the n-th group priority can
still handle the unexpected and provide acceptable success rates.

• Zone Red: Zone Green and Yellow evidence as to how the algorithm is going to be
supervised or monitored when operationally unexpected events occur.

Figure 6. Source to Attribute Ratios for 1, 2, 3, . . . nth (StAR-n) Order Matrix

Above is an example of a StAR-n Order Matrix focused on Primary Attribute ratios.
Matrices can be created for primary, secondary, and tertiary attributes, not just primary. Again,
zone placement is based on operational needs. Zones can also be changed in terms of how
much justification is needed or added (“+”). When measuring actual ratios, placement of the
actual ratios would determine what cell the class will be placed, therefore what justification,
green, yellow, or red, is needed to support that ratio.

The steps discussed below for taking a StAR-n measurement are groups by
requirements/architecture and algorithm code stages:
During the requirements and checked during architecture review:

• First Step: Create a ten by ten matrix, labeling each axis from zero to 1.

Acquisition Research Program
Department of Defense Management - 234 -
Naval Postgraduate School

• Second Step: Label the horizontal axis “% Number of Primary Attributes vs. Total
Attributes for Class” and the vertical axis “% Number of Primary Attribute Instances vs.
All Instances for Class.”

• Third Step: Determine a three-color zone scheme (as in the example), where green
indicates that the ratio fell within acceptable limits, yellow indicates ratio is boarder line
acceptable, and red color zone indicated ration is outside expected limits. The color of
the zone should indicate how well training data reflects operational environment. Based
on color zone, determine evidence justification. Examples (used for guidance only) are
described below:

o Zone Green: Evidence of data by showing appropriate n-th order groups of
training sets collected or generated by the simulations, including success rates
as well as the TSAT results.

o Zone Yellow: Zone Green evidence plus justification on why n-th group
precedence can still handle the unexpected and provide acceptable success
rates.

o Zone Red: Zone Green and Yellow evidence as to how this algorithm is going to
be supervised or monitored when operationally unexpected events occur.

During Algorithm code review when the training set is produced:

• Fourth Step: Calculate the σ and δ (as in the example) ratios. Each ratio should be less
than 1. The example below is for primary attributes, but can be done for any n-th order
attributes:

o σ (by Class) = (Number of Primary Attributes / Number of All Attributes) ≤ 1.

o δ (by Class) = (Number of all Primary Instances / Number of All Instances) ≤ 1

• Fifth Step: Plot (x, y) using (σ, δ) pair of numbers and assess where the pair fall within
the color zones to determine support action. An example is provided in the example.

o Zone Green: Evidence of data by showing appropriate n-th order groups of
training sets collected or generated by the simulations, including success rates
as well as the TSAT results.

o Zone Yellow: Zone Green evidence plus justification on why n-th group
precedence can still handle the unexpected and provide acceptable success
rates.

o Zone Red: Zone Green and Yellow evidence as to how this algorithm is going to
be supervised or monitored when operationally unexpected events occur.

Section 3: Dataset Measurement Review
How do you know if the quality and quantity of Training Data is sufficient? Quality refers

to the correct number of attributes (including primary, secondary, etc. mixes) that are
representative of the deployed operational environment, including noise factors. Quantity refers
to the amount of data/instances used for training, with consideration to mix ratios, underfitting,
overfitting and majority/minority classes.

• How do you assess the operational limits described by the training data? (Consider the
“You don’t know what you don’t know” issue.)

• Did the training set include enough noise/clutter for each class (in this case, less
significant attributes determined by SMEs for a particular meta-model class) to ensure

Acquisition Research Program
Department of Defense Management - 235 -
Naval Postgraduate School

that the function works properly when deployed? Are there sparse data and/or mission
data issues? How is the bias of the training set and variance of the test results
determined?

For simulation generation of the training data:

• How would you ensure synthetic or live data configurations work, i.e., is the training data
covering the real-world experiences? (Optimizing bias [how well it fits the training set]
and variance [how well it predicts using the test set], including considerations of
overfitting/under-fitting).

• What quality of synthetic or live training data, i.e., attribute composition on each
instance, and how many of these various compositions are really enough to train an
algorithm?

Test and Evaluation Readiness Report
Has a process been identified to ensure that randomly selected T&E data is available for

testing from the curated training data before any developer uses it? If not, why not?
Will model versioning control be used to track model drift or data drift? Will the

versioning control support troubleshooting of any AI model issues that might occur later? Data
versioning supports the ability to version multiple sets of data against many different compiled
algorithms and then rollback/forward to different training data sets depending on need?

• Model drift. Is a form of model decay caused by not keeping the model current with
significant attribute changes in the training data, e.g., boys face evolves to a man’s face
but never updated in the training data.

• Data drift. Is undocumented changes to data structures, semantics, and infrastructure,
e.g., undocumented modification to the API causing the model to view that part of the
input as missing or sparse data.
The model versioning control process should include positive control over who, what,

where, and when transactions occur involving the creation of the training data composition.
As an example, the need to use positive control over a training set would be when a T&E

set of training data from a k-fold cross validation approach is identified. If live data is limited in
terms of quantity available, it is recommended that T&E training data needs take priority and
that possibly all live data be set aside just for T&E testing. In either case, there must be a
separate amount of training data, randomly selected from a pool of training data that is
untouched/unviewed by the developer and specifically focused on supporting T&E.

Since the training data drives the composition of the algorithm during training, it is
important that the creation of the data, part of which will become the T&E test set, has strong
oversight, in addition to versioning. An approach to provide this oversight, especially when the
data is coming from many diverse sources, with multiple touch points, is a technology called
blockchain.

Blockchain is a type of distributed e-ledger (similar to what an accountant would use to
keep track of financial transactions). It is designed to be a form of tamper-resistant,
decentralized documentation that provides proof of transaction involving physical or intellectual
assets, in this case T&E training data. It ensures confidence that only people allowed to access
the data, from its origin to a T&E facility (separating this test set from the development test set),
have access to the data.

By using a blockchain approach, policy enforcement can be ensured and that the rules
for accessing the data are followed. A blockchain architecture documents the who, what, where,

Acquisition Research Program
Department of Defense Management - 236 -
Naval Postgraduate School

and when user access (transactions) involving the creation of the data set composition, data
attribute transfer to location for T&E random selection, ownership of the T&E test set and
integrity of the data.
Missing and Sparse Class Analysis

Will a Missing and Sparse Data (MSD) Class Table, consisting of four sections, be
used? The MSD Class Requirements Table provides requirements/guidance for developers to
deal with missing and sparse data issues. As part of the requirements, within the table, you can
indicate a plus or minus percentage for meeting the numbers listed. As an example, you can
have four sections focused on various aspects of missing and sparse data.

If this table is created, an equivalent MSD Class Actuals Table must also be created to
be filled in during the development process and then compared to ensure listed requirements
are being met.

Using the sandbox use case involving robots delivering package, the tables below
provide a five class, 17 attribute example of a package delivery system involving trucks loaded
with robots (LT), driving to a drop off location (MT), unloading the robots (UT), having the robots
move to the desired location (MT), and deliver packages to the recipients (DP).
Section 1: Class Representations in Dataset

Create a table or list by class for the expected training data quantities/numbers based on
ML Training Data. The headings need to describe the “Number of Max Data Sources Allowed
for a Decision,” “Number of Primary Attributes Based on Data Source Availability,” “Number of
Secondary Attributes Based on Data Source Availability,” “Number of Tertiary Attributes Based
on Data Source Availability,” and so on. The goal is to have an understanding of data source
availability during deployment and the number of attribute inputs (from those data sources) that
will feed the algorithm/model.

Table 1. Training Data Attributes Table

Table 1 is an example listing variables h, I, j, k and l that would be converted to numbers
supporting requirements for each class. The x% represents the acceptable variance allowed
when compared to actual results.
Section 2: Class Ratios of Classes

Create a table or list that describes, within the training set, an expected percentage of
how often primary attributes occur in an instance/sample compared to the total number of
instances being used for training. Also create percentages for instances of secondary attribute
occurrences to the total number of instances, as well as tertiary attributes, etc. These
percentages should be defined for each class.

Acquisition Research Program
Department of Defense Management - 237 -
Naval Postgraduate School

Table 2. Attribute Instances by Significant Grouping Instances Table

Table 2 is an example listing variables a, b and c that would be converted to numbers
supporting requirements for each class per priority grouping. The y% represents the variance
allowed as acceptable when compared to actual results.
Section 3: Success Rates

Create a table or list that describes the expected success rate when combining attributes
from various priority groups of the algorithm (e.g., as a percentage). They can then be
measured using the T&E set created from the k-fold cross validation approach described in LOR
8. This description should list the required test results by primary, secondary, and tertiary priority
groupings and when mixing groups, e.g., primary only success rate, primary with secondary
success rate (with primary as the majority of attributes in the instance), primary with tertiary
success rate, secondary with primary (with secondary as the majority attributes in the instance),
and so on.

Table 3. Attribute Instances by Significant Grouping Table

Table 3 is an example listing variables a, b, and c that would be converted to numbers
supporting requirements for each class per priority grouping. The y% represents the variance
allowed as acceptable when compared to actual results.
Section 4: Class Balance

Create a table or list that provides an expected majority or minority class analysis of how
balanced (equal quantities) the classes are with each other. This is done to avoid data bias

• Data Bias. Occurs when the training data does not equally represent all of the
environment where deployed but focuses on a subset. A form of data bias is imbalanced
classes. Imbalanced classes means that one class has more training samples/instances
and is significantly larger than the others. The class with the larger number of instances
is called the majority class and the smaller number of instances is the minority class.
The table or list needs to describe the expected average number of instances, within the

training set, for each class. The list should be divided based on the priority grouping of
attributes.

Acquisition Research Program
Department of Defense Management - 238 -
Naval Postgraduate School

As an example of reviewing combinations:

• 1st order only

• 1st and 2nd order (emphasis/more of 1st order)

• 1st and 3rd order (emphasis 1st order)

• 1st and 2nd order (emphasis 2nd order)

• 2nd order only (emphasis 2nd order)

• 2nd and 3rd order only (emphasis 2nd order)

Therefore, focus is on determining what class is a majority or minority class. In most cases, 1st
order only, 1st and 2nd order (emphasis 1st rder), may be the only consideration when
analyzing each class.

Table 4. Majority and Minority Class Analysis Table

Table 4 is an example listing variables “a1” to “an” to ensure balanced classes, meaning
there are no larger instances, i.e., there are no more minority classes. The desired result would
be that the number of instances is basically the same for all classes.

Consideration: A key goal of the last four sections is to ensure that the developer
demonstrates a detailed understanding of potential deployment issues that could affect the AI
algorithm. This understanding is measured by the composition quality of the training data
reflecting operational “realism.” When composition quality accurately reflects the deployed
operational environment, it results in an improved performance of the AI model under realistic
conditions.

The challenge becomes an adversarial network tradeoff. For example, an image
recognition system for a smart phone is trained on key facial features. If the owner is wearing a
headband, the smart phone may be stumped until the AI is trained to recognize the owner
wearing the headband. However, the phones initial inability to recognize unexpected/surprise
variations in facial features, e.g., wearing a headband, ensured others were denied unwanted
access to phone.

Acquisition Research Program
Department of Defense Management - 239 -
Naval Postgraduate School

In the four sections previously described, groupings of secondary and tertiary attributes
show that the AI model is being trained to handle deployment variations associated with missing
and sparse data. These deployment variations are equivalent to training the smart phone to
recognize the user when wearing a headband. The concern is whether these types of
approaches to increase the quality of data, i.e., using training data to support
unexpected/surprise variations in deployment conditions, are also making the AI model more
susceptible to adversarial network attacks.

Is the developer considering the balance between versatility, handling variations, and
security? If so, there should be formal analysis associated with identifying this balance. The
analysis should describe how versatility is generating greater security issues.

If the developer creates the training set as described in each of the four sections, what
are the balance considerations between versatility and security? Are they being considered?
Balance is obviously an important analysis and emphasizing either “too much or too little” can
possibly lead to an issue in the confidence of the behavior of the AI model or the security of the
system. This discussion of balance and any related analysis applies to all LOR focused on
ensuring quality training data composition

Summary
The development of advanced artificial intelligence (AI)/machine learning (ML) systems

for deployment by/throughout the Department of Defense (DoD) is a reality. AI/ML integration
into DoD is in the form of upgrades to existing programs or new program acquisitions. How do
we know these AI/ML-enabled systems will perform as intended? This paper presented an
approach in the form of an AIDP.

Subject “Project Overmatch,” Memo October 1, 2020 from the CNO begins, “The Navy’s
ability to establish and sustain sea control in the future is at risk.” In the memo, he goes on to
explain that we need to catch up to our competitors in autonomy and AI. The fourth paragraph
starts, “Bring me your initial plan within 60 days, and update me every 90 days thereafter.” This
was a direction to all RDT&E centers to increase acquisition of new AI and autonomous
technology. This puts a burden on the acquisition community to ensure reliable AI systems for
deployment.

With regard to the DoD’s AI deployed systems, there are no policies, guidelines, or tools
that ensure reliability is met during the unique AI aspects of software requirements, architecture,
design, code, or test. For example, consider that training data creates ML algorithms. There are
currently no constraints on how training data is created too learn from “live” operational
environments. Current work in this area demonstrates that training data issues can result in
significant redo of work, cost overruns, and schedule delays. Addressing this deficiency is
necessary. Because of this deficiency gap in AI policies, guidelines, and tools, system safety
practitioners as well as the acquisition community members, including SE and PM, have no
support/direction in assessing confidence in the behavior of current WD weapons programs that
are implementing AI upgrades. Currently, AI is being developed for integration into critical
systems within DoD programs of record. Because this deficiency of support/direction is
consistent throughout the DoD, many working groups are attempting to understand the unique
aspects of AI software requirements, architecture, design, code and test without any suitable
safety guidelines. The five types of documentation comprising the AIDP provides some insight
into what the developing agency should provide to support reliable, quality development of AI.

1. AI Justification Report—3 Sections: The “AI Justification Report” asks the requestor to
establish that the AI requirements being requested are truly a candidate for AI and
cannot be met by traditional software or hardware. The process requires the requestor

Acquisition Research Program
Department of Defense Management - 240 -
Naval Postgraduate School

perform tasks in three sections: Section 1, the requestor conducts an AI Type Function
analysis to determine if there is an AI algorithm meeting at least one of two criteria.
Section 2, the requestor documents the justification for the proposed use of the AI
algorithm vs. using a more traditional software, firmware or hardware technique. And,
Section 3, document a justification for the AI algorithm’s level of autonomy.

2. Best Practices Report—2 Sections: The “Best Practices Report” focuses on the
requestor presenting development questions and how the AI algorithm will perform its
function(s). This process consists of two sections. Section 1 asks the ML Training Data
modality type represented in the deployed system and data generation process. Section
2 places emphasis on Dataset Structures by asking questions in eight parts regarding:
Representation (training data needed), Fitness of Data (overfit and underfit
considerations), Mission Alignment (is training data mission aligned), Mission Alignment
(is algorithm adequately trained), Oversight (guardrails or gate control), Sparse and
Missing Data (expected ratio of occurrence), Data Curation (process defined), and Battle
Complexity (can algorithm support increased complexity).

3. Measurement Report—3 Sections: The “Measurements Report” answers the question
about quality and quantity of data in an objective format. It presents two examples of
measuring the quality and quantity of a dataset to support a reference for the type of
adequate response. Section 1 provides a measurement approach to examine dataset
quality. Section 2 provides a measurement approach to examine dataset quantity. The
third section focuses on how the previous quality and quantity measurements are
representative of the deployed operational environment, including noise factor.

4. Test and Evaluation Readiness Report: The “Testing Readiness Report” ensures that
during the T&E process, separate datasets, not used or seen by the developer, are
available for the test engineer to use. It also briefly discusses terms like model drift and
data drift associated with ensuring that the dataset used is up to date. In addition, it
provides guidance on configuration management with an example of using blockchain.

5. Missing and Sparse Class Tables—4 Sections: The “Missing and Sparse Class Tables”
consist of four tables/sections, where a table’s goals can be compared to tables with
actual results. Mixes of attributes when training each class becomes important because
of mission and sparse data issues. Section 1 focuses on how the quantity of classes are
represented in the dataset. Section 2 looks at ratios, comparing the quantity of classes
to other classes. Section 3 provides a table to capture success rate, again a goals and
then actuals. And finally, Section 4 compares the quantities of each class to the other to
ensure equal representation for algorithm training.

References
Acquisition Notes (AcqNotes). (2022). Program management tool for aerospace.

https://acqnotes.com/acqnote/careerfields/contract-data-requirements-list-cdrl
Borysowich, C. (2009). Sample contract data requirements list (CDRL). ToolBox Tech.

https://www.toolbox.com/tech/enterprise-software/blogs/sample-contract-data-requirements-list-
cdrl-

Department of the Army. (2021). Artificial intelligence requirement guidelines and precepts [White Paper].
Artificial Intelligence (AI) Safety Working Group and the Office of the Director of Army Safety.

DI-MISC-80508B. (2006). Data item description: Technical report-study/services.
DOD-STD-1703. (1987). Military standard: Software product standards.
DOD-STD-2167A. (1988). Military standard: Defense system of software development.

https://acqnotes.com/acqnote/careerfields/contract-data-requirements-list-cdrl
https://www.toolbox.com/user/about/CraigBorysowich

Acquisition Research Program
Department of Defense Management - 241 -
Naval Postgraduate School

DOD-STD-7935A. (1988). Military standard: DoD automation information systems (AIS) documentation
standards.

Kendal, A., Das, A. Nagy, B., & Ghosh, A. (2021). Blockchain data management benefits by increasing
confidence in datasets supporting artificial intelligence (AI) and analytical tools using supply chain
examples. Proceedings of the Eighteenth Annual Acquisition Research Symposium, Naval
Postgraduate School.

MIL-STD-498. (1994). Military standard: Software development and documentation.
Miller, S., & Nagy, B. (2021). Interdependence analysis for artificial intelligence system safety.

Proceedings of the Eighteenth Annual Acquisition Research Symposium, Naval Postgraduate
School.

Nagy, B. (2021a). Applying generative adversarial network constructs to mission-based simulations to
produce “realistic” synthetic training data for machine learning algorithms, GANs overview
[Presentation slides]. Naval Applications for Machine Learning Symposium. NABN581, Naval
Information Warfare Center Pacific.

Nagy, B. (2021b). Increasing confidence in machine learned (ML) functional behavior during artificial
intelligence (AI) development using training data set measurements. Proceedings of the
Eighteenth Annual Acquisition Research Symposium, Naval Postgraduate School.

Nagy, B. (2021c). Tips for applying artificial intelligence to battle complexity, naval applications for
machine learning symposium [Presentation slides]. Fall Naval Applications for Machine Learning
Symposium. Naval Information Warfare Center Pacific.

Nagy, B. (2022a). Fourteen tips to increase confidence in the performance of artificial intelligence
(AI)/machine learning (ML) functions during the five stages of development [Presentation slides].
2022 National Fire Control Symposium.

Nagy, B. (2022b). Level of rigor—How to develop quality AI products [Presentation]. Naval Applications
for Machine Learning, NABN708, Naval Information Warfare Center Pacific.

Space and Naval Warfare Command (SPAWAR). (2005). Software development plan template (Code
20203 TM-SPP-02 V2.0). Systems Engineering Process Office.
https://www.acqnotes.com/Attachments/Software%20Development%20Plan%20Template%20-
%20SPAWAR.pdf

Thiebes, S., Lins, S. & Sunyaev, A. (2021). Trustworthy artificial intelligence. Electron Markets, 31, 447–
464. https://doi.org/10.1007/s12525-020-00441-4

Acquisition Research Program
Naval Postgraduate School
555 Dyer Road, Ingersoll Hall
Monterey, CA 93943

www.acquisitionresearch.net

	Common AI Acquisition and Development Issues
	Background to Determining Documentation Content
	Contract Data Requirements List (CDRL)
	Tips for CDRL Documentation
	AI Justification Report
	Best Practices Report
	Section 1: Modality Type
	Section 2: Dataset Structure

	Measurement Report
	Section 1: Dataset Quality
	Section 2: Dataset Quantity
	Section 3: Dataset Measurement Review

	Test and Evaluation Readiness Report
	Missing and Sparse Class Analysis
	Section 1: Class Representations in Dataset
	Section 2: Class Ratios of Classes
	Section 3: Success Rates
	Section 4: Class Balance

	Summary
	References

