

NAVAL Postgraduate School

Systems and Cost Effectiveness Modeling of Unmanned Systems Product Lines for Acquisition

NPS Acquisition Research Symposium May 11, 2022

Dr. Raymond Madachy Naval Postgraduate School Dept. of Systems Engineering rjmadach@nps.edu

John (Mike) Green Naval Postgraduate School Dept. of Systems Engineering jmgreen@nps.edu

Overview

- This research has been investigating the systems and cost-effectiveness of unmanned system product lines with Model-Based Systems Engineering (MBSE) methods and parametric cost modeling.
- The modeling framework includes the Constructive Product Line Investment Model (COPLIMO) framework for product line cost estimation and investment analysis.
- A recent case study investigated the economics of a product line approach to UUVs for strategic missions demonstrating ROI of nearly 500% across the defined DoD missions.

UUV Mission Needs

- The DON requires nine primary missions:
 - Intelligence, Surveillance, and Reconnaissance (ISR)
 - Mine Countermeasures (MCM)
 - Anti-Submarine Warfare (ASW)
 - Inspection and Identification (INID)
 - Oceanography (OO)
 - Communication or Navigation Network Node (CN3)
 - Payload Delivery (PD)
 - Information Operations (IO)
 - Time Critical Strike (TCS).

Research Questions

- What is the ROI of a product line approach for UUV systems?
- What is the reuse savings for individual UUV systems?
- What is the size and scope for the resultant systems being developed?
- How much work must be done over time?
- How should the system(s) be architected to best employ reuse?

Reuse Savings and ROI

ISR: Intelligence, Surveillance, Reconnaissance MCM: Mine Countermeasures ASW: Anti-Submarine Warfare Inspect: Inspection and Identification Ocean: Oceanography CN3: Communication or Navigation Network Node Payload: Payload Delivery IO: Information Operations TCS: Time Critical Strike

- Requirements and interfaces from UUV MBSE models were enumerated and input into the COSYSMO cost model.
- This indicator displays the total equivalent system sizes and resultant ROI of a product line approach for UUV systems with overlapping mission capabilities
- The savings for subsequent missions are the differences between a traditional non-reuse approach and the product line reuse approach
- The cumulative ROI is the net savings over time divided by the investment cost based on the relative sizes
- The size is used as input to systems engineering cost models to quantify estimated costs
- The equivalent size difference represents a work savings, and added equivalent size represents the additional work investment to make the UUV baseline reusable

Planned Requirements Implementation

- Based on the high ROI, it is decided to implement the product line.
- This indicator displays the planned systems engineering requirements implementation over time for selected UUV mission systems.
- The phased implementation over time is derived from the COSYSMO effort and schedule model using requirements and other size elements directly measured in the model set as size inputs.

Conclusions

- System architectures for unmanned systems should focus on the product line, instead of mission specific systems. Plan for the reuse of system components over time.
- COPLIMO provides a trade space for determining initial investment and future return on investment (ROI) with respect to product line systems versus non-product line systems.
- Case study results indicate a strong ROI when using a product line approach for UUV systems.
- Applying the engineering product line methodology to system architecture design and development needs to happen at the earliest stage of design.

References

- R. Madachy, and J. Green. *Naval Combat System Product Line Architecture Economics*, Final Report, NPS Acquisition Research Program, February 2021
- K. Haller, D. Kolber, T. Storms, J. Weeks, W. Weers, Unmanned Underwater Vehicle Mission Systems Engineering Product Reuse Return On Investment, March 2022
- Fraine, Nolan D.; Jackson-Henderson, Tiffany; Manfredo, Vimaliz, <u>Naval ASW</u> <u>Combat System Product Line Architecture Economics</u>, Capstone Project, Naval Postgraduate School, Monterey, CA, June 2019
- K. Chance, <u>Naval Combat Systems Product Line Economics: Extending The</u> <u>Constructive Product Line Investment Model For The Aegis Combat System</u>, M.S. Thesis, Naval Postgraduate School, Monterey, CA, June 2019
- R. Hall, <u>Utilizing A Model-Based Systems Engineering Approach To Develop A</u> <u>Combat System Product Line</u>, M.S. Thesis, Naval Postgraduate School, Monterey, CA, June 2018

Backup

System Product Line Investment Model

