NPS-AM-22-212

ACQUISITION RESEARCH PROGRAM Sponsored report series

A Time Series Analysis of Australian Regular Army Enlisted and Officer Separations

March 2022

Major Timothy Darragh, Australian Army

Thesis Advisors: James J. Fan, Assistant Professor Dr. Simona L. Tick, Senior Lecturer

Department of Defense Management

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943

Disclaimer: The views expressed are those of the author(s) and do not reflect the official policy or position of the Naval Postgraduate School, US Navy, Department of Defense, or the US government.

The research presented in this report was supported by the Acquisition Research Program of the Department of Defense Management at the Naval Postgraduate School.

To request defense acquisition research, to become a research sponsor, or to print additional copies of reports, please contact the Acquisition Research Program (ARP) via email, arp@nps.edu or at 831-656-3793.

ABSTRACT

Accurately determining end strength is important to be able to plan future accessions in a manpower system. Predicting separations is vital to end-strength modelling. Predicting separation rates within the Australian Amy is an identified area of required research to ascertain the best models for aiding reporting and as a decision support tool. In support of the Australian Regular Army end-strength model, this thesis examines the use of time series analysis on enlisted and officer separations over an eleven-year period. This thesis develops multiple time series models using ten of the eleven years of data to forecast Australian Regular Army separation numbers for the eleventh year. The observed separation numbers of the eleventh year are used to compare the accuracy of each of the models developed. Models developed include moving average, autoregressive, exponential smoothing, Winter's method additive, and autoregressive moving average. This thesis finds that autoregressive integrated moving averages models are the most accurate time series models in predicting separation rates, outperforming the seasonal exponential smoothing and Holtz-Winter models.

THIS PAGE INTENTIONALLY LEFT BLANK

NPS-AM-22-212

ACQUISITION RESEARCH PROGRAM Sponsored report series

A Time Series Analysis of Australian Regular Army Enlisted and Officer Separations

March 2022

Major Timothy Darragh, Australian Army

Thesis Advisors: James J. Fan, Assistant Professor Dr. Simona L. Tick, Senior Lecturer

Department of Defense Management

Naval Postgraduate School

Approved for public release; distribution is unlimited.

Prepared for the Naval Postgraduate School, Monterey, CA 93943

Disclaimer: The views expressed are those of the author(s) and do not reflect the official policy or position of the Naval Postgraduate School, US Navy, Department of Defense, or the US government.

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE OF CONTENTS

I.	INT	RODUCTION1
	A.	BACKGROUND1
	B.	THE END STRENGTH MODEL1
	C.	THESIS OBJECTIVE
		1. Objective
		2. Organization4
II.	LIT	ERATURE REVIEW7
	A.	QUALITATIVE APPROACHES7
	В.	QUANTITATIVE APPROACHES8
III.	DAT	CA AND METHODOLOGY9
	A.	DATA9
	B.	INITIAL DATA PREPARATION AND VALIDATION9
	C.	INITIAL DATA OBSERVATIONS9
	D.	MODEL SELECTION12
	Е.	RENDERING THE TIME SERIES STATIONARY13
	F.	STATUS QUO FORECAST16
	G.	CONSIDERED MODELS17
	H.	MODEL VALIDATION17
	I.	ENLISTED MODELS EVALUATION17
		1. Mean Absolute Percent Error17
		2. Prediction Intervals
		3. Akaike Information Criteria19
	J.	OFFICER MODELS EVALUATION20
		1. Mean Absolute Percent Error20
		2. Prediction Intervals20
		3. Akaike Information Criteria21
IV.	ANA	LYSIS OF RESULTS23
	А.	ENLISTED MODELS RESULTS23
		1. Mean Absolute Percent Error23
		2. Enlisted Models Prediction Intervals24
	B.	OFFICER MODELS RESULTS24
		1. Officer Models Test Set MAPE24
		2. Officer Models Test Set Prediction Intervals25

	C.		D STRENGTH SEPARATION PREDICTION MPARISON	
		1.	Soldier Models Prediction	
		2.	Officer Models Prediction	
V.	SUM	MARY	Y AND RECOMMENDATIONS	27
	А.	SUM	MMARY	27
	B.	REC	COMMENDATIONS	27
	C.	REC	COMMENDATIONS FOR FURTHER STUDY	28
		1.	Cost-Benefit Analysis of Separations	28
		2.	Machine Learning	28
		3.	Time Series by Rank and Specialization	28
		4.	Correlation of Enlistments with Separations	29
			NLISTED SEASONALLY ADJUSTED MA1	
			NLISTED SEASONALLY ADJUSTED ART NLISTED WINTER'S METHOD (ADDITIVE)	
APPI	ENDIX	E. EN	NLISTED SEASONAL EXPONENTIAL SMOOTHING	47
APPI	ENDIX	F. OF	FFICERS' SEASONALLY ADJUSTED ARMA(1,1)	51
APPI	ENDIX	G. OF	FFICERS' WINTER'S METHOD (ADDITIVE)	55
APPI	ENDIX	H. OF	FFICERS' SEASONAL EXPONENTIAL SMOOTHING	59
LIST	OF RE	FERI	ENCES	63

LIST OF FIGURES

Figure 1.	The Quit Rate and Labor Market Tightness. Source: Ehrenberg and Smith (2017)
Figure 2.	Time Series Enlisted Separations10
Figure 3.	Time Series Officer Separations10
Figure 4.	Correlogram of Enlisted Separations Time Series11
Figure 5.	Correlogram of Officer Separations Time Series12
Figure 6.	Seasonal Adjusted Enlisted Separations Time Series14
Figure 7.	Seasonal Adjusted Officer Separations Time Series14
Figure 8.	Seasonal Adjusted Enlisted Time Series Correlogram15
Figure 9.	Seasonal Adjusted Officer Time Series Correlogram16
Figure 10.	Enlisted Seasonally Adjusted ARMA(1,1) Model Summary and Parameter Estimates
Figure 11.	Enlisted Seasonally Adjusted ARMA(1,1) Forecast
Figure 12.	Enlisted Seasonally Adjusted ARMA(1,1) Correlogram—Test for Uncorrelated Residuals
Figure 13.	Enlisted Seasonally Adjusted ARMA(1,1)—Test for Normally Distributed Residuals
Figure 14.	Enlisted Seasonally Adjusted ARMA (1,1)—Test for Constant Variance of Residuals
Figure 16.	Enlisted Seasonally Adjusted MA1 Model Summary and Parameter Estimates
Figure 17.	Enlisted Seasonally Adjusted MA1 Forecast
Figure 18.	Enlisted Seasonally Adjusted MA1 Correlogram—Test for Uncorrelated Residuals
Figure 19.	Enlisted Seasonally Adjusted MA1—Test for Normally Distributed Residuals

Figure 20.	Enlisted Seasonally Adjusted MA1—Test for Constant Variance of Residuals
Figure 21.	Enlisted Seasonally Adjusted AR1 Model Summary and Parameter Estimates
Figure 22.	Enlisted Seasonally Adjusted AR 1 Forecast
Figure 23.	Enlisted Seasonally Adjusted AR1—Test for Uncorrelated Residuals40
Figure 24.	Enlisted Seasonally Adjusted AR1—Test for Normally Distributed Residuals
Figure 25.	Enlisted Seasonally Adjusted AR1—Test for Constant Variance of Residuals
Figure 26.	Enlisted Winter's Method (Additive) Model Summary and Parameter Estimates
Figure 27.	Enlisted Winter's Method (Additive) Forecast43
Figure 28.	Enlisted Winter's Method (Additive)—Test for Uncorrelated Residuals
Figure 29.	Enlisted Winter's Method (Additive)—Test for Normally Distributed Residuals
Figure 30.	Enlisted Winter's Method (Additive)—Test for Constant Variance of Residuals
Figure 31.	Enlisted Seasonal Exponential Smoothing Model Summary and Parameter Estimates
Figure 32.	Enlisted Seasonal Exponential Smoothing Model Forecast47
Figure 33.	Enlisted Seasonal Exponential Smoothing Model—Test for Uncorrelated Residuals
Figure 34.	Enlisted Seasonal Exponential Smoothing Model—Test for Normally Distributed Residuals49
Figure 35.	Enlisted Seasonal Exponential Smoothing Model—Test for Constant Variance of Residuals
Figure 36.	Officers' Seasonally Adjusted ARMA(1,1) Model Summary and Parameter Estimates
Figure 37.	Officers' Seasonally Adjusted ARMA(1,1) Forecast

Figure 38.	Officer's Seasonally Adjusted ARMA(1,1)—Test for Uncorrelated Residuals	52
Figure 39.	Officers' Seasonally Adjusted ARMA(1,1)—Test for Normally Distributed Residuals	53
Figure 40.	Officers' Seasonally Adjusted ARMA(1,1)—Test for Constant Variance of Residuals	54
Figure 41.	Officer's Winter's Method (Additive) Model Summary and Parameter Estimates	55
Figure 42.	Officers' Winter's Method (Additive) Model Summary and Parameter Estimates	55
Figure 43.	Officer's Winter's Method (Additive)—Test for Uncorrelated Residuals	56
Figure 44.	Officers' Winters' Method (Additive)—Test for Normally Distributed Residuals	57
Figure 45.	Officer's Winter's Method (Additive)—Test for Constant Variance of Residuals	58
Figure 46.	Officers' Seasonal Exponential Smoothing Model Summary and Parameter Estimates	59
Figure 47.	Officers' Seasonal Exponential Smoothing Model Forecast	59
Figure 48.	Officers' Seasonal Exponential Smoothing Model—Test for Uncorrelated Residuals	60
Figure 49.	Officers' Seasonal Exponential Smoothing Model—Test for Normally Distributed Residuals	61
Figure 50.	Officers' Seasonal Exponential Smoothing Model—Test for Constant Variance of Residuals	62

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF TABLES

Table 1.	Seasonal Component of Separation Time Series	.13
Table 2.	Enlisted Time Series Models MAPE	.18
Table 3.	Enlisted Models Prediction Intervals	.19
Table 4.	DF and AIC of Enlisted Models	.19
Table 5.	Officer Model MAPE	.20
Table 6.	Officer Models Prediction Intervals	.20
Table 7.	Officer Model DF and AIC	.21
Table 8.	Enlisted Models Test Set MAPE	.23
Table 9.	Enlisted Models Test Set Prediction Intervals	.24
Table 10.	Officer Models Test Set MAPE	.25
Table 11.	Officer Models Test Set Prediction Intervals	.25
Table 12.	Soldier Model Prediction	.26
Table 13.	Officer Model Predictions	.26

THIS PAGE INTENTIONALLY LEFT BLANK

LIST OF ACRONYMS AND ABBREVIATIONS

ADF	Australian Defence Force
AFS	Average Funded Strength
AIC	Akaike Information Criteria
ARA	Australian Regular Army
ARIMA	Autoregressive Integrated Moving Average
DPG	Defence People Group
DSWPA	Defence Strategic Workforce Planning and Analysis
FY	Financial Year
MAPE	Mean Absolute Percentage Error

THIS PAGE INTENTIONALLY LEFT BLANK

EXECUTIVE SUMMARY

The Defence People Group (DPG) has the responsibility to the Australian Government of "delivering integrated people systems and building a capable workforce" (Australian Government Department of Defence, 2022). As such, they are the primary stakeholder with respect to recruitment and separation within the Australian military services. The accurate prediction of Australian Regular Army (ARA) separations is a problem that has been recently identified because of the COVID-19 pandemic. This thesis looks to explore the use of time series analysis in estimating ARA separations.

The Australian Regular Army observed an unusual reduction in separation numbers for March, April, and May in 2020, correlated with increasing COVID-19 restrictions introduced by the Australian Federal and State governments. This subsequently led to an increase in scrutiny over workforce modeling, in particular the current Monte Carlo simulation method of forecasting separation rates. Combined with the limited academic writing on organizational separation modeling, the idea of this thesis was born.

As described by Ragsdale (2019), a "time series is a set of observations on a quantitative variable collected over time" (p. 566) and "time series analysis involves trying several modeling techniques on a given data set and evaluating how well they explain the past behavior of the time series variable (pp. 567–568). In the context of this thesis, the times series variable is the monthly separation rate of ARA full-time personnel.

At the commencement of the financial year of 2020–2021, the Monte Carlo simulation model used by DPG predicted 2,885 full-time ARA separations, 624 less than the 3,509 realized. Results of this thesis find that using Autoregressive Integrated Moving Average (ARIMA) models a prediction of 3,196 separations would have been forecasted. This represents a greater than 50% increase in accuracy of using time series analysis against the status quo Monte Carlo simulation.

Improving the accuracy of predicting attrition within the Australian Regular Army helps manpower planners direct their priorities. Attrition inevitably drives recruitment, and inaccurate predictions of separations will lead to inefficiencies in the respective recruitment

targets set. Using time series modeling at the commencement of FY2020–2021 could have potentially assisted DPG by increasing their recruitment targets by the difference of 311 personnel.

The data used to conduct time series analysis was personnel movement records from 1 July 2010 to 1 July 2021 obtained from the Defence People Group. This data was aggregated and examined and developed into time series data. Seasonal Exponential Smoothing, Holtz-Winter's Additive and ARIMA models were developed from a training set consisting of observations from 1 July 2010 to 30 June 2020. These models were then used to provide separation predictions on the test set spanning 1 July 2020 to 30 June 2021. ARIMA models outperformed the Seasonal Exponential Smoothing and Holtz-Winter's models by providing a prediction of separation numbers closer to those observed.

Due to the uniqueness of FY20–21, which was impacted by the COVID-19 pandemic, the same methodology was applied to construct and validate models on prior FYs. Conducting time series on the subsequent years further reinforced the predictive power of ARIMA models for the Australian Regular Army.

References

- Australian Government Department of Defence. (2022). *Defence people group*. https://www.defence.gov.au/about/people-group
- Ragsdale, C. (2019). Spreadsheet modeling and decision analysis: A practical introduction to business analytics (8th edition). Cengage India.

I. INTRODUCTION

A. BACKGROUND

The Australian Government's Department of Defence (2020a, 2020b) outlines in the Defence Strategic Update and Force Structure Plan the requirement to increase the size of the Australian Regular Army personnel to be able to meet future capability requirements. In particular, the Defence Force Structure plan (p. 103) seeks to see "an initial increase in Australian Defence Force (ADF) and Australian Public Service (APS) personnel over the next four years, and longer-term growth across the next two decades." The Australian Defence Force and the Australian Regular Army conduct manpower planning and analysis to meet the requirements set out in these documents. In meeting end strength, the Australian Regular Army is allowed +/- 1% of the government mandated number.

The Force Structure Plan 2020 was released during the COVID-19 pandemic. The COVID-19 pandemic has seen an increase in uncertainty around employment and economic conditions across the globe. The legacy Monte Carlo simulation model used by workforce planners previously was unable to provide the necessary accuracy in predicting separations and this was further exacerbated by the "shocks" to the manpower system.

The purpose of this thesis is to develop a model to assist military manpower planners in predicting Australian Regular Army separation and meeting end-strength requirements.

B. THE END STRENGTH MODEL

Manpower planning is an important organizational function. Having the right people, at the right place, at the right time is essential to being able to achieve an organization's mission. Militaries across the globe are directed by governments to provide capability in the projection of combat power. Failure to meet manpower requirements adds to the risk of not achieving capability. On the other hand, surpassing personnel requirements results in resources being used inefficiently and money being redirected from other sources to pay for other employment within organizations. Since accurately

predicting end-strength directly effects the efficient allocation of resources, militaries have an inherent interest in developing and using accurate models.

The number of personnel within the force at a given time is defined as the end strength. For example, if there are 30,000 personnel employed within the ARA on 30 June 2021, we say that the end strength for Financial Year 2020–2021 (FY20–21) is 30,000. End strength for the purposes of this thesis is the number of full-time personnel in the ARA at the end of a given financial year. The end-strength formula is given by:

$$Current \ End - Strength + E[Accessions] - E[Losses] = E[End - Strength]$$
(1)

For the purposes of predicting end strength, the assumption is made that accessions are relatively reliable and that the most important component of meeting end strength in any given year is being able to accurately forecast the number of losses. This assumption is made because of the organizational size of the Australian Regular Army and that "quit rates tend to decline as firm sizes increase" (Ehrenberg & Smith, 2017, p. 409). Furthermore, combining the size of the organization with economic cyclical effects studies in time series data show that "quit rates tend to rise when the labor market is tight and fall when it is loose" (Ehrenberg & Smith, 2017, p. 411). This time series relationship can be seen in Figure 1.

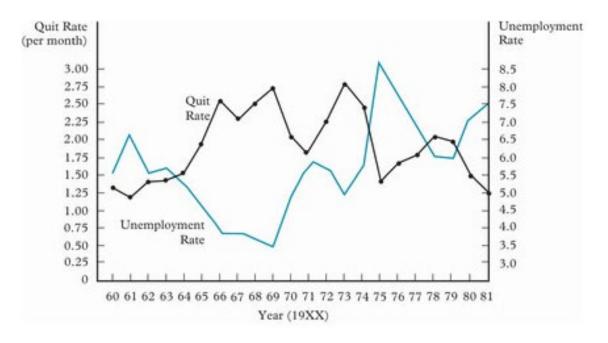


Figure 1. The Quit Rate and Labor Market Tightness. Source: Ehrenberg and Smith (2017).

In the context of end-strength planning, we assume that accessions are relatively reliable, in that recruitment efforts and targets can be determined by organizations after human resource planning has occurred. In meeting end strength, the Australian Regular Army can implement talent management and retention policies to reduce separations. Alternatively, accession targets can be increased. The latter in this case is likely to be more cost-effective.

C. THESIS OBJECTIVE

This section outlines the object of this thesis and well as its organization.

1. Objective

The objective of this thesis is to examine the use of time series analysis of historical Australian Regular Army separations to identify the most accurate and appropriate model for forecasting expected losses. It aims to analyze potential time series models that the Australian Regular Army can use in predicting future end strength and thus adding value

by assisting in meeting capability and reducing resource waste. The following tasks were performed:

- a. Individual accession and loss event records data was provided by DPG and monthly historical loss rates were constructed;
- Defence Workforce Reports, ADF Permanent and Reserve Strength Summaries, and the ADF AFS were used to validate the data as well as provide the predictions from the current forecasting technique, Monte Carlo Simulation;
- c. Time series models were constructed;
- d. The models were evaluated using various measures of accuracy;
- e. Analysis was conducted across the various models to identify the most accurate; and
- f. Data splitting was conducted to test the accuracy of the predictions.

2. Organization

This current chapter, Chapter I, provides a background of ARA personnel requirements, end strength planning, and the objective of this thesis, including its organization.

Chapter II contains a review of the literature on end strength and attrition research. It looks at distinguishing between quantitative and qualitative approaches to predicting and investigating attrition.

Chapter III is the methodology. It describes how time series models were developed. Firstly, it describes the data used. Secondly, it describes the time series models developed and their respective forecast of separations.

Chapter IV provides an analysis of the results. It goes into further detail of the models and compares them in a table format. The best candidate modes are then compared using data splitting methods to demonstrate their forecasting potential.

Chapter V provides the recommendations and conclusion on the results and the implications to end-strength planning. Alternative methods and potential future areas for research are recommended in this chapter.

II. LITERATURE REVIEW

Studies into end strength and attrition can be divided into two categories. The first category is qualitative approaches, those that look to answer questions of causation. The second is quantitative approaches, those that look to answer questions of predictions.

A. QUALITATIVE APPROACHES

Qualitative approaches look to address the characteristics, qualities and causes of attrition. Qualitative approaches may look to questions such as those mentioned in Mathis and Jackson (2010, p. 64) if "expenditures in employee leadership development training can be linked to lower employee turnover." Approaches such as multivariate linear regression analysis, logistic and probit regression, and cox proportional hazards regression were investigated in the literature.

Qualitative studies on attrition within the Australian Regular Army are limited. One that was reviewed was Hoglin's (2012, p. viii) research question to "identify those characteristics which can be used to predict the first-term completion of *ab initio* sailors, soldiers, airmen and airwomen in the ADF." This paper looks at first-term attrition, in other words, attrition amongst new recruits and trainees. Through logit and probit models, the paper finds that the strongest predictors of first-term attrition among Australian Regular Army enlistees are the level of education, general aptitude score, psychologist interview score, country of birth, and their previous occupation (p. ix).

Dodds's (2018, p. 41) primary research question was "What are the length of service/survival profiles for RAN Officers and Sailors?" Apart from an analysis into a separate service and specific rank group within that service, Dodds's research differs from my proposed topic in its methodology. Dodds uses Kaplan-Meier and Cox proportional hazards (p. v), with his most relevant conclusion with respect to my proposed topic being that an "economic conditions effect" was observed in their study and that those personnel who joined during the Global Financial Crisis were less likely to separate (p. 128).

Dodds's (2018) and Hoglin's (2012) papers look at separation from an Australian Defence Force perspective and both look at causal factors that can be examined to provide

probabilities that a given individual will attrite. Whilst both these studies are important to decision makers contributing to manpower polices, they do not develop models that predict separation numbers that can be used in providing end-strength forecasts.

B. QUANTITATIVE APPROACHES

Quantitative approaches look to answers questions of "how many" or "what" is being attrited. Time series analysis is the predominate quantitative approach investigated by the literature.

With respect to the use of time series analysis to forecast losses, Sparling's (2005) research ascertained that there was no universal best fit forecasting technique. Sparling developed several time series models to forecast Captain and Major losses within the U.S. Army, and determined that a seasonal exponential smoothing model and a Winter's method-additive model were the best at forecasting for the U.S. Army.

DeWald's (1996) study conducted a time series analysis of U.S. Army enlisted loss rates. This research used four methods: arithmetic mean, exponential smoothing, seasonal exponential smoothing and an autoregressive moving average model. By examining the loss rates due to a "stop loss" policy being implemented as a result of Desert Storm, he concluded that "only the ARMA model could analytically incorporate such external factors into the prediction of loss rates" (p. 42). This finding is particularly relevant to the work of this thesis, given the context of the COVID-19 pandemic and the shocks observed to separation rates that have been observed by manpower planners.

DeWald's research is probably the most pertinent relating to this thesis. In the backdrop of the COVID-19 pandemic, this thesis will look to determine if an ARMA model will provide better forecasts than the seasonal exponential smoothing and Winter's method additive models that were determined to be most accurate by Sparling.

III. DATA AND METHODOLOGY

The purpose of this chapter is to provide an overview of the data used in the forecast model and the methodology used to forecast ARA separations.

A. DATA

Data was provided by the sponsoring organization, the Directorate of Strategic Workforce Planning and Analysis (DSWPA). The data set is comprised of transactional data from ADF Human Resources systems from July 2010 to June 2021. The data had been stripped of Personally Identifiable Information (PII) by DSWPA prior to analysis. Each observation in the data represents an enlistment or separation event for an individual, along with employment and demographical variables.

B. INITIAL DATA PREPARATION AND VALIDATION

Before the data set could be analyzed using time series methods, it had to be prepared and validated. To do this, the data set was cleaned to only include separations of full-time ARA personnel. Once the data set was cleaned, monthly separation numbers starting from July 2010 to June 2021 were formulated into an Excel document. Total separation numbers were validated against the ADF Strength Summary reports produced by DSWPA. Once the cleaned data set had been validated, it was separated into an "officer" and an "enlisted" component. Each of these time series has 132 observations representing individual months, commencing in July 2010 and concluding in June 2021.

C. INITIAL DATA OBSERVATIONS

JMP (pronounced Jump) was the statistical software used to conduct time series analysis for this thesis. JMP's utility of hiding observations from analysis was used in the approach for this research. This in effect creates a training and a test set for the data.

By inputting the time series into JMP and hiding the last 12 observations, we get Figure 2 and Figure 3 for soldier and enlisted separations respectively.

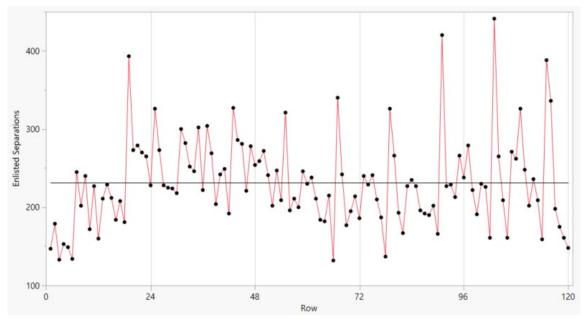


Figure 2. Time Series Enlisted Separations

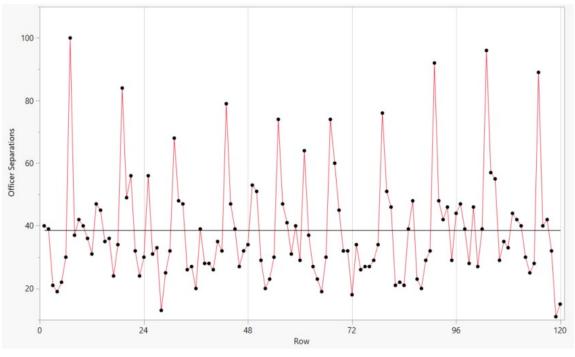


Figure 3. Time Series Officer Separations

Initially inspecting the time series plots, we observe peaks and troughs representing months with high separations and low separations respectively. The correlograms of both

series are then examined to determine if the time series were stationary. The correlograms can be found in Figures 4 and 5.

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	0.1269		1.9822	0.1592	1	0.1269	
2	0.0550		2.3572	0.3077	2	0.0395	
3	-0.0220		2.4178	0.4903	3	-0.0343	
4	0.0714		3.0609	0.5477	4	0.0775	
5	0.0395		3.2593	0.6601	5	0.0246	
6	0.3567		19.5954	0.0033*	6	0.3495	
7	0.0657		20.1541	0.0052*	7	-0.0187	
8	0.0743		20.8750	0.0075*	8	0.0472	1
9	-0.0684		21.4924	0.0106*	9	-0.0769	
10	-0.0434		21.7429	0.0165*	10	-0.0854	
11	-0.0798		22.5989	0.0201*	11	-0.0849	
12	0.5698		66.6067	<.0001*	12	0.5453	
13	-0.0174		66.6483	<.0001*	13	-0.2746	
14	-0.0787		67.5037	<.0001*	14	-0.1462	
15	-0.1396		70.2201	<.0001*	15	-0.0630	
16	-0.0454		70.5108	<.0001*	16	-0.0191	
17	-0.1079		72.1651	<.0001*	17	-0.0522	
18	0.1316		74.6525	<.0001*	18	-0.1679	
19	-0.1057		76.2731	<.0001*	19	-0.1034	
20	-0.0521		76.6709	<.0001*	20	-0.0165	
21	-0.1281		79.0964	<.0001*	21	0.0544	h
22	-0.1229		81.3530	<.0001*	22	-0.0451	
23	-0.1195		83.5083	<.0001*	23	0.1206	
24	0.3632		103.622	<.0001*	24	0.0654	
25	-0.0983		105.112	<.0001*	25	-0.0722	

Figure 4. Correlogram of Enlisted Separations Time Series

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000			,	0	1.0000	
1	0.2086		5.3558	0.0207*	1	0.2086	
2	-0.0584		5.7788	0.0556	2	-0.1066	
3	-0.3192		18.5287	0.0003*	3	-0.2998	
4	-0.2876		28.9700	<.0001*	4	-0.1903	
5	-0.0514		29.3059	<.0001*	5	-0.0004	
6	0.2953		40.5077	<.0001*	6	0.2353	
7	-0.0026		40.5086	<.0001*	7	-0.2688	
8	-0.1766		44.5832	<.0001*	8	-0.2642	
9	-0.2629		53.6988	<.0001*	9	-0.1148	
10	-0.0734		54.4148	<.0001*	10	0.0849	
11	0.1690		58.2491	<.0001*	11	0.0688	
12	0.6927		123.294	<.0001*	12	0.5526	
13	0.1438		126.124	<.0001*	13	-0.1308	
14	-0.0753		126.908	<.0001*	14	-0.0325	
15	-0.3425		143.262	<.0001*	15	-0.0437	
16	-0.3093		156.728	<.0001*	16	-0.0218	
17	-0.0931		157.961	<.0001*	17	-0.0987	
18	0.2630		167.887	<.0001*	18	-0.0229	
19	-0.0261		167.986	<.0001*	19	-0.1717	
20	-0.1802		172.739	<.0001*	20	-0.2055	
21	-0.2799		184.325	<.0001*	21	-0.1478	
22	-0.1016		185.866	<.0001*	22	-0.0619	
23	0.1115		187.742	<.0001*	23	-0.1429	
24	0.5816		239.328	<.0001*	24	0.0676	
25	0.1417		242.422	<.0001*	25	-0.0408	

Figure 5. Correlogram of Officer Separations Time Series

The correlograms are inspected visually to determine statistically significant relationships between observations in the time series. Looking at the autocorrelation function (the left-hand side of the correlograms), significant autocorrelation can be found where the bars exceed the blue bands. On the enlisted time series, we see autocorrelation at lags 6, 12, and 24—our time series is not stationary. Bi-annual separation behavior is being observed in this time series. Similarly, the correlogram for officer separations shows peaks at 3, 6, 9, 12, 15, and 24, meaning that this time series is also not stationary due to seasonality. In the case of officers, we observe a quarter annual relationship between separations.

D. MODEL SELECTION

From observing the time series plots and the correlograms, there are two methods by which we can construct a model. Firstly, we can use a model that accounts for

seasonality and trends, such as a seasonal smoothing or Holtz-Winter's additive model. Alternatively, we can remove the seasonality component from the series, thereby creating an officer and an enlisted time series with the seasonality removed. Removing seasonality from the time series, we render it stationary, and thus able to be analyzed using ARIMA models.

E. RENDERING THE TIME SERIES STATIONARY

Both the enlisted and the officer time series were rendered stationary using Excel. This was done by calculating the average of the separations by month for the 10 years of data within the training set. The resulting seasonal component can be found in Table 1.

Month	Enlisted Seasonal Component	Officer Seasonal Component	Total Seasonal Component
July	256	46	302
August	233	39	271
September	203	29	232
October	205	26	231
November	212	26	237
December	169	32	201
January	350	83	433
February	258	48	306
March	227	46	272
April	202	32	234
May	246	29	275
June	216	28	244

 Table 1.
 Seasonal Component of Separation Time Series

To interpret this table, we can see that the month with the highest average enlisted separation is January, with 350. Removing the above seasonal component from the time series, we now form two additional time series—a seasonally adjusted enlisted separations time series, and a seasonally adjusted officer separations time series. Figures 6 and 7 depict the resultant time series with the seasonality component removed. We observe on the y-axis that the range of numbers has reduced as a result of removing the seasonal component shown in Table 1; what we are left with now is the signal from our data set.

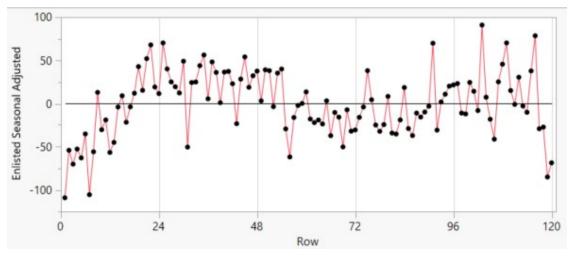


Figure 6. Seasonal Adjusted Enlisted Separations Time Series

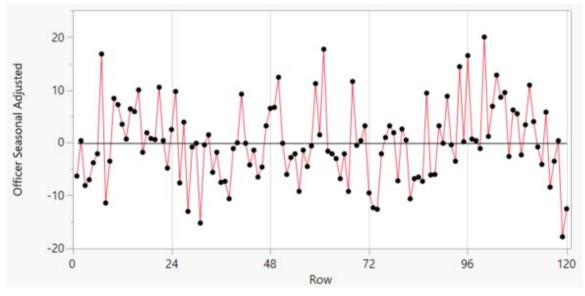


Figure 7. Seasonal Adjusted Officer Separations Time Series

Figures 8 and 9 depict the resulting correlograms from the seasonally adjusted enlisted and officer time series respectively. We note that the significant autocorrelations have been removed from the previous correlograms.

		8642 0 .2 .4 .6 .8	Ljung-Box Q	n.Value	Lag	Dartial	8642 0 .2 .4 .6 .1
0	1.0000		LJung-box Q	p-value	0	1.0000	
1	0.4598		26.0145	<.0001*			
1			26.0145		1	0.4598	
2	0.2969		36.9536	<.0001*	2	0.1084	
3	0.2999		48.2072	<.0001*	3	0.1646	
4	0.2897		58.8011	<.0001*	4	0.1111	
5	0.2935		69.7649	<.0001*	5	0.1164	
6	0.3021		81.4875	<.0001*	6	0.1098	
7	0.2744		91.2443	<.0001*	7	0.0574	
8	0.1614		94.6494	<.0001*	8	-0.0797	
9	0.1220		96.6135	<.0001*	9	-0.0409	
10	0.0420		96.8479	<.0001*	10	-0.1304	
11	0.0166		96.8849	<.0001*	11	-0.0730	
12	0.1335		99.3009	<.0001*	12	0.1205	
13	0.1354		101.810	<.0001*	13	0.0514	
14	-0.0227		101.880	<.0001*	14	-0.1307	
15	-0.0084		101.890	<.0001*	15	0.0315	
16	-0.0083		101.900	<.0001*	16	-0.0085	
17	-0.1245		104.104	<.0001*	17	-0.1533	
18	-0.1393		106.891	<.0001*	18	-0.0950	
19	-0.0782		107.778	<.0001*	19	-0.0037	
20	-0.0985		109.197	<.0001*	20	-0.0298	
21	-0.1072		110.897	<.0001*	21	0.0151	1
22	-0.1948		116.568	<.0001*	22	-0.1083	
23	-0.1319		119.195	<.0001*	23	0.1195	
24	-0.1302		121.778	<.0001*	24	-0.0016	
25	-0.0701		122.535	<.0001*	25	0.0498	

Figure 8. Seasonal Adjusted Enlisted Time Series Correlogram

1		ic Diagnostics	Liver Barro	- Mahur	1.00	Dentist	964 20 246
-		8642 0 .2 .4 .6 .8	Ljung-Box Q	p-value	Lag		8642 0 .2 .4 .6 .
0	1.0000				0	1.0000	
1	0.1680	r 🖻	3.4737	0.0624	1	0.1680	
2	0.1717		7.1326	0.0283*	2	0.1477	
3	0.1588		10.2884	0.0163*	3	0.1151	
4	-0.0024		10.2892	0.0358*	4	-0.0686	
5	0.1038		11.6615	0.0397*	5	0.0773	
6	-0.0137		11.6857	0.0694	6	-0.0488	
7	0.0661		12.2514	0.0926	7	0.0653	
8	0.1211		14.1668	0.0775	8	0.0944	
9	0.1780		18.3479	0.0313*	9	0.1624	
10	0.0854		19.3181	0.0364*	10	-0.0150	
11	0.0621		19.8359	0.0476*	11	-0.0077	
12	-0.1178		21.7174	0.0408*	12	-0.2031	
13	-0.2070		27.5787	0.0104*	13	-0.2105	
14	-0.0325		27.7246	0.0155*	14	0.0321	
15	-0.1118		29.4676	0.0140*	15	-0.0023	
16	-0.1752		33.7874	0.0058*	16	-0.1578	
17	-0.1108		35.5316	0.0053*	17	-0.1004	
18	-0.0229		35.6066	0.0079*	18	0.0383	
19	-0.0805		36.5471	0.0090*	19	-0.0657	
20	-0.0588		37.0528	0.0115*	20	0.0090	
21	-0.1378		39.8623	0.0077*	21	-0.0208	
22	-0.1703		44.1938	0.0034*	22	-0.0550	
23	-0.1847		49.3416	0.0011*	23	-0.1275	
24	-0.2346		57.7331	0.0001*	24	-0.1230	
25	-0.0816		58.7599	0.0002*	25	0.0161	

Figure 9. Seasonal Adjusted Officer Time Series Correlogram

With our newly created seasonally adjusted time series, we are now able to develop ARIMA models for analysis.

F. STATUS QUO FORECAST

An additional forecast was created for both the enlisted and officer time series using the separations from the previous 12 months and using that as a prediction for the next 12 months. This is useful because it provides a baseline for comparison on the time series methods used above.

G. CONSIDERED MODELS

There are an extensive number of time series models that can be selected using JMP analysis. The eight models examined by this thesis include:

- 1. Enlisted Seasonally Adjusted ARMA(1,1): Appendix A
- 2. Enlisted Seasonally Adjusted MA1: Appendix B
- 3. Enlisted Seasonally Adjusted AR1: Appendix C
- 4. Enlisted Winter's (Additive): Appendix D
- 5. Enlisted Seasonal Exponential Smoothing: Appendix E
- 6. Officer Seasonally Adjusted ARMA(1,1): Appendix F
- 7. Officer Winter's Method (Additive): Appendix G
- 8. Officer Seasonal Exponential Smoothing: Appendix H

H. MODEL VALIDATION

To validate a model, there are a number of requirements. For all models, the residuals are required to be uncorrelated, normally distributed and have constant variance. Additionally, the ARIMA models. being the Enlisted ARMA(1,1), MA1, AR1 and the Officer ARMA(1,1). are required to have statistically significant parameter coefficients. Model summaries, model forecasts and the required residual tests can be seen in the respective appendices. Upon inspection of the residual graphs, we can see that the ARIMA models tend to pass validation more easily, as their residuals demonstrate constant variance.

I. ENLISTED MODELS EVALUATION

1. Mean Absolute Percent Error

The Mean absolute percent error (MAPE) is useful in that it provides us with an average of the difference between the models' forecasted separation and actual separation. A MAPE of 10%, for example, means that on average our model forecasts within 10% of

the actual separation rate. The MAPE can be used to determine the best models to use. The MAPE for the enlisted model training sets can be found below in Table 2.

Enlisted Model	МАРЕ	MAPE (Seasonality Adjusted)
Enlisted Seasonally Adjusted ARMA(1,1)	201.67	11.06
Enlisted Seasonally Adjusted MA1	116.87	11.71
Enlisted Seasonally Adjusted AR1	146.88	11.4
Enlisted Winter's Method (Additive)	12.12	
Enlisted Seasonal Exponential Smoothing	12.44	

Table 2. Enlisted Time Series Models MAPE

We can observe in Table 2 that the most accurate enlisted model for the training set was the seasonally adjusted ARMA(1,1) with a MAPE of 11.06%.

2. Prediction Intervals

Models developed in JMP provide a prediction interval that can be used to assess the accuracy and precision of the model. Precision is assessed by looking at the magnitude of the range between the lower and upper prediction interval. Accuracy can be determined by examining the percentage of actual separation numbers that falls within the prediction intervals. The performance of each enlisted model can be seen in Table 3.

Enlisted Model	Range of Prediction Interval	Number of Intervals	Within Prediction Interval	Percentage
Enlisted Seasonally Adjusted ARMA(1,1)	125	120	112	93.33%
Enlisted Seasonally Adjusted MA1	134	120	114	95.00%
Enlisted Seasonally Adjusted AR1	129	120	111	92.50%
Enlisted Winter's Method (Additive)	140	109	105	96.33%
Enlisted Seasonal Exponential Smoothing	140	107	100	93.46%

 Table 3.
 Enlisted Models Prediction Intervals

From Table 3 we can see that the Enlisted Winter's Method (Additive) has the highest number of observations contained within its prediction interval spanning a range of 140 numbers. However the ARMA(1,1) contains the tightest prediction interval range, and with 93.33% of observations falling into this range, this might be considered more useful at providing monthly figures than the other models. A trade-off between having a smaller range of numbers and accuracy needs to be taken into account when deciding which model to use.

3. Akaike Information Criteria

The Akaike information criteria (AIC) is another method that can be used in determining the best models to use for predictions. The lower the AIC, generally, the better the model. Table 4 shows the performance of the enlisted models with respect to their degrees of freedom (DF) and AIC.

Table 4.	DF and AIC of Enlisted Models
----------	-------------------------------

Enlisted Model	DF	AIC
Enlisted Seasonally Adjusted ARMA(1,1)	117	1175.76
Enlisted Seasonally Adjusted MA1	118	1176.17
Enlisted Seasonally Adjusted AR1	118	1182.89
Enlisted Winter's Method (Additive)	104	1078.68
Enlisted Seasonal Exponential Smoothing	105	1078.91

Here we observe that the Winter's method and the Seasonal Exponential Smoothing model are considered the best models with respect to AIC.

J. OFFICER MODELS EVALUATION

1. Mean Absolute Percent Error

Table 5 displays the results of the officer models with respect to their MAPE. From the table we can see that the Seasonally Adjusted ARMA(1,1) is considered the most accurate model with a MAPE of 16.85%.

Officer Model	MAPE	MAPE (Seasonality Adjusted)
Officer Seasonally Adjusted ARMA(1,1)	259.77	16.85
Officer Winter's Method (Additive)	21.73	
Officer Seasonal Exponential Smoothing	21.73	

Table 5.Officer Model MAPE

2. Prediction Intervals

Prediction intervals for the officer models on the training set can be seen in Table 6.

Table 6.	Officer Models Prediction Intervals
----------	-------------------------------------

Officer Model	Range of Prediction Intervals	Number of Intervals	Within Prediction Interval	Percentage
Officer Seasonally Adjusted ARMA(1,1)	27	120	113	94.17%
Officer Winter's Method (Additive)	31	107	98	91.59%
Officer Seasonal Exponential Smoothing	31	107	98	91.59%

We observe in Table 6 that the Seasonally Adjusted ARMA(1,1) model has both the tightest prediction interval range and the highest percentage of observations contained within.

3. Akaike Information Criteria

The AIC for the Officer Models on the training set can be seen in Table 7.

Officer Model	DF	AIC
Officers' Seasonally Adjusted ARMA(1,1)	117	814.08
Officers' Winter's Method (Additive)	104	772.48
Officers' Seasonal Exponential Smoothing	105	770.48

Table 7.Officer Model DF and AIC

Using the AIC, we observe that the Officer Seasonal Exponential Smoothing Model performs the best.

THIS PAGE INTENTIONALLY LEFT BLANK

IV. ANALYSIS OF RESULTS

This chapter gives the results obtained from the JMP Time series forecasting system. Specifically, it looks to compare the results of the models obtained in the methodology section of this paper against the test set. Looking at the results of the time series models with respect to the actual values will give us the ability to discuss managerial expectations.

To examine the performance of the models created against the test set, we can use the mean absolute percent error (MAPE) and the prediction interval. Additionally, we can compare our yearly forecast for each of the time series and compare these to the actual separation numbers. In this respect, the null hypothesis is that the time series models developed are equal to or less accurate in estimating separation numbers than the current Monte Carlo simulation method employed by DPG. This hypothesis is tested by taking the percent error of the models with respect to realized separation numbers.

A. ENLISTED MODELS RESULTS

1. Mean Absolute Percent Error

Table 8 displays the MAPE for the Enlisted Models on the test set.

Test Set Performance	МАРЕ	MAPE (Seasonality Adjusted)
Enlisted Seasonally Adjusted ARMA(1,1)	248.59%	23.52%
Enlisted Seasonally Adjusted MA1	100.14%	17.61%
Enlisted Seasonally Adjusted AR1	130.85%	17.77%
Enlisted Winter's Method (Additive)	35.06%	
Enlisted Seasonal Exponential Smoothing	27.91%	

Table 8.Enlisted Models Test Set MAPE

From Table 8 we observe that the best performing models are the MA1 and the AR1 with a MAPE of 17.61% and 17.77% respectively. As expected, the MAPE for the test set is larger than the MAPE from the training set. We also observe a substantial increase in the MAPE for the Winter's Method and the Seasonal Exponential Smoothing model on

the magnitude of 23 and 15 percentage points respectively, compared to the increase in the MAPE of 6% to 125 for the ARIMA models. This is evidence of the fact that the ARIMA models can more accurately forecast separation into the future.

2. Enlisted Models Prediction Intervals

Table 9 displays the prediction intervals for the models on the test set. We note for all models an increase in the range is a result in the decreasing confidence of the model to predict values further into the future. Even with the larger range of values, Winter's Method and the Seasonal Exponential Smoothing model perform poorly, with only 41.67% and 58.33% of the observed separation rates falling within the prediction interval. Combining these results with those in Appendix D and E, we see that this performance is likely a result of an overfitting of the models on the training set. The ARIMA models did substantially better with the AR1 and MA1, containing 83.33% of the observations within the model's prediction intervals.

Enlisted Model	Range (Average)	Number of Intervals	Within Prediction Interval	Percentage
Enlisted Seasonally Adjusted ARMA(1,1)	143	12	9	75.00%
Enlisted Seasonally Adjusted MA1	144	12	10	83.33%
Enlisted Seasonally Adjusted AR1	148	12	10	83.33%
Enlisted Winter's Method (Additive)	164	12	5	41.67%
Enlisted Seasonal Exponential Smoothing	157	12	7	58.33%

 Table 9.
 Enlisted Models Test Set Prediction Intervals

B. OFFICER MODELS RESULTS

1. Officer Models Test Set MAPE

Table 10 shows the performance of the Officer models MAPE on the test set. Here we can see that the Seasonally Adjusted ARMA(1,1) is the model with the smallest MAPE at 20.29%.

Officer Model	MAPE	MAPE (Seasonality Adjusted)
Officers' Seasonally Adjusted ARMA(1,1)	255.58%	20.29%
Officers' Winter's Method (Additive)	24.73%	
Officers' Seasonal Exponential Smoothing	24.70%	

Table 10.Officer Models Test Set MAPE

2. Officer Models Test Set Prediction Intervals

Table 11 displays the performance of the prediction intervals of Officer models on the test set. We see on all three models that the prediction intervals contain 91.67% of the observations. The average range for the ARMA(1,1) of 28 gives additional precision when using this model.

Officer Model	Range (Average)	Number of Intervals	Within Prediction Interval	Percentage
Officers' Seasonally Adjusted ARMA(1,1)	28	12	11	91.67%
Officers' Winter's Method (Additive)	34	12	11	91.67%
Officers' Seasonal Exponential Smoothing	34	12	11	91.67%

Table 11. Officer Models Test Set Prediction Intervals

C. END STRENGTH SEPARATION PREDICTION COMPARISON

1. Soldier Models Prediction

Table 12 displays the yearly predictions for each of the models selected. Looking at the percent error of the financial year separations, the best prediction of separation for FY20-21 was using the yearly separation numbers for FY19–20. The MA1 was the time series model that provided the best prediction of total separations with an error of 9.91%.

Enlisted Model	Predicted Separations	Difference Actual Separations	Percent Error	Percent Error of total Population
Legacy Model	2464	-595	19.45%	2.51%
Enlisted Seasonally Adjusted ARMA(1,1)	2419	-640	20.92%	2.70%
Enlisted Seasonally Adjusted MA1	2756	-303	9.91%	1.28%
Enlisted Seasonally Adjusted AR1	2689	-370	12.10%	1.56%
Enlisted Winter's Method (Additive)	2160	-899	29.39%	3.79%
Enlisted Seasonal Exponential Smoothing	2413	-646	21.12%	2.73%
Using Previous Years Separation Numbers	2786	-273	8.92%	1.15%
Actual Separations	3059			
Total Enlisted Population	23691			

Table 12. Soldier Model Prediction

2. Officer Models Prediction

Table 13 displays the yearly predictions for each of the models selected. For the officer models the ARMA(1,1) provided the most accurate number of predicted separations for FY20–21 with an error of 2.22%. The time series model in this instance out-performed the prediction of using FY19-20 separations, which had an error of 2.67%.

Officer Model	Predicted Separations	Difference Actual Separations	Percent Error	Percent Error of total Population
Legacy Model	421	-29	6.44%	0.45%
Officers' Seasonally Adjusted ARMA(1,1)	440	-10	2.22%	0.15%
Officers' Winter's Method (Additive)	388	-62	13.78%	0.96%
Officers' Seasonal Exponential Smoothing	388	-62	13.78%	0.96%
Using Previous Years Separation Numbers	438	-12	2.67%	0.19%
Actual Separations	450			
Total Officer Population	6480			

Table 13. Officer Model Predictions

V. SUMMARY AND RECOMMENDATIONS

A. SUMMARY

This thesis addressed a requirement by DPG to develop models to assist in estimating separation within the ARA. As a result of the recent performance of the current Monte Carlo simulation method employed by workforce modelers, further research was requested into looking at time series analysis as an alternative to improve the accuracy of separation forecasts. This thesis has found that time series can provide more accurate estimations and consequently improve the inputs into human resource planning.

This thesis developed multiple manpower models to forecast separations from the Australian Regular Army. The transactional human resources data provided by DSWPA was transformed into time series models, with the results compared to historically reported strength states to ascertain the accuracy of the results.

The seasonally adjusted MA1 model for enlisted personnel and the seasonally adjusted ARMA(1,1) model provided the most accurate prediction of separation rates. Additionally, both these models provided the most managerially useful result, by having the smallest prediction intervals that performed best on the test set.

The ARIMA models performed better with respect to the residuals being uncorrelated, normally distributed and with constant variance.

B. RECOMMENDATIONS

I recommend that the Australian Regular Army uses ARIMA models to forecast separation rates. When used to predict the next 12 months of separation rates, the ARIMA models outperformed the Seasonal Exponential Smoothing and Holtz-Winter's models both in the FY20–21 and in previous FYs.

The improved accuracy of estimations will assist DPG in setting recruitment targets to compensate for attrition. It is not within the scope of this thesis to calculate the cost savings to the ARA. However, by using time series models, the improvement in

organizational turnover planning will assist the ARA in achieving its capability requirements.

The use of this method is also preferred over the current method of using the Crystal Ball Excel add-in. The Crystal Ball add-in is an additional expense for the ARA whilst ARIMA modeling can be done in open-source software such as The R Project for Statistical Computing. This effectively provides the ARA with small cost savings in software expenses.

C. RECOMMENDATIONS FOR FURTHER STUDY

1. Cost-Benefit Analysis of Separations

Noting the limited accuracy of predictions, I recommend that a cost-benefit analysis (CBA) is conducted to determine the costs of overpredicting separations against underpredicting separations. Given the assumption that separation numbers drive future enlistment targets, it would be beneficial if the cost was determined for surpassing funded strength as opposed falling short of funded strength. Such a study would allow consideration of the applicable model, whether it be one that provides a prediction of a larger or lesser magnitude.

2. Machine Learning

It would be beneficial to use an expanded data set to include additional variables such as demographics, service history, trade description, marital status, number of dependents, etc. I recommended that a machine learning approached is tested against current methods and the time series analyses conducted by this research.

3. Time Series by Rank and Specialization

Not all separations are equal to an organization. I recommend that time series methods be applied to specific ranks and specializations to be able to determine the utility of this method in predicting separations of critical trades and occupations.

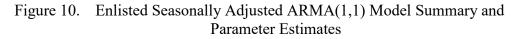
4. Correlation of Enlistments with Separations

Transforming the enlistment data set into time series offers the potential to identify a correlation between enlistments and separations. Research into this would be beneficial to decision makers, by allowing them to see the lag between enlistments and separations.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A. ENLISTED SEASONALLY ADJUSTED ARMA(1,1)

Model S	Summ	ary						
DF				117 St	able	Yes		
Sum of So	uared	nnovations	119505	5.181 In	vertible	Yes		
Sum of So	uared	Residuals	123428	3.154				
Variance I	Estimat	e	1021.4	1181				
Standard	Deviati	on	31.959	5339				
Akaike's 'A	A' Infor	mation Criterio	n 1175.7	6182				
Schwarz's	Bayesi	an Criterion	1184.1	2429				
RSquare			0.2703	7904				
RSquare /	Adj		0.2579	0688				
MAPE			201.66	9157				
MAE			25.07					
-2LogLike	lihood		1169.7	6182				
Parame	ter Es	timates						
							Constant	
Term	Lag	Estimate	Std Error	t Ratio	Prob>	t	Estimate	Mu
AR1	1	0.93837	0.05158	18.19	<.00	01*	-0.6587821	-10.689789
MA1	1	0.65356	0.09916	6.59	<.000	01*		
Intercept	0	-10.68979	16.49180	-0.65	0.51	0.1		



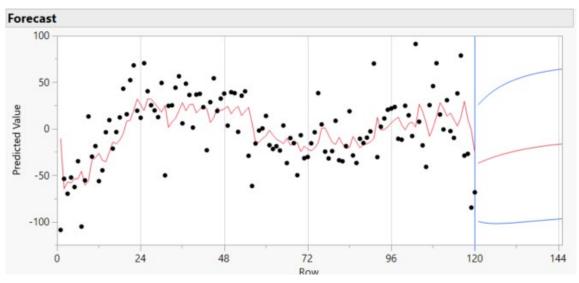


Figure 11. Enlisted Seasonally Adjusted ARMA(1,1) Forecast

ACQUISITION RESEARCH PROGRAM Department of Defense Management Naval Postgraduate School

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	0.0328		0.1323	0.7161	1	0.0328	
2	-0.1476		2.8370	0.2421	2	-0.1489	
3	-0.0602		3.2907	0.3489	3	-0.0510	
4	-0.0078		3.2984	0.5092	4	-0.0267	
5	0.0161		3.3315	0.6490	5	0.0008	
6	0.0901		4.3730	0.6263	6	0.0836	
7	0.1219		6.2969	0.5055	7	0.1215	
8	-0.0242		6.3732	0.6055	8	-0.0038	
9	-0.0373		6.5566	0.6832	9	0.0087	
10	-0.1239		8.5982	0.5706	10	-0.1193	
11	-0.1208		10.5571	0.4811	11	-0.1304	
12	0.1208		12.5351	0.4037	12	0.0821	
13	0.1555		15.8456	0.2576	13	0.0946	
14	-0.0974		17.1546	0.2480	14	-0.1000	
15	0.0086		17.1650	0.3091	15	0.0744	
16	0.0756		17.9690	0.3257	16	0.0934	
17	-0.0901		19.1236	0.3215	17	-0.0605	
18	-0.1176		21.1097	0.2739	18	-0.0984	
19	0.0322		21.2598	0.3226	19	-0.0251	
20	0.0095		21.2731	0.3812	20	-0.0622	
21	-0.0024		21.2740	0.4423	21	-0.0154	
22	-0.1423		24.2991	0.3317	22	-0.1730	
23	-0.0024		24.3000	0.3874	23	0.0551	
24	-0.0154		24.3364	0.4425	24	-0.0106	
25	0.0876		25.5179	0.4337	25	0.0790	

Figure 12. Enlisted Seasonally Adjusted ARMA(1,1) Correlogram—Test for Uncorrelated Residuals

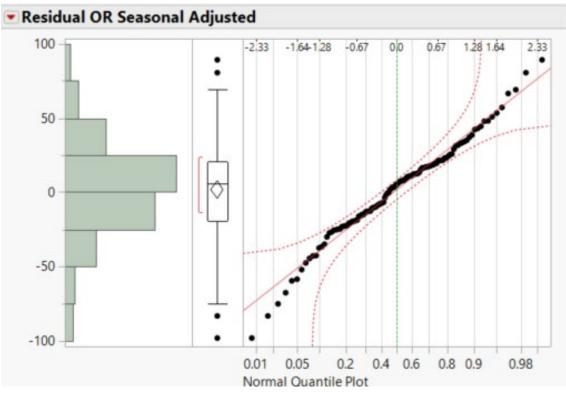


Figure 13. Enlisted Seasonally Adjusted ARMA(1,1)—Test for Normally Distributed Residuals

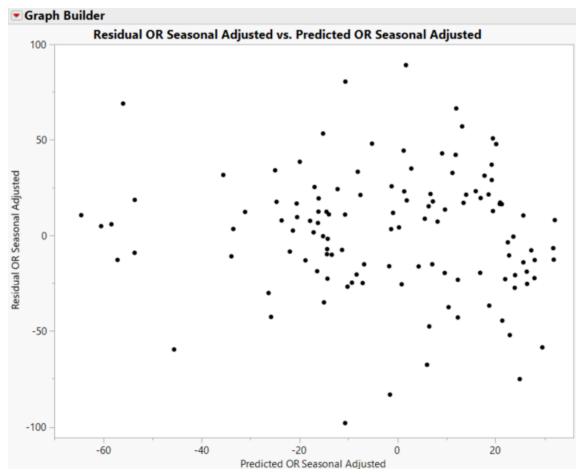


Figure 14. Enlisted Seasonally Adjusted ARMA (1,1)—Test for Constant Variance of Residuals

APPENDIX B. ENLISTED SEASONALLY ADJUSTED MA1

Model S	Sumn	anv						
		iui y						
DF			200000	118 St		Yes		
		Innovations			vertible	Yes		
Sum of So	uared	Residuals	14048	2.569				
Variance 8	Estimat	te	1176.1	7234				
Standard	Deviat	ion	34.29	5369				
Akaike's 'A	A' Infor	mation Criterio	on 1191.1	1296				
Schwarz's	Bayes	ian Criterion	1196.6	8795				
RSquare			0.1695	6526				
RSquare A	Adi		0.1625	2768				
MAPE	(C)		116.87					
MAE			26.153					
-2LogLike	libeed		1187.1					
-2LOGLIKE	inoou		1107.1	1290				
Parame	ter E	stimates						
							Constant	
Term	Lag	Estimate	Std Error	t Ratio	Prob>	> t	Estimate	Mu
MA1	1	-0.4080152	0.076619	-5.33	3 <.00	01*	-0.4434644	-0.4434644
Intercept	0	-0.4434644	4.418246	-0.10	0.92	02		

Figure 16. Enlisted Seasonally Adjusted MA1 Model Summary and Parameter Estimates

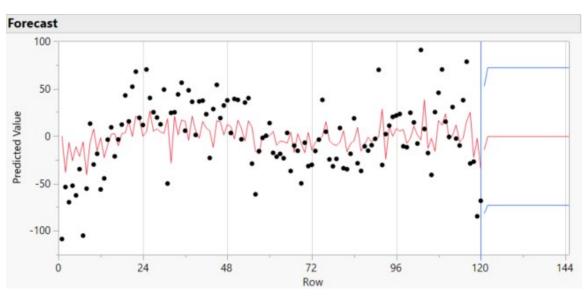


Figure 17. Enlisted Seasonally Adjusted MA1 Forecast

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000		1 .		0	1.0000	
1	0.0544		0.3639	0.5464	1	0.0544	
2	0.2390		7.4531	0.0241*	2	0.2368	
3	0.1666		10.9259	0.0121*	3	0.1528	
4	0.1849		15.2422	0.0042*	4	0.1313	
5	0.1725		19.0297	0.0019*	5	0.1089	
6	0.1819		23.2797	0.0007*	6	0.1048	
7	0.1972		28.3203	0.0002*	7	0.1160	
8	0.0669		28.9053	0.0003*	8	-0.0407	
9	0.0939		30.0682	0.0004*	9	-0.0395	
10	0.0214		30.1289	*8000.0	10	-0.0853	
11	-0.0227		30.1981	0.0015*	11	-0.1330	
12	0.0955		31.4356	0.0017*	12	0.0350	
13	0.1286		33.6978	0.0013*	13	0.1358	
14	-0.0738		34.4504	0.0018*	14	-0.1007	
15	0.0135		34.4759	0.0029*	15	-0.0327	
16	0.0226		34.5479	0.0046*	16	0.0448	
17	-0.0979		35.9105	0.0047*	17	-0.0977	
18	-0.1149		37.8057	0.0041*	18	-0.1544	
19	-0.0073		37.8135	0.0063*	19	-0.0117	
20	-0.0974		39.2009	0.0063*	20	-0.0554	
21	-0.0145		39.2319	0.0092*	21	0.0547	
22	-0.1847		44.3289	0.0032*	22	-0.1264	
23	-0.0301		44.4653	0.0046*	23	0.0602	
24	-0.1228		46.7657	0.0036*	24	0.0284	
25	-0.0121		46.7884	0.0052*	25	0.0398	

Figure 18. Enlisted Seasonally Adjusted MA1 Correlogram—Test for Uncorrelated Residuals

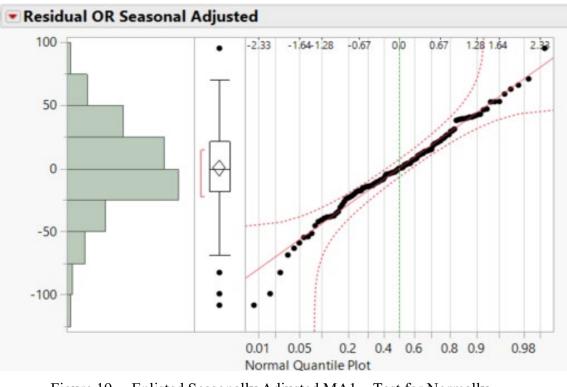


Figure 19. Enlisted Seasonally Adjusted MA1—Test for Normally Distributed Residuals

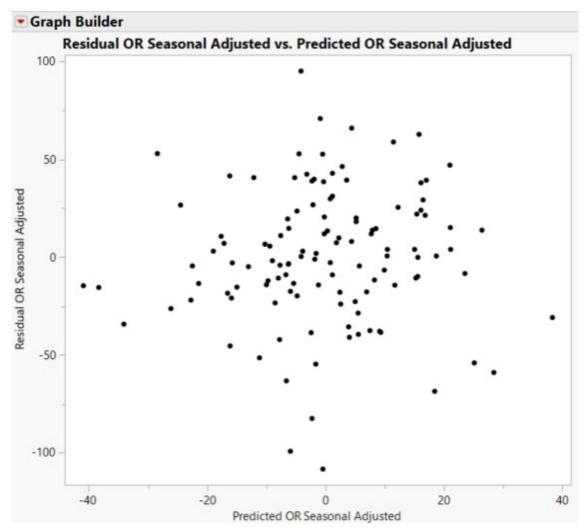


Figure 20. Enlisted Seasonally Adjusted MA1—Test for Constant Variance of Residuals

APPENDIX C. ENLISTED SEASONALLY ADJUSTED AR1

Model S	Summ	ary						
DF				118 St	able	Yes		
Sum of Sq	uared	Innovations	12947	1.621 In	vertible	Yes		
Sum of So	uared	Residuals	132409	9.266				
Variance 8	Estimat	e	1097.2	1713				
Standard	Deviati	on	33.12	4268				
Akaike's 'A	A' Infor	mation Criterio	on 1182.8	8738				
Schwarz's	Bayesi	an Criterion	1188.4	6237				
RSquare			0.2172	8898				
RSquare A	Adj		0.2106	5584				
MAPE			146.88	4739				
MAE			25.842	5464				
-2LogLike	lihood		1178.8	8738				
Parame	ter Es	timates						
							Constant	
Term	Lag	Estimate	Std Error	t Ratio	Prob	t	Estimate	Mu
AR1	1	0.505516	0.083458	6.06	<.00	01*	-0.7331437	-1.4826427
	0	-1.482643	5.973222	-0.25	0.80			

Figure 21. Enlisted Seasonally Adjusted AR1 Model Summary and Parameter Estimates

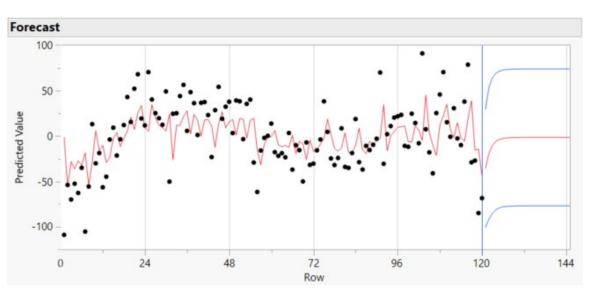


Figure 22. Enlisted Seasonally Adjusted AR 1 Forecast

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	-0.0931		1.0674	0.3015	1	-0.0931	
2	0.0043		1.0697	0.5858	2	-0.0044	
3	0.1058		2.4702	0.4807	3	0.1067	
4	0.0999		3.7292	0.4439	4	0.1221	
5	0.0736		4.4193	0.4908	5	0.0980	
6	0.1067		5.8822	0.4365	6	0.1174	
7	0.1438		8.5616	0.2857	7	0.1540	
8	0.0086		8.5712	0.3797	8	0.0193	
9	0.0567		8.9958	0.4377	9	0.0240	
10	-0.0193		9.0454	0.5278	10	-0.0759	
11	-0.0809		9.9252	0.5371	11	-0.1625	
12	0.1044		11.4016	0.4948	12	0.0154	
13	0.1379		14.0030	0.3736	13	0.1243	
14	-0.1298		16.3285	0.2937	14	-0.1001	
15	0.0154		16.3615	0.3584	15	-0.0027	
16	0.0789		17.2376	0.3704	16	0.0714	
17	-0.0935		18.4795	0.3592	17	-0.0623	
18	-0.1166		20.4304	0.3091	18	-0.1386	
19	0.0326		20.5843	0.3602	19	-0.0443	
20	-0.0379		20.7948	0.4093	20	-0.0634	
21	0.0101		20.8098	0.4706	21	0.0415	
22	-0.1563		24.4583	0.3237	22	-0.1473	
23	0.0046		24.4615	0.3786	23	0.0393	
24	-0.0808		25.4578	0.3812	24	-0.0076	
25	0.0313		25.6091	0.4287	25	0.0533	

Figure 23. Enlisted Seasonally Adjusted AR1—Test for Uncorrelated Residuals

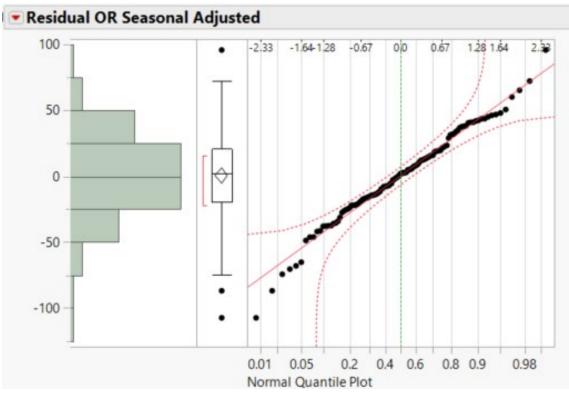


Figure 24. Enlisted Seasonally Adjusted AR1—Test for Normally Distributed Residuals

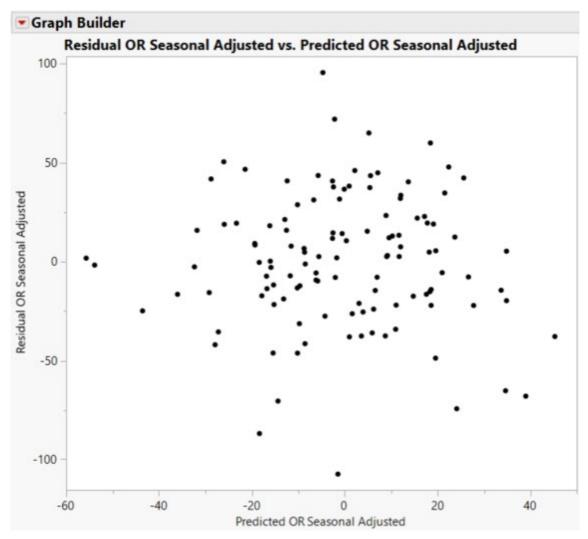


Figure 25. Enlisted Seasonally Adjusted AR1—Test for Constant Variance of Residuals

APPENDIX D. ENLISTED WINTER'S METHOD (ADDITIVE)

 Model: Winters Method 	od (Additiv	e)		
Model Summary				
DF		104 Stable	Yes	
Sum of Squared Innovations	1342	15.4 Invertit	ole Yes	
Sum of Squared Residuals	140234.	117		
Variance Estimate	1290.53	269		
Standard Deviation	35.9239	849		
Akaike's 'A' Information Crite	rion 1078.67	826		
Schwarz's Bayesian Criterion	1086.69	675		
RSquare	0.58491	486		
RSquare Adj	0.57693	246		
MAPE	12.1239	409		
MAE	27.7045	359		
-2LogLikelihood	1072.67	826		
Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Level Smoothing Weight	0.16564038	0.0617956	2.68	0.0086*
Trend Smoothing Weight	0.12576426	0.0773828	1.63	0.1071
Seasonal Smoothing Weight	0.45284063	0.1117639	4.05	<.0001*

Figure 26. Enlisted Winter's Method (Additive) Model Summary and Parameter Estimates

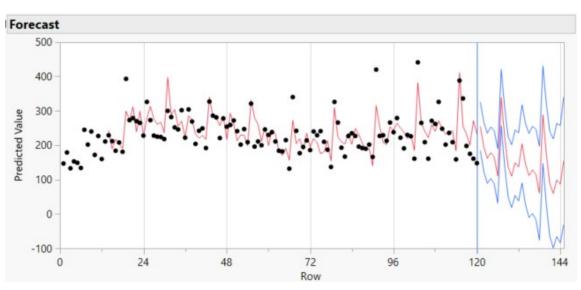


Figure 27. Enlisted Winter's Method (Additive) Forecast

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	0.1316		1.9053	0.1675	1	0.1316	
2	-0.0265		1.9832	0.3710	2	-0.0446	
3	-0.0154		2.0098	0.5704	3	-0.0060	
4	-0.0659		2.5012	0.6444	4	-0.0654	
5	0.0297		2.6017	0.7611	5	0.0478	
6	0.0453		2.8382	0.8289	6	0.0307	
7	0.0948		3.8867	0.7927	7	0.0886	
8	-0.0611		4.3259	0.8266	8	-0.0903	
9	-0.1038		5.6071	0.7785	9	-0.0741	
10	-0.0678		6.1600	0.8016	10	-0.0476	
11	-0.1747		9.8660	0.5425	11	-0.1626	
12	-0.0273		9.9574	0.6197	12	-0.0055	
13	0.1833		14.1267	0.3650	13	0.1755	
14	-0.0229		14.1925	0.4355	14	-0.0792	
15	0.0552		14.5791	0.4821	15	0.0910	
16	0.0872		15.5541	0.4845	16	0.1014	
17	-0.0397		15.7587	0.5410	17	-0.0421	
18	-0.0311		15.8854	0.6005	18	-0.0220	
19	-0.0034		15.8869	0.6648	19	-0.0243	
20	0.0152		15.9177	0.7217	20	-0.0553	
21	0.0086		15.9277	0.7737	21	0.0150	
22	-0.0909		17.0611	0.7600	22	-0.1299	
23	0.0470		17.3675	0.7908	23	0.0821	
24	-0.0369		17.5585	0.8239	24	0.0353	
25	0.1125		19.3579	0.7796	25	0.1519	

Figure 28. Enlisted Winter's Method (Additive)—Test for Uncorrelated Residuals

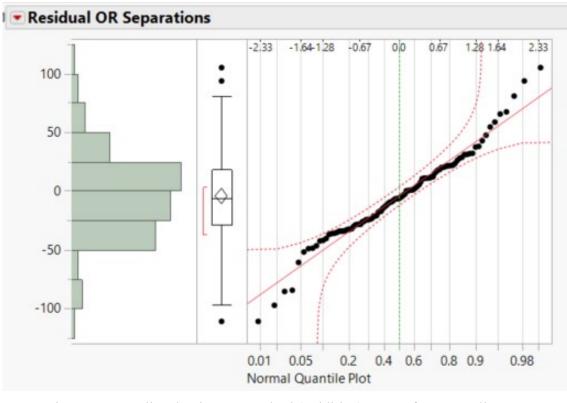


Figure 29. Enlisted Winter's Method (Additive)—Test for Normally Distributed Residuals

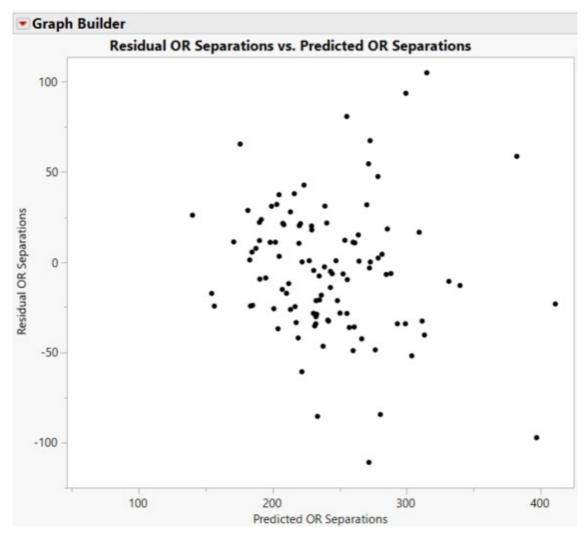


Figure 30. Enlisted Winter's Method (Additive)—Test for Constant Variance of Residuals

APPENDIX E. ENLISTED SEASONAL EXPONENTIAL SMOOTHING

Model Summary				
DF	1	105 Stable	Yes	
Sum of Squared Innovations	134608.8	802 Invertil	ble No	
Sum of Squared Residuals	143252.3	336		
Variance Estimate	1281.988	859		
Standard Deviation	35.80486	583		
Akaike's 'A' Information Crite	rion 1078.905	515		
Schwarz's Bayesian Criterion	1084.250	081		
RSquare	0.57598	B11		
RSquare Adj	0.571942			
MAPE	12.44490			
MAE	28.19196			
-2LogLikelihood	1074.905	515		
Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Level Smoothing Weight	0.21943450	0.0561704	3.91	0.0002*
Seasonal Smoothing Weight	0.51633227	0.1162797	4.44	<.0001*

Figure 31. Enlisted Seasonal Exponential Smoothing Model Summary and Parameter Estimates

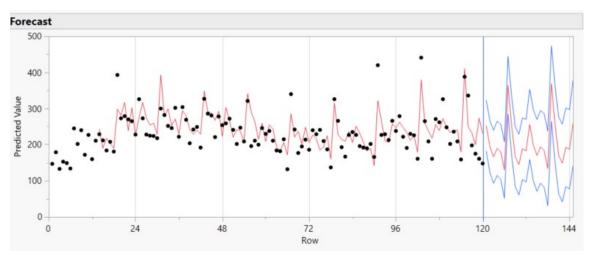


Figure 32. Enlisted Seasonal Exponential Smoothing Model Forecast

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	0.0635	(N)	0.4437	0.5053	1	0.0635	
2	-0.0689		0.9709	0.6154	2	-0.0732	
3	-0.0324		1.0887	0.7798	3	-0.0233	
4	-0.0853		1.9133	0.7517	4	-0.0875	
5	0.0240		1.9790	0.8520	5	0.0318	
6	0.0488		2.2544	0.8949	6	0.0326	
7	0.1123		~ 7249	0.8109	7	0.1089	
8	-0.0422	Saved to	o this PC 1342	0.8630	8	-0.0583	
9	-0.0823		4.7407	0.8563	9	-0.0551	
10	-0.0227		4.8026	0.9040	10	-0.0119	
11	-0.1579		7.8305	0.7284	11	-0.1558	
12	-0.0299		7.9404	0.7898	12	-0.0320	
13	0.2144		13.6460	0.3992	13	0.1904	
14	-0.0235		13.7149	0.4712	14	-0.0695	
15	0.0583		14.1461	0.5145	15	0.0899	
16	0.0924		15.2414	0.5070	16	0.1139	
17	-0.0517		15.5881	0.5532	17	-0.0302	
18	-0.0444		15.8461	0.6033	18	-0.0194	
19	-0.0148		15.8753	0.6656	19	-0.0199	
20	0.0107		15.8907	0.7234	20	-0.0599	
21	0.0005		15.8907	0.7758	21	0.0068	
22	-0.1030		17.3464	0.7440	22	-0.1419	
23	0.0501		17.6945	0.7738	23	0.0503	
24	-0.0665		18.3150	0.7875	24	0.0031	
25	0.1035		19.8381	0.7553	25	0.1483	

Figure 33. Enlisted Seasonal Exponential Smoothing Model—Test for Uncorrelated Residuals

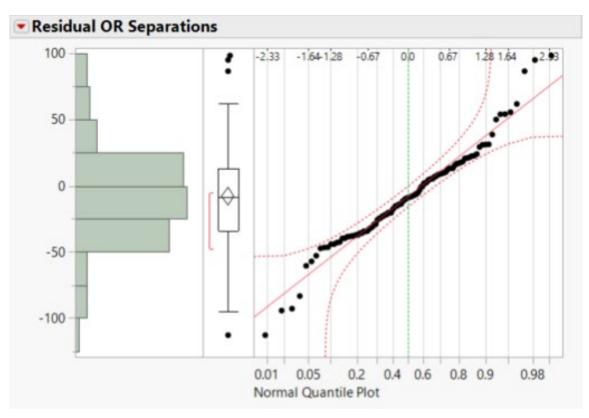


Figure 34. Enlisted Seasonal Exponential Smoothing Model—Test for Normally Distributed Residuals

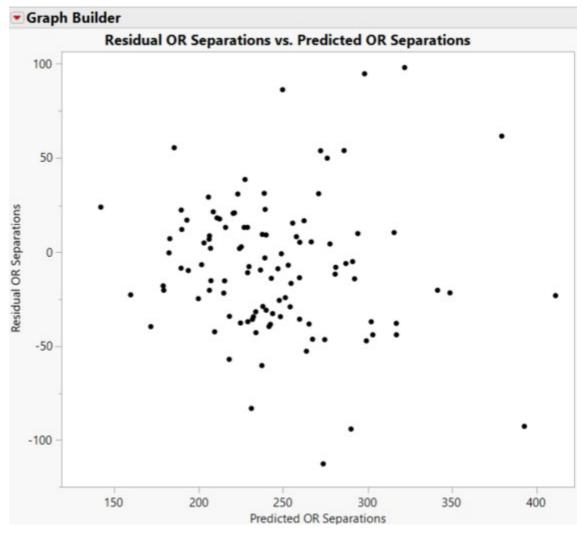


Figure 35. Enlisted Seasonal Exponential Smoothing Model—Test for Constant Variance of Residuals

APPENDIX F. OFFICERS' SEASONALLY ADJUSTED ARMA(1,1)

Model S	Sumn	nary						
DF				117 S	table	Yes		
Sum of So	uared	Innovations	5899.2	6133 Ir	vertible	Yes		
		Residuals	5902.7	8076				
Variance I	stima	te	50.42	1037				
Standard	Deviat	ion	7.1007	7721				
Akaike's '/	A' Info	rmation Criter	ion 814.07	6344				
Schwarz's	Bayes	ian Criterion	822.4	3882				
RSquare			0.060	5006				
RSquare A	Adj		0.0444	4078				
MAPE								
MAE			5.4994	6579				
-2LogLike	lihood	1	808.07	6344				
Parame	ter E	stimates						
							Constant	
Term	Lag	Estimate	Std Error	t Ratio	Prob>	t	Estimate	Mu
AR1	1	0.8164862	0.139417	5.8	5 <.000	01* -	0.0462347	-0.251941
MA1	1	0.6617732	0.174340	3.8	0.000	02*		
Intercept	0	-0.2519410	1.157949	-0.2	2 0.828	21		

Figure 36. Officers' Seasonally Adjusted ARMA(1,1) Model Summary and Parameter Estimates

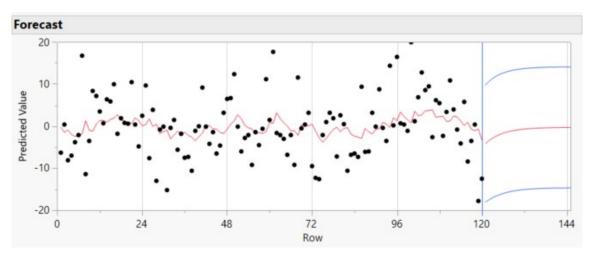


Figure 37. Officers' Seasonally Adjusted ARMA(1,1) Forecast

ACQUISITION RESEARCH PROGRAM Department of Defense Management Naval Postgraduate School

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	-0.0250		0.0766	0.7819	1	-0.0250	
2	0.0372		0.2485	0.8831	2	0.0366	
3	0.0561		0.6423	0.8867	3	0.0580	
4	-0.1156		2.3294	0.6754	4	-0.1147	
5	0.0479		2.6212	0.7581	5	0.0390	
6	-0.0954		3.7896	0.7051	6	-0.0896	
7	0.0151		3.8190	0.8004	7	0.0224	
8	0.0892		4.8585	0.7726	8	0.0804	
9	0.1694		8.6449	0.4707	9	0.1971	
10	0.0670		9.2419	0.5093	10	0.0471	
11	0.0710		9.9193	0.5377	11	0.0688	
12	-0.1159		11.7412	0.4667	12	-0.1414	
13	-0.2048		17.4802	0.1783	13	-0.2094	
14	0.0286		17.5935	0.2259	14	0.0192	
15	-0.0563		18.0360	0.2608	15	0.0233	
16	-0.1344		20.5777	0.1953	16	-0.1525	
17	-0.0556		21.0168	0.2255	17	-0.1296	
18	0.0483		21.3520	0.2620	18	0.0122	
19	-0.0217		21.4203	0.3141	19	-0.0793	
20	0.0187		21.4717	0.3699	20	0.0074	
21	-0.0827		22.4822	0.3722	21	-0.0135	
22	-0.1071		24.1944	0.3371	22	-0.0473	
23	-0.1184		26.3089	0.2865	23	-0.1384	
24	-0.1879		31.6935	0.1348	24	-0.1605	
25	-0.0230		31.7753	0.1646	25	-0.0489	

Figure 38. Officer's Seasonally Adjusted ARMA(1,1)—Test for Uncorrelated Residuals

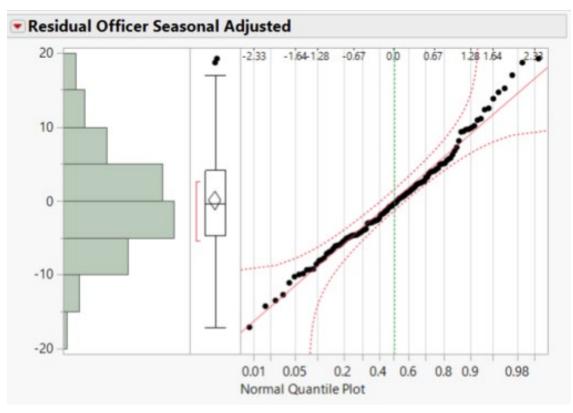


Figure 39. Officers' Seasonally Adjusted ARMA(1,1)—Test for Normally Distributed Residuals

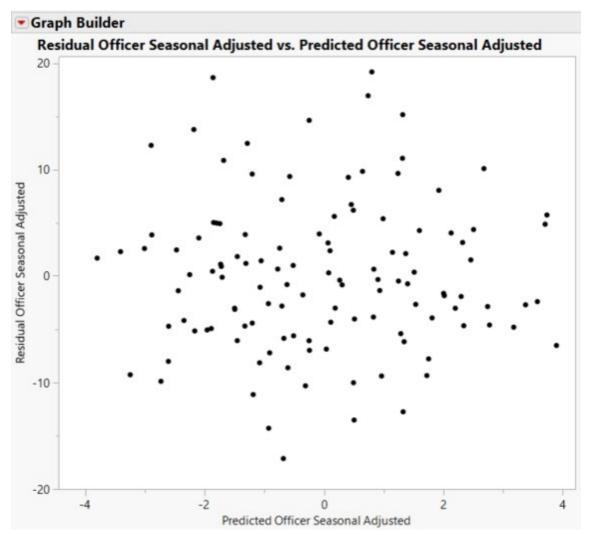


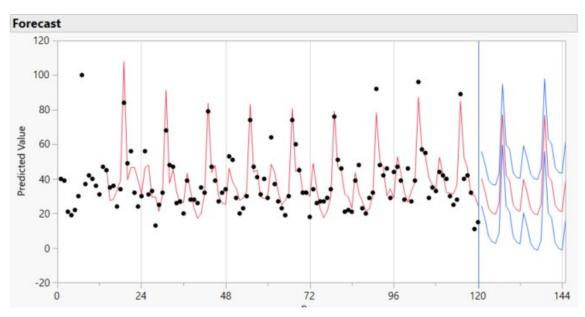
Figure 40. Officers' Seasonally Adjusted ARMA(1,1)—Test for Constant Variance of Residuals

APPENDIX G. OFFICERS' WINTER'S METHOD (ADDITIVE)

(Additive	e)				
1	04 Stable	Yes			
6608.106	537 Invertib	le Yes			
8267.568	318				
63.53948	344				
7.971165	581				
772.4840	085				
780.5025	572				
0.728669	0.72866947				
0.723451	0.72345157				
21.72784	21.7278477				
7.002952	7.00295224				
766.4840)85				
Estimate	Std Error	t Ratio	Prob> t		
20336958	0.0693267	2.93	0.0041*		
00181345	0.0266359	0.07	0.9459		
09074212	0.1661155	0.55	0.5861		
	1 6608.106 8267.568 63.53948 7.971165 772.4840 780.5025 0.728669 0.723451 21.72784 7.002952	8267.56818 63.5394844 7.97116581 772.484085 780.502572 0.72866947 0.72345157 21.7278477 7.00295224 766.484085 20336958 0.0693267 00181345 0.0266359	104 Stable Yes 6608.10637 Invertible Yes 8267.56818 63.5394844 Yes 63.5394844 7.97116581 Yes 772.484085 780.502572 Yes 0.72866947 0.72345157 Z1.7278477 7.00295224 766.484085 Z0336958 Estimate Std Error t Ratio 20336958 0.0693267 2.93 00181345 0.0266359 0.07		

- Madal Winters Mathad (Additiva)

Figure 41. Officer's Winter's Method (Additive) Model Summary and Parameter Estimates



Officers' Winter's Method (Additive) Model Summary and Figure 42. Parameter Estimates

ACQUISITION RESEARCH PROGRAM DEPARTMENT OF DEFENSE MANAGEMENT NAVAL POSTGRADUATE SCHOOL

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	-0.0384		0.1621	0.6872	1	-0.0384	
2	-0.0050		0.1649	0.9208	2	-0.0065	
3	0.0218		0.2181	0.9746	3	0.0214	
4	-0.1214		1.8867	0.7566	4	-0.1200	
5	0.0578		2.2685	0.8109	5	0.0499	
6	-0.1191		3.9056	0.6895	6	-0.1195	
7	0.0329		4.0320	0.7761	7	0.0329	
8	0.0891		4.9666	0.7611	8	0.0733	
9	0.2170		10.5684	0.3065	9	0.2489	
10	0.0428		10.7886	0.3742	10	0.0306	
11	0.0343		10.9313	0.4490	11	0.0687	
12	0.0309		11.0486	0.5248	12	0.0255	
13	-0.2025		16.1346	0.2419	13	-0.1627	
14	0.0053		16.1381	0.3050	14	-0.0191	
15	-0.0326		16.2726	0.3642	15	0.0104	
16	-0.0985		17.5154	0.3530	16	-0.1161	
17	0.0098		17.5279	0.4192	17	-0.0839	
18	0.0179		17.5699	0.4843	18	-0.0225	
19	0.0244		17.6485	0.5460	19	-0.0501	
20	0.0426		17.8919	0.5945	20	0.0086	
21	-0.0079		17.9004	0.6553	21	0.0279	
22	-0.1476		20.8910	0.5275	22	-0.0953	
23	-0.1508		24.0496	0.4011	23	-0.1771	
24	-0.0748		24.8362	0.4147	24	-0.0552	
25	-0.0751		25.6383	0.4271	25	-0.0363	

Figure 43. Officer's Winter's Method (Additive)—Test for Uncorrelated Residuals

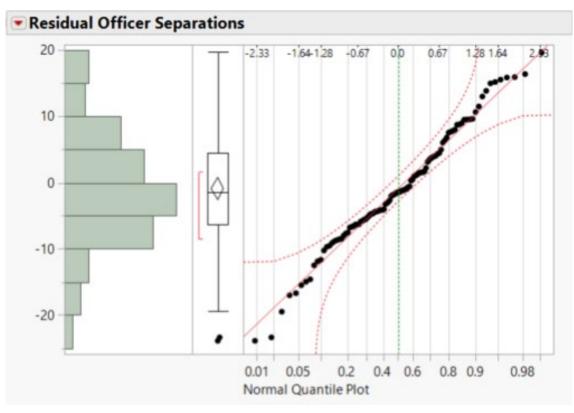


Figure 44. Officers' Winters' Method (Additive)—Test for Normally Distributed Residuals

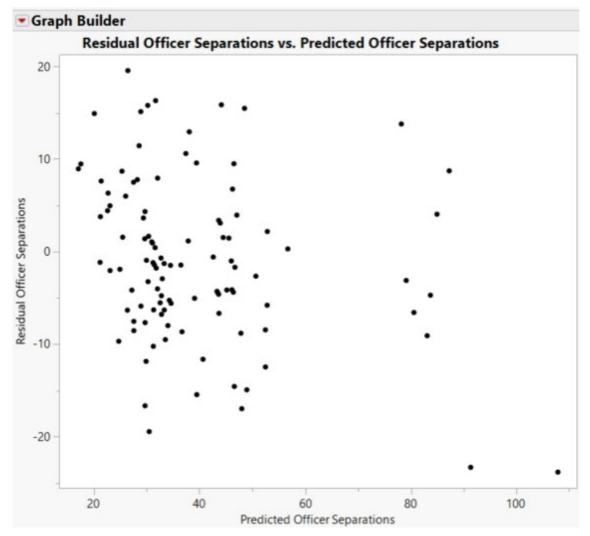


Figure 45. Officer's Winter's Method (Additive)—Test for Constant Variance of Residuals

APPENDIX H. OFFICERS' SEASONAL EXPONENTIAL SMOOTHING

Model Summary				
DF		105 Stable	Yes	
Sum of Squared Innovations	6594.62	526 Invert	ible No	
Sum of Squared Residuals	8267.7	377		
Variance Estimate	62.8059	549		
Standard Deviation	7.92502	081		
Akaike's 'A' Information Crite	rion 770.486	051		
Schwarz's Bayesian Criterion	775.831	709		
RSquare	0.7286			
RSquare Adj	0.72607			
MAPE	21.7270			
MAE	7.00273	7.1.1.		
-2LogLikelihood	766.486	051		
Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Level Smoothing Weight	0.20206227	0.0668207	3.02	0.0031*
Seasonal Smoothing Weight	0.09007308	0.1676620	0.54	0.5922

Figure 46. Officers' Seasonal Exponential Smoothing Model Summary and Parameter Estimates

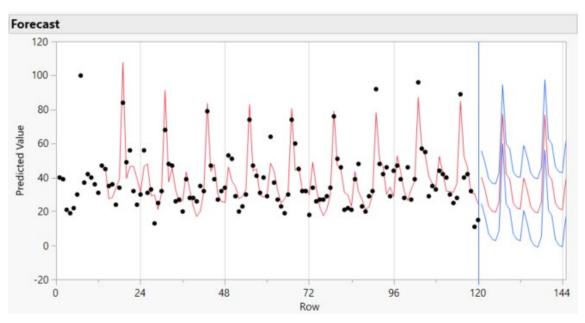


Figure 47. Officers' Seasonal Exponential Smoothing Model Forecast

Lag	AutoCorr	8642 0 .2 .4 .6 .8	Ljung-Box Q	p-Value	Lag	Partial	8642 0 .2 .4 .6 .8
0	1.0000				0	1.0000	
1	-0.0384		0.1619	0.6874	1	-0.0384	
2	-0.0050		0.1647	0.9209	2	-0.0065	
3	0.0218		0.2180	0.9746	3	0.0214	
4	-0.1214		1.8861	0.7567	4	-0.1200	
5	0.0578		2.2676	0.8110	5	0.0498	
6	-0.1191		3.9049	0.6895	6	-0.1195	
7	0.0329		4.0313	0.7762	7	0.0329	
8	0.0891		4.9663	0.7612	8	0.0733	
9	0.2170		10.5695	0.3064	9	0.2489	
10	0.0428		10.7900	0.3741	10	0.0307	
11	0.0343		10.9329	0.4489	11	0.0687	
12	0.0310		11.0508	0.5246	12	0.0256	
13	-0.2025		16.1408	0.2416	13	-0.1628	
14	0.0052		16.1443	0.3046	14	-0.0191	
15	-0.0326		16.2790	0.3638	15	0.0103	
16	-0.0985		17.5226	0.3526	16	-0.1161	
17	0.0098		17.5351	0.4187	17	-0.0839	
18	0.0179		17.5769	0.4838	18	-0.0226	
19	0.0244		17.6556	0.5455	19	-0.0501	
20	0.0426		17.8992	0.5940	20	0.0086	
21	-0.0079		17.9077	0.6548	21	0.0278	
22	-0.1477		20.8992	0.5270	22	-0.0952	
23	-0.1508		24.0573	0.4006	23	-0.1770	
24	-0.0748		24.8436	0.4143	24	-0.0552	
25	-0.0752		25.6471	0.4266	25	-0.0363	

Figure 48. Officers' Seasonal Exponential Smoothing Model—Test for Uncorrelated Residuals

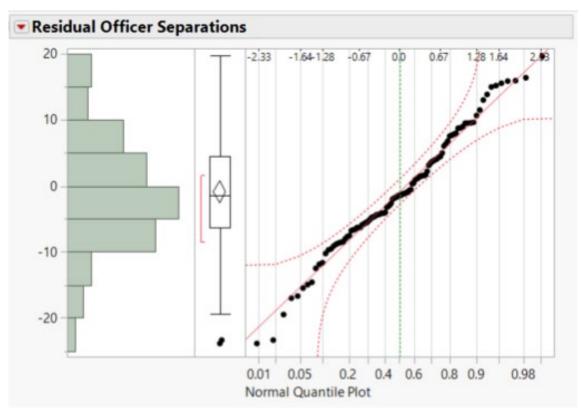


Figure 49. Officers' Seasonal Exponential Smoothing Model—Test for Normally Distributed Residuals

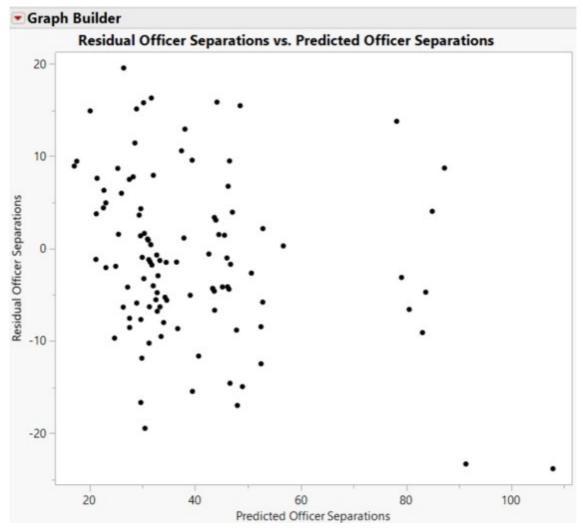


Figure 50. Officers' Seasonal Exponential Smoothing Model—Test for Constant Variance of Residuals

LIST OF REFERENCES

- Australian Government Department of Defence. (2020a). Defence strategic update. https://www1.defence.gov.au/strategy-policy/strategic-update-2020
- Australian Government Department of Defence. (2020b). Force structure plan. https://www.defence.gov.au/about/publications/2020-force-structure-plan
- Australian Government Department of Defence. (2022). *Defence people group*. https://www.defence.gov.au/about/people-group
- DeWald, E. T. (1996). A time series analysis of U.S. Army enlisted force loss rates [Master's thesis, Naval Postgraduate School]. NPS Archive: Calhoun. https://calhoun.nps.edu/handle/10945/9079
- Dodds, D. (2018). Length-of-service/survival profiles methodology for the Royal Australian Navy [Master's thesis, Naval Postgraduate School]. NPS Archive: Calhoun. https://calhoun.nps.edu/handle/10945/61350
- Ehrenberg, R., & Smith, R. (2017). *Modern labor economics: Theory and Public Policy* (13th edition). Routledge.
- Hoglin, P. J. (2012). Early Separation in the Australian Defence Force. https://paper/ Early-Separation-in-the-Australian-Defence-Force-Colonel-Hoglin/ 27c8ae3b0aed5756176bc227fa12bbba85147bf4
- Mathis, R. L., & Jackson, J. H. (2010). *Human resource management* (13th edition). South-Western Cengage Learning.
- Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2016). *Introduction to time series analysis and forecasting* (2nd ed). Wiley.
- Ragsdale, C. (2019). Spreadsheet modeling and decision analysis: A practical introduction to business analytics (8th edition). Cengage India.
- Sparling, S. J. (2005). A time series analysis of U.S. Army officer loss rates [Master's thesis, Naval Postgraduate School]. NPS Archive: Calhoun. https://calhoun.nps.edu/handle/10945/1912

ACQUISITION RESEARCH PROGRAM Department of Defense Management

NAVAL POSTGRADUATE SCHOOL

Acquisition Research Program Department of Defense Management Naval Postgraduate School 555 Dyer Road, Ingersoll Hall Monterey, CA 93943

WWW.ACQUISITIONRESEARCH.NET