

^`nrfpfqflk=obpb^o`e=moldo^j=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release; distribution unlimited.

Prepared for the Naval Postgraduate School, Monterey, California 93943

Disclaimer: The views represented in this report are those of the authors and do not reflect the official policy position
of the Navy, the Department of Defense, or the Federal Government.

bu`bomq=colj=qeb==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

bfdeqe=^kkr^i=^`nrfpfqflk==

obpb^o`e=pvjmlpfrj==

qeropa^v=pbppflkp==

slirjb ff

Using Architecture Tools to Reduce the Risk in SoS Integration

Chris Piaszczyk, Northrop Grumman

Published: 30 April 2011

NPS-AM-11-C8P19R03-068

^`nrfpfqflk=obpb^o`e=moldo^j=
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of the
Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor, please
contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret.)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our website
www.acquisitionresearch.net

=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- i -

=

Preface & Acknowledgements

During his internship with the Graduate School of Business & Public Policy in June
2010, U.S. Air Force Academy Cadet Chase Lane surveyed the activities of the Naval
Postgraduate School’s Acquisition Research Program in its first seven years. The sheer
volume of research products—almost 600 published papers (e.g., technical reports, journal
articles, theses)—indicates the extent to which the depth and breadth of acquisition
research has increased during these years. Over 300 authors contributed to these works,
which means that the pool of those who have had significant intellectual engagement with
acquisition issues has increased substantially. The broad range of research topics includes
acquisition reform, defense industry, fielding, contracting, interoperability, organizational
behavior, risk management, cost estimating, and many others. Approaches range from
conceptual and exploratory studies to develop propositions about various aspects of
acquisition, to applied and statistical analyses to test specific hypotheses. Methodologies
include case studies, modeling, surveys, and experiments. On the whole, such findings
make us both grateful for the ARP’s progress to date, and hopeful that this progress in
research will lead to substantive improvements in the DoD’s acquisition outcomes.

As pragmatists, we of course recognize that such change can only occur to the
extent that the potential knowledge wrapped up in these products is put to use and tested to
determine its value. We take seriously the pernicious effects of the so-called “theory–
practice” gap, which would separate the acquisition scholar from the acquisition practitioner,
and relegate the scholar’s work to mere academic “shelfware.” Some design features of our
program that we believe help avoid these effects include the following: connecting
researchers with practitioners on specific projects; requiring researchers to brief sponsors on
project findings as a condition of funding award; “pushing” potentially high-impact research
reports (e.g., via overnight shipping) to selected practitioners and policy-makers; and most
notably, sponsoring this symposium, which we craft intentionally as an opportunity for
fruitful, lasting connections between scholars and practitioners.

A former Defense Acquisition Executive, responding to a comment that academic
research was not generally useful in acquisition practice, opined, “That’s not their [the
academics’] problem—it’s ours [the practitioners’]. They can only perform research; it’s up
to us to use it.” While we certainly agree with this sentiment, we also recognize that any
research, however theoretical, must point to some termination in action; academics have a
responsibility to make their work intelligible to practitioners. Thus we continue to seek
projects that both comport with solid standards of scholarship, and address relevant
acquisition issues. These years of experience have shown us the difficulty in attempting to
balance these two objectives, but we are convinced that the attempt is absolutely essential if
any real improvement is to be realized.

We gratefully acknowledge the ongoing support and leadership of our sponsors,
whose foresight and vision have assured the continuing success of the Acquisition
Research Program:

• Office of the Under Secretary of Defense (Acquisition, Technology & Logistics)

• Program Executive Officer SHIPS

• Commander, Naval Sea Systems Command

• Army Contracting Command, U.S. Army Materiel Command

• Program Manager, Airborne, Maritime and Fixed Station Joint Tactical Radio System

=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb=====- ii -

=

• Program Executive Officer Integrated Warfare Systems

• Office of the Assistant Secretary of the Air Force (Acquisition)

• Office of the Assistant Secretary of the Army (Acquisition, Logistics, & Technology)

• Deputy Assistant Secretary of the Navy (Acquisition & Logistics Management)

• Director, Strategic Systems Programs Office

• Deputy Director, Acquisition Career Management, US Army

• Defense Business Systems Acquisition Executive, Business Transformation Agency

• Office of Procurement and Assistance Management Headquarters, Department of
Energy

We also thank the Naval Postgraduate School Foundation and acknowledge its
generous contributions in support of this Symposium.

James B. Greene, Jr. Keith F. Snider, PhD
Rear Admiral, U.S. Navy (Ret.) Associate Professor

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 215
-
=

=

Panel 19 – System-of-Systems Acquisition:
Concepts and Tools

Thursday, May 12, 2011

11:15 a.m. –
12:45 p.m.

Chair: Rear Admiral David H. Lewis, USN, Program Executive Officer, Ships

Capability and Development Time Trade-off Analysis in Systems-of-
Systems

Muharrem Mane and Daniel DeLaurentis, Purdue University

System-of-Systems Acquisition: Alignment and Collaboration

Thomas Huynh, John Osmundson, and Rene Rendon, NPS

Using Architecture Tools to Reduce the Risk in SoS Integration

Chris Piaszczyk, Northrop Grumman

Rear Admiral David H. Lewis—Program Executive Officer Ships. Rear Admiral Lewis is responsible
for Navy shipbuilding for surface combatants, amphibious ships, logistics support ships, support craft,
and related foreign military sales.

Born at Misawa Air Force Base, Japan, Lewis was commissioned in 1979 through the Navy ROTC
Program at the University of Nebraska–Lincoln with a Bachelor of Science degree in Computer
Science.

At sea, Lewis served aboard USS Spruance (DD 963) as communications officer, where he earned
his Surface Warfare qualification; USS Biddle (CG 34) as fire control officer and missile battery
officer; and USS Ticonderoga (CG 47) as combat systems officer. His major command assignment
was Aegis Shipbuilding program manager in the Program Executive Office Ships, where he helped
deliver seven DDG 51 class ships and procured another 10 ships.

Lewis’ shore assignments include executive assistant to the assistant secretary of the Navy
(Research, Development and Acquisition), assistant chief of staff for Maintenance and Engineering,
commander, Naval Surface Forces, where he also served as a charter member of the Surface
Warfare Enterprise. Other ship maintenance and acquisition assignments ashore include the Navy
Secretariat staff; commander, Naval Sea Systems Command staff; Aegis Shipbuilding Program
Office; supervisor of Shipbuilding, Bath; and Readiness Support Group, San Diego. Upon selection to
flag rank, Lewis served as vice commander, Naval Sea Systems Command. Lewis earned a Master
of Science degree in Computer Science from the Naval Postgraduate School. He completed the
Seminar Course at the Naval War College Command and Staff School, and received his Joint
Professional Military Education certification. He is a member of the Acquisition Professional
Community with Level III certifications in Program Management and Production Quality Management,
and has completed his civilian Project Management Professional certification.

Lewis’ personal awards include the Legion of Merit, Meritorious Service Medal, Navy and Marine
Corps Commendation, Navy and Marine Corps Achievement Medal, and various service and unit
awards.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 249
-
=

=

Using Architecture Tools to Reduce the Risk in SoS Integration
Chris Piaszczyk—INCOSE Certified Systems Engineering Professional (CSEP), and Microsoft
Certified Systems Engineer (MCSE). Mr. Piaszczyk is a New York State Licensed Professional
Engineer (PE). In the course of his employment within the aerospace industry, he enjoyed a career
spanning analysis and design applications from low earth orbit spacecraft to high energy physics
particle accelerators. His systems engineering experience includes structural dynamics analysis and
design, fatigue and fracture analysis and design, systems optimization, reliability, availability and
maintainability, requirements analysis, and systems architecturing. Mr. Piaszczyk holds a doctorate in
Applied Mechanics from the Polytechnic Institute of New York and a master’s degree, also in applied
mechanics, from the Polytechnic Institute of Warsaw in Poland.

Abstract
DoD acquisition is evolving from the traditional approach focused on individual
systems to system-of-systems (SoS) integration. In DoD terminology, SoS is a
collection of systems integrated together to obtain a higher level system that offers
more than the sum of its parts, though the individual systems are acquired
independently. System interactions within the SoS typically produce emergent
capabilities that may or may not be desired. Any undesired behavior represents an
integration risk and must be recognized, analyzed, and understood. Architectural
tools are evolving to provide this understanding. These tools can be used for
analyses of SoS designs to predict unexpected couplings and to avoid the potential
for missed, underutilized or duplicated functionalities. Architectural artifacts
developed with these tools expose potential issues to the design community. In
addition, these artifacts provide a foundation for integration test planning by
identifying and documenting the interfaces between hardware, software and humans
that constitute the SoS. This presentation describes the related concepts and
processes.

Systems-of-Systems and Systems
The term “system-of-systems” needs some discussion. A number of interpretations

are in use by the systems engineering community. In a certain sense, “every system is a
system-of-systems.” Since every system-of-systems is, by definition, also a system, this way
of thinking leads to a tautology that is not very useful.

One of the possible SoS definitions has been proposed by Mark Maier (famous
Eberhardt Rechtin’s collaborator on The Art of Systems Architecting) in his 1998 paper
“Architecting Principles for Systems-of-Systems.” To summarize Maier’s definition of SoS,

1. SoS components must be able to usefully operate independently.
2. SoS components are independently acquired and maintain independent

management existence.
3. SoS continues to evolve.
4. SoS exhibits emergent properties.
5. SoS components interact only by information exchanges (are geographically

distributed).

This definition defines a subclass of the more general concept of a system. Hence,
according to this definition, every system-of-systems is a system but not every system is a
system-of-systems. As discussed in the following, the ideas contained here can be explored
with useful outcomes.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 250
-
=

=

Since Maier’s definition consists of multiple parts, it leads to several weaker forms,
each defining a subset of the set of systems with the class of system-of-systems defined
according to Maier being as their set theoretical intersection. Below, this definition is
examined more closely, with the conclusion that the most important characteristic of the SoS
defined with it is the first part stating that SoS components must be able to “usefully operate
independently.” Thus, for example, a bicycle is a system but not a system-of-systems. There
are parts of the bicycle, such as the frame, that cannot “usefully operate independently,”
except perhaps with some very creative ideas.

Interestingly, the criterion of operational independence immediately brings to mind
the concept of a system consisting of loosely coupled objects known from discussions of
open architectures. However, for these objects to form a system-of-systems, they also have
to be able to completely decouple and act independently, in addition to being loosely
coupled. Thus, there may be open architecture systems that are not systems-of-systems,
and systems-of-systems that are not open architecture. Since it is possible to find examples
of systems-of-systems with open architectures, such as for instance the Internet, the most
one can say is that the intersection of the two sets is not empty.

The second part of Maier’s definition, the criterion of managerial independence,
requiring components of the SoS to be independently acquired and maintaining independent
existence is a qualifying attribute that is perhaps not as important for the formal definition of
system-of-systems in general settings. In his paper, Maier further distinguishes between
“directed,” “collaborative,” and “virtual” systems-of-systems that represent variations on the
degree to which the SoS satisfies this condition. A “virtual” SoS satisfies this condition
completely, a “directed” SoS satisfies it to the least extent and a “collaborative” one falls
somewhere in between. Maier’s examples of virtual systems-of-systems include the World
Wide Web and national (and even more so) international economies. The Internet, on the
other hand, is presented as an example of a collaborative system-of-systems, governed by
the Internet Engineering Task Force by means of standards published in the form of
Requests For Comments (RFC). An integrated air defense network, such as NORAD,
centrally managed to defend the US, is an example of the directed kind of SoS. One could
say the need for including this criterion in the definition of a system-of-systems is somewhat
questionable even for DoD acquisitions, because many DoD system-of-systems are
acquired and managed by one and the same organization, the DoD, although its many
branches do operate independently, to a degree.

As for the third part of Meier’s definition, it can probably be safely stated that the
evolution of a system-of-systems could already be a natural consequence of the fact that its
components are independently acquired and maintain independent existence, including
independent evolution. On the other hand, any system of sufficiently large size evolves out
of necessity to keep operating. This may be forced by high cost of its replacement. Loose
coupling of components in an open architecture system is a characteristic designed for
facilitating this evolution.

It is also debatable if “emergent properties” are truly a characteristic limited to
systems-of-systems. First of all, there is a problem with the word “emergent.” This word
carries an aura of mystery. It has given rise to its own school of philosophical thought going
back to the post-Darwinian England. “Emergentists” included such luminaries as J. S. Mill. In
his 1843 opus, A System of Logic, Book III, he expressed the idea that “to whatever degree
we might imagine our knowledge of the properties of the several ingredients of a living body
to be extended and perfected, it is certain that no mere summing up of the separate actions

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 251
-
=

=

of those elements will ever amount to the action of the living body itself” (Ch. 6, § 1). The
term continues to be used in biology literature to this day.

Although it must be conceded that some systems and their properties are so
complex that they cannot be computed even today, the properties of every system can be
unexpected or expected depending on the level of understanding of the system behavior
characterized as “emergent.” To quote Arthur Clarke (1961), “Any sufficiently advanced
technology is indistinguishable from magic.” However, such esoteric situations are outside
the scope of this paper.

The point being made is that the properties of any system are always more than the
“sum of its parts.” Thus, “emergence” is not a qualifying attribute that distinguishes systems-
of-systems from systems in general. The emphasis of this paper is on finding ways to
prevent potential undesirable “emergent” effects. All passengers of commercial air transport
feel much more comfortable thinking of an airplane as a system rather than a “collection of
parts flying together in close proximity.” However, it is very desirable to know and
understand all possible “emergent” properties of this system.

The fifth of the Maier’s criteria is very applicable to computer networks, which must
have been the focus of the systems-of-systems engineering in 1998. However, a common
example of a system-of-systems satisfying this criterion is provided by any group of human
beings, and these go back much further in time. Human beings exchanged information by
voice, paper and other methods long before computers were even conceived of. Perhaps
methods developed by the systems-of-systems engineering can find fruitful application in
the field of sociology. On the other hand, restricting the entire systems-of-systems discipline
to those that are geographically distributed and interact only by information exchanges may
be overly limiting. It may be more productive not to impose it.

In the following, consideration is given to systems-of-systems defined either in the
strict sense by the full set of the five criteria in Meier’s definition or a wider class defined by
its weaker form consisting of just a subset of these satisfying at least the first one of them.

Elements of Risk (and Opportunity) in Systems-of-Systems Integration
There are many forms of risk associated with the development and integration of any

system. Some risks are technical and some programmatic. A full investigation of all
systems-of-systems integration risks was outside the scope of this effort. A more complete
discussion may be presented in the future. The intent of this paper is only to highlight the
usefulness of the architectural products in mitigating these risks in general. The discussion
is limited to selected types of risk that appear to be mostly associated with systems-of-
systems, as a set of examples as follows:

1. Missed/underutilized functionalities and/or interfaces of the component
systems.

2. Undesirable emergent behavior, sneak interactions and unintended
consequences.

3. Independent components evolution drifting to non-compliance with original
standards.

4. Evolving SoS not following stakeholder needs.

A very significant form of risk associated with integration of systems consisting of
independent systems is that of potentially missed or unidentified functionalities and/or
interfaces of the components systems. These would then remain untested while the system
is being integrated and could “show up” suddenly when the system is deployed and in use.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 252
-
=

=

This can happen because the components systems of the system-of-systems are not being
designed to specifications flowing down from the requirements set of the system-of-systems
but are used “as they are.” Being independent, the component systems are not modified for
integration into a system-of-systems by their original developers but are only “stitched
together” to provide a new desired functionality at a higher level.

Of course, if a particular functionality of a component system is not initially
recognized and is discovered, this could also represent an opportunity for making the
system-of-systems more efficient and less costly. Otherwise, undiscovered functions
represent a very real risk of failure when the system is put in operation and two formerly
unidentified functionalities of the components systems interfere with one another. Similarly,
an unidentified interface could represent a risk of the system simply not functioning as
necessary or interfering with the desired operation. Undesirable emergent behavior, sneak
interactions and unintended consequences are all potential manifestations of the risks of
missed functionalities or unidentified interfaces having been realized.

Since the components systems of the system-of-systems are independent and
therefore independently evolving, they could evolve away from the original standards they
complied with when they were initially selected by the system-of-systems architects to the
point where they will no longer fit with the rest of the system-of-systems. In the integration
construct represented by a system-of-systems, especially one of the “virtual” category, the
original interfaces and functionalities of the system-of-systems component systems can be
defined solely by means of voluntarily followed standards. If these are the only means of
“control” over the evolving components, nothing prevents the developers and manufacturers
of these component to switch to a different standard or discontinue their products altogether.
When the original product was not widely available from many sources, it may no longer be
available at some point in time. Such possibility represents a kind of risk that at the parts
level that the logistics discipline treats as Diminishing Manufacturing Sources and Material
Shortages.

Uncontrolled evolution of a system-of-systems can lead to a paradoxical situation
where it no longer satisfies the evolving needs of its stakeholders. This situation may
continue for some time in some cases, but eventually, the funding stop may be brought
about for various reasons depending on the SoS under consideration.

Mitigation of Risk (and Extraction of Opportunities) in Systems-of-Systems
Integration

This paper postulates that the systems-of-systems integration risks identified in the
previous section can be mitigated with the help of architectural tools. The context for this
use of architectures is the developing new Model Based Systems Engineering paradigm that
focuses the three core systems engineering processes consisting of requirements analysis,
system design and requirements verification and validation around a model of the system.
Since systems-of-systems are systems, methods developed for reducing the risks
associated with development of systems are applicable to the systems-of-systems.

The following discussion shows how the architectural tools can be used for mitigation
of systems-of-systems integration risk examples identified in the previous section:

1. Use of architectural tools to identify component functionalities and interfaces
2. Use of modeling and simulations to predict undesirable emergent behavior,

sneak interactions and unintended consequences

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 253
-
=

=

3. Use of open standards to permit use of suitable replacements for
components that will not be available as time progresses (avoid proprietary
interfaces)

4. Management of evolving SoS requirements

Architectural tools are highly relevant to the task of identifying component
functionalities and interfaces. Primarily, these tools provide the means to generate a
graphical form of documentation but also, at least with some of the tools available at this
time, to verify consistency of the architectural information entered into the tool database.

Modeling and simulations come at many levels, from the highest system level to the
details of physics and chemistry of the tiniest component. A great variety of modeling and
simulations tools are being used throughout science and engineering as suitable and
necessary. Architectural tools provide capabilities to model the system as it is defined by
“business” rules, states and modes, and swim lanes. These are in the category of PETRI
nets, executable UML/SysML, etc., that will be briefly discussed in the following section. The
usefulness of this level of modeling and simulation consists of gaining insights into system
level behavior and discovery of potential undesirable effects of integration of the formerly
independent component systems into the system-of-systems in question. Analysis of these
models can potentially uncover the so-called “sneak interactions” that weren’t apparent at
first sight and after integration could produce “unintended consequences.” There are no
guarantees that all such bad side effects of system-of-system design decisions can indeed
be discovered as a lot depends on the skills of the modelers, however, without this effort
even the simplest behaviors can remain hidden until disaster strikes.

Development of open architectures, open standards and open business models is a
major DoD thrust expected to yield significant cost savings in all acquisition programs. The
desired benefits can only be achieved if the program follows the open systems guiding
principles from the start. Open system architecture requires an investment in infrastructure.
Patching up an existing design at a system-of-systems level usually requires a major
architecture redesign that may be a difficult cost-to-benefit ratio to justify.

The 2004 DoD Joint Task Force Modular Open Systems Architecture (MOSA)
Program Manager’s Guide lists five “principles” (that look rather like steps of a management
process) necessary to achieve an open architecture system design. These principles are as
follows:

1. Establish an enabling environment.
2. Employ modular design.
3. Designate key interfaces.
4. Use open standards.
5. Certify conformance.

Most of the contents of the MOSA guide could be categorized as programmatic (or
SOW-type) requirements. It is, after all, a “program manager’s” guide. Clearly, Principles 1
and 5 are program management responsibilities. Principle 2 is calling for a modular design,
which in MOSA’s terms means the following:

 The system is functionally partitioned into discrete scalable, reusable
modules consisting of isolated, self-contained functional elements.

 System design makes rigorous use of disciplined definition of modular
interfaces, to include object-oriented descriptions of module functionality.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 254
-
=

=

 Components are designed for ease of change to achieve technology
transparency and, to the largest extent possible, make use of commonly used
industry standards for key interfaces.

Programmatically, modularity is a requirement to produce a set of architectural
artifacts that show the modules with identified functions and interfaces. In technical terms, a
list of required system functions needs to be identified and then allocated to a set of
components in such a way that closely interacting functions are lumped together in one
module while less closely interacting functions are split across different modules. This
approach simply minimizes the interactions between separate modules, reducing the
necessary number of interfaces between them. The resulting minimal set of interfaces is
then carefully characterized and published, creating the openness of the architecture. This
facilitates the design or acquisition of a replacement in case the original component system
is no longer available on the market or better performance can be obtained with a software
update.

MOSA’s Principle 3 is calling for identification of the Key Interfaces. Again, according
to the MOSA Program Manager’s Guide,

the focus of MOSA is not on control and management of all the interfaces within
and between systems. It would be very costly and perhaps impractical to manage
hundreds and in some cases thousands of interfaces used within and among
systems. …A key interface is an interface for which the preferred implementation
uses an open standard to design the system for affordable change, ease of
integration, interoperability, commonality, reuse or other essential considerations
such as criticality of function.

The MOSA guide tells the Program Manager (PM) that “Programs must determine
the level of implementation (e.g., subsystem, system, system-of-systems) at and above
which they aspire to maintain control over the key interfaces and would like these interfaces
to be defined by widely supported and consensus based standards.” Thus, the PM decides
at what level the Open Architecture (OA) requirements flow down should stop. This requires
careful considerations with architectural artifacts being a key ingredient.

The last but certainly not least risk example identified for the system-of-systems
acquisition in the previous section was the risk that the system will simply evolve away from
the stakeholders’ requirements. Well, the most important step in mitigating this risk is to
identify those stakeholders’ requirements in the first place. One cannot see that the
evolution of the system is drifting away from the target unless one has a clear picture of
what this target is. Here again, the architectural tools come to the rescue.

Architecting is an integral part of the systems engineering iterations consisting of
requirements analysis, system design and requirements verification and validation.
Requirements are used to manage the entire process by clearly identifying the objectives of
the system development. Systems engineering, as a discipline, evolved in the post World
War II era to reduce the risk associated with acquisition of increasingly complex defense
systems, beginning with the Inter-Continental Ballistic Missile (ICBM), through Ballistic
Missile Defense (BMD), and so on all the way to today’s software-intensive multilayer
products consisting of thousands of humans and computers organized into networks
distributed across several continents, air, sea and space. Identification of separate,
individually defined requirements reduces this risk by reducing complexity. It is much easier
to manage the development and evolution of a complex system if it can be broken up into
smaller, more easily digestible pieces.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 255
-
=

=

This contribution of architectural tools can be illustrated with the following figure that
shows the standard process beginning from the elicitation of stakeholder requirements
followed by development of system specs, followed in turn by system design and ending
with system implementation. Obviously, this is a very simplified view of this process. In
reality this process is highly iterative and ebbs and flows back and forth, challenging
program management as iterations can accumulate program costs not originally budgeted
for.

The risk of the system evolving away from the stakeholder needs consists of three
sub-risks: risk of requirements gaps, risk of design gaps and risk of implementation gaps.
Mitigating these three risks requires attention to the derivation of technical requirements
from the stakeholder needs, conversion of the technical requirements to system design and
the implementation of the design into a physical system. Gaps can appear in any part of this
process. Each gap has its own mitigation method. For example, gaps that can occur in the
requirements derivation step, from stakeholder requirements to system specs, are
addressed with tools specialized for maintaining requirements traceability, such as the
Dynamic Object Oriented Requirements System (DOORS). In the MBSE paradigm, the
requirements derivation step is strongly supported by the architectural products.

The risk of design gaps potentially appearing in the transition from specs to design is
addressed with a process architecture allocation in which requirements are allocated to
specific parts of the system architectures (functional, system and physical). Clearly,
architectural tools must be employed to produce the architectures required in this step.

Finally, potential gaps in implementation of the design into physical form are
prevented with the Requirements Verification Matrix (RVM), which is used for managing the
test program. Requirements verification is also supported with architectural artifacts in the
form of graphical representations of systems connections into a system-of-systems.

Figure 1. Architectural Tools Contribution to Risk Reduction in the General
System Context

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 256
-
=

=

Architectural Tools and Products
Since the early 70s, an intensive effort has been underway to implement computer

technologies in business environment. This effort has transformed the way we all work and
live. The original leading agent of this change was IBM. Out of this organization came forth
ideas that today are known under the name of Enterprise Architecture (EA). In his 1987
paper, “A Framework for Systems Architecture,” John Zachman proposed a method for
organizing the architectural artifacts into a matrix with six rows, corresponding to different
levels of detail, and six columns, addressing the questions: what, how, where, who, when,
and why. This construct became known as the Zachman Architectural Framework (ZAF).
This brilliant idea was quickly adopted across a wide area of applications.

The DoD published its own C4ISR Architectural Framework in 1997, followed in 2003
by the DoD Architectural Framework (DoDAF), that by now is in revision 2.0, published in
2009. Other military organizations followed suite with the MoD Architectural Framework
(MoDAF), NATO Architectural Framework (NAF), and so on. Civilian organizations were not
far behind with The Open Group Architectural Framework (TOGAF), etc. Basically, the
architectural frameworks define how to organize and structure the views associated with an
architecture.

Computer science, another fast-developing field, brought us several generations of
computer languages and programming approaches with the latest being the Object Oriented
methodology incorporated into software development tools such as, for example, the Unified
Modeling Language (UML). In 2006, the systems engineering community developed an
extension of UML called the System Modeling Language (SysML) that can be used for
modeling general systems.

Basically, SysML is a diagrammatic notation designed specifically to describe and
understand general systems. Another category of graphical tools that can be used for the
same purpose is the Integration Definition (IDEF) derived from the Structured Analysis
Design Technique (SADT). DoDAF can be implemented with either the Object Oriented
SysML or the Structured Analysis IDEF. DoDAF is another big subject, so the following is
limited to the fundamentals.

DoDAF Operational Views
As mentioned previously, the Zachman framework defined six levels or viewpoints.

The original, first version of DoDAF, used four: All-Views, Operational Views, System Views
and Technical Views. The latest version of DoDAF, 2.0, defines eight viewpoints. Like in the
Zachman’s framework, each viewpoint in the DoDAF includes multiple types of views. This
paper focuses on the most important operational view for this discussion, the OV-5,
Operational Activity Model, and the two most relevant system views, the SV-1, System
Interface Description and the SV-4, System Functionality Description. A more complete
discussion of DoDAF products (views) recommended for SoS architecting can be found, for
example, in the Naval SoS SE Guidebook (2006). Additional details can be also found in the
original DoDAF documentation.

The Operational Views (OVs) are focused on the activities that are performed by the
operators. They are normally developed as the first part of the analysis and assume that a
system is a “black box,” the details of which are as yet undefined. One starts with a very
high-level overview, called OV-1, which is just a cartoon version of the proposed system in
operation. Then, gradually, all operators, their activities and the information exchanges
taking place are identified and documented with the OVs. In fact, the OV-5, Operational

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 257
-
=

=

Activity Model, consist of boxes representing activities and arrows representing the
information exchanges.

An OV-2, Operational Node Connectivity Description, presents a complementary
picture where the boxes represent operational nodes containing aggregations of activities
and lines represent bundles of information exchanges between activities allocated to each
node. Each operational node is a collection of activities, an abstraction that can be used to
represent geographic separation or some other form of organization. In DoDAF 2.0, the OV-
2 was renamed Operational Resource Flow Description, to extend the application of this
view beyond information exchanges to more general resource flows. As a consequence, the
operational views in DoDAF 2.0 can now formally be used to represent systems that are
more general than information systems.

Generally speaking, the OVs are very useful for analyses of the human side of the
system-of-systems design, roughly corresponding to an expanded concept of Use Cases
known to software systems engineers using UML. While the OVs view the SoS as a black
box, the System Views (SVs) define its internal workings.

DoDAF System Views
The SV-1, System Interface Description, uses boxes to represent the component

systems of the system-of-systems and arrows to represent the interfaces between the
systems. Thus, the SV-1 is essentially a block diagram which shows how the system-of-
systems is integrated from its components. As such, it is an essential tool for managing any
integration process, including integration test planning. One cannot envision integrating any
system without some kind of graphical representation telling the integrators how the
components connect together.

What’s needed to complete this picture is a view that describes the functions
performed by every one of the components and various layers of the system-of-systems
assembly. One can begin by marking up the functions performed by the system components
within each box that represents them. When integrating a system-of-systems consisting of
existing or otherwise known components, this part is relatively simple to accomplish.

One needs to remember, however, as stated in the beginning, that a system is more
than a simple sum of its parts. Hence, multiple layers of system-of-systems integration need
to be documented with multiple SV-1s to show the functions emergent for every assembly of
component systems, assembly of assemblies, and so on, to the final layer representing the
complete system-of-systems as a single box with inscribed system-of-systems level
functions. This leads to a multitude of SV-1s that may be difficult to digest. A hierarchical
structure of functions at the various levels of system-of-systems assemblies can be
summarized with one view called, SV-4, System Functionality Description. This view is also
commonly known as a functional architecture of the system-of-systems.

The functional architecture essentially represents functional requirements in a
graphical form. Functional requirements are basically a translation of the stakeholders’
needs into technical terms. They need to match the activities previously identified in the
OVs. While the system was represented by a “black box” in the OVs, here one takes a peek
inside. All the details of the internal machinery of the system are not yet visible, only a set of
smaller “black boxes” labeled with individual functions.

Functional architecture identifies required system-of-systems functionalities in a
manner independent of specific choices made in selecting the component systems. This
knowledge can now be used to accommodate changes in specific technological

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 258
-
=

=

implementation of one of the component system changes, by simply replacing it with
another implementation that provides the same functionality. This reflects the principle of
“separation of concerns” proposed by E. W. Dijkstra in Selected Writings on Computing: A
Personal Perspective (1982, pp. 60–66).

A familiar example of this principle in action is the layered Open Systems
Interconnection (OSI) stack used in computer networking. The stack allows a complex
design problem to be split into less complex smaller problems with changes constrained to
one layer at a time. Ultimately, such layered schema also leads to an open business model.
Provided the vendors supply the desired functionality and comply with the interface
standards governing the interactions with other layers, no one needs to see the inner
workings of their systems. Accordingly, the system-of-systems (such as a computer network
in this case) creates a market with many suppliers who are able to protect the intellectual
property of their specific implementations.

Additional views are needed to provide a more complete picture of the system-of-
systems for inputs to the modeling and simulation. These include the SV-10c, System Event
Trace Matrix, that model the dynamics of events that occur when the system-of-systems is
operating. This view corresponds to an OV-6c, Operational Event Trace Description on the
operator side. For completeness, one should also include the SV-10a, Systems Rules Model
that defines the conditions determining when specific system events are allowed to follow
others and SV-10b, Systems State Transition Description that presents the states the
system may find itself in and how it transitions from one state to another.

Using Architectural Tools and Products to Reduce the Risk in Systems-of-
Systems Integration

As mentioned before, one of the risks encountered in integrating a system-of-
systems is in missed or unidentified functionalities and/or interfaces of the components
systems. The claim being made here is that using architectural tools that provide graphic
representations of the component functions and interfaces that can be inspected by the SoS
design team will contribute to the reduction of this risk in a significant manner. First of all,
just adding a task that consists of creating such architectural artifacts forces the team to
examine the component systems and document the results of this examination.
Furthermore, functions and interfaces identified in such a task will provide inputs to the
analysis of derived requirements that are part of the overall SoS requirements set. Finally,
these requirements are the foundation for preparing the integration and test plans and
procedures that will be used to manage the integration and test programs for the system-of-
systems in question.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 259
-
=

=

Figure 2. Functions & Interfaces Identified with Architectural Tools are Used to
Derive Requirements and Manage Integration & Tests

The process is that of reverse engineering applied to each component system that
will be integrated with the planned system-of-systems. The DoDAF SV-4 is used to
document the provided functionalities and the DoDAF SV-1 is used to document the
interfaces. Depending on the complexity of the component system under consideration, this
analysis may be limited to the top-most layer or may delve into some internal details.
Typically though, the top-most layer will suffice. The component system SV-1s and SV-4s
are then used like LEGO blocks to construct the SV-1s and SV-4s for the entire system-of-
systems.

Using Architectural Tools and Products to Reduce the Risk of Undesired
Behavior

Another type of risk that exists in system-of-systems integration is the risk of
undesired behavior that suddenly appears when component systems that have been
developed for other uses get connected together. As discussed above, this undesired
behavior can fall into many categories such as the so-called emergent behavior, sneak
circuits or other unintended consequences. Although emergent properties have been
associated with certain “esoteric” ideas, especially when the particular system-of-systems
under consideration is at the edge of the current extent of accumulated human knowledge,
many such effects can be uncovered through sufficiently detailed modeling and simulation.
The architectural tools can be used to reduce the risk of unexpected behaviors of the
system-of-system hiding behind an insufficient understanding of the functionalities and
interfaces of the component systems. These functionalities and interfaces are an
indispensable input to the modeling and simulation tools that can be used to analyze “sunny
day” and “rainy day” scenarios where undesired SoS behaviors can be identified. Once
identified, these behaviors can usually be mitigated.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 260
-
=

=

Figure 3. Architectural Products Help Mitigate Undesired Behavior
At the system-of-systems level, one can now use the information previously identified

in the SV-1 and SV-4 to build DoDAF System Event Trace Matrix diagram, SV-10s. The
system-of-systems architect will also develop an SV-10a, the Systems Rule Model that
defines the conditional behavior of the SoS. System State Transition Description, SV-10b
will help examine the system-of-systems states and modes. This diagram describes what
response is to be expected for a given stimulus. System-of-systems response may vary
depending on the current state, the type of stimulus, and the trigger guard conditions.
Explicit responses to stimuli are not found in a functional architecture. Missing states,
responses and conditions are equivalent to missing requirements.

Using Architectural Tools and Products to Reduce the Risk of Components
Obsolescence

The risk of components obsolescence and the more general risk of the system
evolving away from its original intent are two types of risk that are definitely more prevalent
for system-of-systems that are integrated from independent component systems capable of
evolving on their own than for systems developed as one entity. Principles of modularity and
openness of architecture have been specifically developed to promote reuse and reduce
obsolescence. These principles were defined and discussed in detail earlier in this paper.

As discussed, the architectural tools are key to identifying the functions and
interfaces of the component systems. Carrying it one step further, the same tools can be
used to identify functions and interfaces of assemblies of the component systems within the
system-of-systems all the way up to the highest level. Implementation of modularity and
open architecture in the design is basically the task of partitioning the design to isolate
certain groups of functions to specific assemblies or modules and selection of open
standards for key interfaces between these modules. An assembly here can consist of a
single system. Once the design has been modularized in this fashion, multiple vendors can
compete in the open market for each module and reduce if not eliminate the obsolescence
risk, an effect experienced daily with computer technologies.

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 261
-
=

=

Figure 4. Architectural Products Help to Build an Open Architecture
Control of the evolution of the entire system-of-systems is part of its configuration

management process. Architectural tools provide the necessary documentation. The
system-of-systems SV-1 documents its overall configuration, identifying the component
systems and their interfaces with other component systems. Their associated functionalities
are documented with the corresponding SV-4 diagrams. Operational Activity views, OV-5,
related to the system views via the SV-5a, Operational Activity to Systems Function Traceability
Matrix, and SV-5b, Operational Activity to Systems Traceability Matrix, document the ways the
operators use the system-of-systems. Through allocations, derived requirements are associated
with each element of the system-of-systems architecture. Traceability binds the derived
requirements to the top level originating stakeholders’ requirements. Having the system-of-
systems configuration documented in the form of architectures tightly bound with the top
level and derived requirements allocated to the architectural elements is a great step
towards reducing the risk of a system evolving in such a way that it would no longer serve its
stakeholders.

Summary and Conclusions
In summary, several significant types of risk that appear in system-of-systems

integration were analyzed and appropriate mitigation methods based on application of
architectural tools were presented. Discussion of several available architectural frameworks
and tools for developing architectural artifacts introduced the reader to these concepts and
recommendations for further reading were provided. Specific ideas for application of these
architectural artifacts bring us to the conclusion that use of architectural tools and products
does reduce the risks in systems-of-systems integration as follows:

 Documented functionalities and interfaces for SoS components enable
generation of requirements for better planning of system integration and test
(and these reduce the risk of program failure).

=
=
==================^Åèìáëáíáçå=oÉëÉ~êÅÜW=`ob^qfkd=pvkbodv=clo=fkclojba=`e^kdb==== - 262
-
=

=

 Documented functionalities and interfaces for SoS components enable higher
fidelity modeling and simulation providing more insight into emergent
behavior (and this reduces the risk of possible surprises).

 Documented functionalities and interfaces for SoS components facilitate
creation of open architectures with layers of abstractions that will enable
future integration of component replacements (and this reduces the risk of
component obsolescence).

References
Clarke, A. (1961). Profiles of the future.

Dijkstra, E. W. (1982). Selected writings on computing: A personal perspective. , Berlin,
Germany: Springer-Verlag.

DoD. (1997). C4ISR Architectural Framework. Washington, DC: Author.

DoD. (2003). DoD Architectural Framework (DoDAF). Washington, DC: Author.

DoD. (2009). DoD Architectural Framework (DoDAF; Rev. 2). Washington, DC: Author.

DoD Joint Task Force. (2004). Modular open systems architecture (MOSA) program
manager’s guide. Washington, DC: Author.

Meier, M. (1998). Architecting principles for systems-of-systems. Sys Eng, 1, 267–284.

Meier, M., & Rechtin, E. (1997). The art of systems architecting. New York, NY: CRC.

Mill, J. S. (1843). A system of logic, Book III.

System Modeling Language (SysML) Specification. (2006).

Naval SoS SE Guidebook (Vol. 1, Ver. 2.0). (2006).

Zachman, J. (1987). A framework for systems architecture. IBM System Journal, 26(3), 454–
470.

