

Naval Postgraduate School

Assessing Policy Changes on the Cost of Husbanding Services for Navy
Ships

Professor Geraldo Ferrer
Chair of Naval Supply Chain Management
Department of Defense Management
Naval Postgraduate School

Acknowledgements

MBA Capstone Project:

Husbanding Service Provider Price Analysis Factors – Graduation June 2021 LCDR Austin W. Gage, LCDR Luis C. Escobar, and LCDR Bradford R. Sturgis Jr. June 2021 (*available at NPS Dudley Know Library*)

Journal Article:

Assessing Policy Changes on the Cost of Husbanding Services for Navy Ships Margaret Hauser, Geraldo Ferrer, and Robert Mortlock Defense Acquisition Research Journal (forthcoming)

What are the effects of policy changes on the cost of husbanding services?

- Off-Ship Bill Pay (OSBP)
 - Formalized a process for procuring, rendering, and paying for husbanding services to increase oversight
 - Effective FY 2016
- Multiple Award Contracts (MACs)
 - Multiple vendors are awarded contract over region, increasing competition for individual ports
 - Replaces single award contracts SACs and single visit contracts SVCs

Study period is FY2010 – FY2020, prior to Global MAC awarded by NAVSUP in October 2020 (FY2021).

HSPortal Data

- O Port visits by 5th, 6th, and 7th fleets
- From 1 October 2009 to 11 June 2020
 - Raw data: 14,700+ port visits
- Data base fields:
 - Total Cost
 - Exhibit line-item number (ELIN)
 - Mooring type
 - Ship type
 - Days in Port
 - Dates of Visit
 - Contract

Filtered for normal visits

- Exclude: maintenance, transit, brief stop for fuel, cancellations
- Exclude ship-ports combinations with < 15 visits
- Filtered data: 8,700+ port visits

Contract Data

 Identified MACs with contract numbers in HSPortal

Historical Crude Oil Prices (Nominal)

Price on the date of port visit

Multiple Regression Analyses

(1) Global Cost Model

Objective: Identify general trends in total cost of port visits

- Evaluates entire dataset
- Uses FY as categorical variable
- *Assumes fixed factor effects over time horizon

(2) FY Cost Model

Objective: Test assumption in Global Cost Model that explanatory variables have fixed effect over time

- Unique regression model for each FY
- Statistical significance is reduced with reduced

- Models provide a base value for the total cost of a port visit
 - Response Variable: Natural Log of Total Cost
 - Explanatory variables: multipliers to the base cost
 - Unbalanced panel

Global Cost Model Design

Exhibit Line-Item Number (ELIN)

Days in Port

Fiscal Year

Crude Oil Price

Cost of port visit

Type of mooring

Ship Type

Contract Type

Benchmarks:

- 1) Anchorage
- 2) DDG
- 3) SAC

Global Cost Model Results

Average Cost of 5-day DDG Port Visit

Reference Level Used for all Explanatory Variables

Key Factor Effect Summary

Factor	Reference	Total Cost Impact
MAC	SAC	- 17%
SVC	SAC	+ 46%
Anchorage	Pier side	+ 30%
Days in Port	5 days	2 days \rightarrow - 40% 10 days \rightarrow + 115%
ELIN Count	23	70 → + 200% 100 → + 570%

- Ship type and port had statistically significant effects in most instances.
- Crude oil price also had a statistically significant effect however, it was very small (> 5% for the full range).

Global Cost Model Breakdown (I) Days in Port

Global Cost Model Breakdown (II) Exhibit Line-Item Number

Global Cost Model Breakdown (III) Price of Oil

Regression Multiplier vs. Ship Tonnage

FY Cost Model Design

Cost of port visit in each FY

Benchmarks:

- 1) Anchorage
- 2) DDG
- 3) SAC

(Negative values correspond to decrease in cost)

References

Days: 5 ELIN: 23

Oil: \$72/bbls

Mooring: Pier side

Contract: SAC

Conclusions

- Global cost model provides valuable insight on costly aspects of port visits
 - Modeling each FY separately shows:
 - Dynamic impact of contract changes
 - Dynamic cost of anchorage relative to pier side
- Impact of OSBP:
 - Initially => increased cost of port visits
 - Recent years => no significant impact
- Impact of MAC:
 - Cost of husbanding services has decreased since implementation

SUPPLEMENTAL SLIDES

FY Cost Model vs Global Cost Model Total Port Visit Cost over Time

