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Abstract 
The design of test and evaluation (T&E) programs requires new thinking for learning-based 
systems enabled by AI. A critical question is how much information is needed about the 
training data, the algorithm, and the resulting performance for testers to adequately test a 
system. The answer to these questions will inform acquisition of data/model rights for 
learning‐based systems. The principal objective of this research is to understand how 
increasing government access to the models and learning‐agents (AI algorithms) used in 
system design might decrease the need and expense of testing and increase confidence in 
results. The principal hypotheses investigated in this incubator project are that the number of 
samples needed to test AI/ML models to an acceptable degree of assurance ca be reduced if 
we have access to the models themselves (in mathematics or software), reduced still further 
if we also have access to the algorithms and data used to train the models, and reduced 
further yet if we also have access to systems models and other artifacts of the digital 
engineering process. Therefore, the cost of acquisition can be reduced if T&E programs are 
based on the optimal balance between the cost of acquiring the technical data/algorithm 
rights of AI/ML systems, and the cost of testing those systems. This research establishes 
theory and methods for exploring how T&E requirements can and should change as a 
function of the test team knowledge of the technical specifications of learn based systems 
(LBS). 

Introduction 
Artificial intelligence and machine learning (AI/ML) has moved beyond being a 

research field to being an essential element of next‐generation military systems. The 
discipline of verification and validation of AI/ML enabled complex systems, however, in its 
nascent stage. Little is understood about how to identify changes in operating conditions or 
adversarial actions that might cause the performance of an AI/ML model to deviate from 
design limits (McDermott, 2021). The challenges in this regard are amplified when considering 
autonomous functions that may engage in self‐learning over the long-life cycles seen in 
military systems. 

The objective of this research was to develop approaches to the design of test and 
evaluation (T&E) programs and the acquisition of data/model rights for learning‐based 
systems (LBS). Freeman (2020) proposes 10 different themes for how T&E will need to change 
for ML/AI systems. One theme is the need for a risk-based framework approach. This research 
seeks to explore the risks associated with varying levels of knowledge of ML/AI training data and 
model insights. The principal objective was to understand how increasing government access to 
the models and learning‐agents (AI algorithms) used in system design might decrease the need 
and expense of testing and increase confidence in results.  

The current approach to T&E involves treating the system in a black-box fashion, i.e., 
the system is presented with sample inputs, and the corresponding outputs are observed 
and characterized relative to expectations. While such an approach works well for traditional 
static systems, test and evaluation of autonomous intelligent systems presents formidable 
challenges due to the dynamic environments of the agents, adaptive learning behaviors of 
individual agents, complex interactions between agents and the operational environment, 
difficulty in testing black‐box machine learning (ML) models, and rapidly evolving ML models 
and AI algorithms (Cody, 2019). 
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Our principal hypotheses are that the number of samples needed to test AI/ML models to an 
acceptable degree of assurance can be reduced if we have access to the models 
themselves (in mathematics or software), reduced still further if we also have access to the 
algorithms and data used to train the models, and reduced further yet if we also have access 
to systems models and other artifacts of the digital engineering process. Therefore, the cost 
of acquisition can be significantly reduced if T&E programs are based on the optimal balance 
between the cost of acquiring the technical data/algorithm rights of AI/ML systems, and the 
cost of testing those systems. 

This paper develops theory based in systems theory that captures changes in the 
systems and the state‐space in which it operates through the concept of systems 
morphisms. The Theoretical Background section provides overarching theory and a system 
concept model. The onion model describes different levels of system knowledge and a 
context for defining the abstraction of the system. The Experimental Testbed section 
describes two pilot scenarios to demonstrate how multiple phases of testing contribute to the 
evaluation of an AI enabled systems. The Bayesian Framework section presents the 
Bayesian analytical framework for combining information across the multiple phases of 
testing. This analytical framework also reflects the changing system configuration and 
context. The Potential Testbed and Future Work section discusses future work for validating 
the concept through a full system model and experiment. In summary, this work essentially 
constitutes the building blocks for investigating the cost‐benefit for test data collection on a 
realistic system in future phases. 

Theoretical Background 
At the core of this research is systems theory outlined by Bertalanffy and Sutherland 

(1974). Specifically, we build from the lineage of the systems theorist Wymore (1967) 
defined the Mathematical Theory of Systems Engineering and has been credited for coining 
the term model‐based systems engineering (Bjorkman et al., 2013). A mathematical 
mechanism used in Wymorian systems theory is the system specification morphism; where 
a morphism is a mathematical characterization of the preservation of equivalence between a 
pair of system specifications (Zeigler, 2018). 

System specifications may be defined at many levels within a hierarchy. The 
hierarchy of system specification is a prominent aspect of a branch of Wymorian systems 
theory commonly referred as computational systems theory, or formally known as the Theory of 
Modeling and Simulation (Wach et al., 2021). Each level of the hierarchy of system 
specification reveals further detail as to the knowledge of the structure from external 
interfaces and interactions to internal component and coupling knowledge. Furthermore, within 
each level of system specification, a morphism essentially characterizes abstraction and 
elaboration of detail. 

Simply put, parameter morphisms coupled with specifications within the hierarchy, is 
a mapping of parameter space along with state space. The parameter morphism is an 
explicit documentation of allowable deviations (approximations) from exact morphisms, as is 
the expectation with the input/output observation frame and network of systems morphisms, 
relative to changes in parameter sets. A simple example of a parameter morphism is the 
selection of the mean versus a distribution as a parameter test set. 

Lastly, the framing of the hierarchy and associated morphisms is important to 
understand the systems theoretical context as a whole. First, the relationship between the 
input/output (IO) observation frame and the network of systems is a one‐to‐many specification 
relationship, meaning that one system specification at the IO observation frame can lead to 



Acquisition Research Program 
department of Defense Management - 89 - 
Naval Postgraduate School 

specification of many (maybe infinite) network of system specifications. However, each 
network of system specification can map to only one specification at the IO observation frame 
level. Second, a morphism at the IO observation frame level does not guarantee a morphism 
at the network of systems level. Third, however, a morphism at a network of systems level 
implies a morphism at the input/output observation frame level. These are systems theoretic 
concepts we use to underpin our methodology for T&E of LBS. 

Methodology 
The practice of engineering systems is reliant on use of surrogate analogies for T&E. 

In some cases, we may not have access to the fielded system until late in the program and, 
therefore, select a surrogate as an analogous representation of the current (phase 
appropriate) design of the system of interest. In other cases, the system of interest may be 
fielded and we want to understand observed behavior, for which we may use a surrogate, 
analogous environment for testing the fielded system (or analogous test system). These 
activities are typically thought of as necessary risk reduction, for which we characterize the 
validity of the analogies through the use of systems theoretic morphisms. 

Consider the following example to provide further context: The IO observation frame 
morphism could be used to characterize the change in operational conditions and change in 
adversarial action. The network of systems morphism can be used to characterize the 
changes in implementation of a LBS subsequent to changes in operational conditions and 
adversarial actions. Furthermore, from the last paragraph of the previous section, a morphism 
between system implementations (i.e., network of systems morphism) implies a morphism at 
the mission level, which, therefore, is indicative of mission success. 

Commonly associated with LBS is the onion model shown in Figure 1. In the outer 
layer, we have minimum knowledge of the system context, which we categorize as mission 
knowledge. In the second to outer layer, we begin to have knowledge of the interior structure 
in the form of a functional architecture. In the third to outer layer (second to inner layer), we 
have knowledge of the agent cognitive functions. In the inner most layer, we have maximum 
knowledge in the form of knowledge of the physical implementation of the system of interest. 
From a systems theory perspective, we can provide a view of validity of analogies relative to 
the onion model. 

 
Figure 1. Onion Model Used to Understand Layers of LBS 

 

In Figure 2, we provide a systems theoretic context. We show the real mission to the top left 
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and the preservation of equivalence to surrogate T&E context shown in the top right. We 
propose characterization of this equivalence through systems theoretic mechanisms, such 
as the IO observation frame and associated morphism. We also show the field system to the 
bottom left and the preservation of equivalence to surrogate model shown in the bottom right. 
We propose characterization of this equivalence through systems theoretic mechanisms, 
such as the network of systems and associated morphism. 
 

 
Figure 2. High‐Level View of Systems Theory Perspective of the Onion Model 

 

For this project we used the mission context of detection of a potential attacker, 
consistent with Silverfish (Carter et al., 2019). Rather than focus on the full system of systems 
of Silverfish, we selected to focus on the unmanned aerial vehicle (UAV) component as the 
system of interest for this research project. In Figure 3, we provide further explanation to our 
set of experiments within the context of systems theory and the onion model. 

First, we have used the You Only Look Once (Agent YOLO) algorithm as our agent, 
which has an unknown T&E context conducted prior to our acquisition of the agent. 
Therefore, we cannot determine its morphic equivalence to the real mission and must 
conduct further testing. The new T&E mission analogies are expected to be characterized 
through systems theoretic morphisms. For this project, we used a series of T&E surrogate 
mission contexts of the potential attacker in the form of a soccer match (i.e., red versus blue) 
and automobile detection (truck versus other type of vehicle). While the soccer match was a 
simulation (video from the internet), the automobile surrogate mission context was both a 
simulation and physical test. 

Second, we were not able to acquire the physical hardware expected for the fielded 
system at the onset of the project. Therefore, we relied on surrogate models, for T&E, that we 
believe to be analogous to the fielded system. Each surrogate model is expected to be 
morphically characterized to determine its equivalence relative to the fielded system. For this 
project we have selected a series of surrogate models for the UAV. First, the initial Agent 
YOLO may only be analogous as far as the cognitive function is concerned. Second, we used 
a surrogate drone, which has lower cost and quality of hardware than the fielded systems. 
Last, it should also be noted that even when we have access to the expected fielded system, 
the morphic validity of the analogies must also be confirmed. For this, we suggest that a 
digital twin (i.e., simulation) and final product (or physical twin) from low‐rate initial production 
(LRIP) be used for an initial operational test and evaluation (IOT&E), both of which should be 
morphically characterized for its equivalence to the expected (or measured) reality. 
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Figure 3. Proposed Systems Theoretic Test and Evaluation Framework 

 

Because the full knowledge relative to the onion model can only be known once the final 
product design becomes the fielded system and is placed in its real mission context, we 
must rely on and understand surrogate analogies to provide confidence in mission success. 
We have selected to use Bayesian methods, such as discussed by Salado and Kannan 
(2018), to characterize confidence in mission success relative to knowledge on the morphic 
equivalence. Further detail on the use of Bayesian methods is provided in another section. 

Experimental Testbed 
The broader objective for creating the experimental testbed is to assist in validating 

the T&E framework for learning‐based systems. For this research, the specific goal is to 
demonstrate how the T&E framework can be utilized for a specific scenario where the goal is 
to detect the presence of enemies, tracking them, and sending a signal for Silverfish 
protected field. 

The testbed consists of (a) scenarios, (b) hardware, and (c) software. Two scenarios 
are created as surrogate problems as a part of creating experimental testbeds. 

Scenario 1: Person Identification and Tracking in a Soccer Game: This scenario is 
based on a soccer game as a surrogate problem using stock video to detect players belonging 
to different teams and their location in the field. The players, shown in Figure 4, are classified 
into two different teams based on their apparel colors and patterns. The idea here is to 
showcase the different teams as allies and enemies. In addition to this, the location 
coordinates of the players are continually tracked. 
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Figure 4. Scenario 1: Person Identification and Tracking in a Soccer Game 

 

Scenario 2: Vehicle Detection and Tracking: This scenario is based on automobile 
detection and tracking as a surrogate problem to detect vehicular traffic, location coordinates 
and their velocities (see Figure 5). The vehicles are categorized based on their sizes, i.e., 
small vehicles represent allies (friends) and large vehicles represent enemies. Similar to 
Scenario 1, the location coordinates of the vehicles are detected along with their velocities. 
 

 
Figure 5. Scenario 2: Vehicle Detection and Tracking 

 

The coordinates obtained from the two scenarios are mapped and visualized on a 
grid shown in Figure 6. 

 
Figure 6. Grid Used for Visualization and Mapping 
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HARDWARE. For hardware implementation, two drones namely, Ryze Tello (lower 
fidelity prototype drone) and Parrot ANAFI (higher fidelity prototype drone) are used. 
The specifications of the Ryze Tello drone and the Parrot ANAFI drone are shown in 
Figure 7. 

 

 
Figure 7. Comparison of the Specifications of the Higher and Lower Fidelity Drones 

 

Lower fidelity prototypes are used to test whether the high‐level design concepts can be 
translated into tangible outputs. On the other hand, higher fidelity prototypes provide outputs 
that are as similar as possible to the desired requirements defined initially. The drones 
capture videos which are then segmented into images frame by frame. The differences in the 
images from the two drones can be clearly seen in terms of the resolution, field of view and 
stability. 

SOFTWARE. The primary goal of the software implementation is to identify the 
location coordinates of the allies and enemies and track them in real time. To do so, videos 
captured from the drones are used as input, and the output being series of location 
coordinates. This implementation broadly consists of four steps: image preprocessing, object 
detection and classification, object tracking, and mapping. Figure 8 provides a high level 
overview of the process.  

 
Figure 8. High Level Overview of Software Processes 
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Image Preprocessing: The goal of this step is to retrieve a series of clean 
images from the videos to prepare them for the further steps and to reduce computation 
time. The steps in image preprocessing are as follows: 

1. Raw videos obtained from the hardware are segmented frame by frame into a 
series of images. 

2. Images are resized to a lower size to increase computation speed. 

3. Gaussian Blur is used to smoothen the images and to reduce unwanted noise. 

4. Images are cropped to obtain the region of interest. 
 

To simulate the different qualities of video camera from different hardware, i.e., a 
lower fidelity and higher fidelity input in Scenario 1:Person Identification and Tracking in a 
Soccer Game, the original video is used as a higher fidelity input and the blurred version of 
the original video is used as a lower fidelity input. Figure 9 shows the results for Scenario 2.  

 

 
Figure 9. Drone Image Comparison (Above: Higher Fidelity, Below: Lower Fidelity) 

 

Object Detection and Classification: The goal of this step is the detection, 
classification, and localization of the objects present in the frame. Here, the preprocessed 
images are used as the input, and passed through a trained or pre‐trained object detection 
model to receive object location and classes. For this purpose, YOLOv3 (You Only Look 
Once, version 3) is used, which is an object detection algorithm that identifies specific 
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objects in videos or images. A custom object detection model is trained for the soccer game 
scenario to detect and classify the players into different teams. Whereas, for the vehicle 
scenario, to detect and classify allies (friends) and enemies, a pre trained model is customized 
using the COCO (Common Objects in Context ) dataset (Lin et. al., 2014), which is a large‐
scale object detection, segmentation, and classification dataset. The COCO dataset has 
more than 2,00,000 labelled images and more than 100 categories. 

Object Tracking: The goal of this step is to track the movement of an object, which 
involves tracking of the detected objects frame‐by‐frame and storing its location coordinates 
along with some relevant information. A unique identification number is assigned to each 
detected object for the duration of which it is continuously tracked. There are several 
challenges associated with object tracking such as occlusion, discontinuity in detections, etc. 
To tackle these issues, the Simple On‐line Real‐time Tracking (SORT) algorithm is used. We 
are successfully able to perform tracking of each object along with finding its approximate 
velocity. 

Mapping: The output obtained from the object tracking step is utilized to map and 
visualize the allies and enemies on a grid. The visualization is useful for sending a signal to 
silverfish protected field. This is accomplished using warping techniques and perspective 
transformations of a known field or using markers to a visualization grid. Figure 10 is a 
representation of the soccer scenario in the grid format with exact location coordinates. The 
blue and white dots depict players in the teams whereas the black dot is the soccer ball. 
 

 
Figure 10. Grid Data Representation Example 

The results obtained from above steps, i.e., the location coordinates of the detected 
objects are used to evaluate the detection accuracy of identified objects to be used in the 
Bayesian Framework, described next. 

Bayesian Framework 
We can characterize the relationships between different models—simulation 

environments vs. low‐fidelity systems vs. higher‐fidelity systems—via a Bayesian network. A 
Bayesian network is a graph model that describes the relationship between nodes via 
probabilities. To illustrate the concept, we consider a detection system with two outcomes—
either the target is detected or it is not detected—and two true states—either the target is 
present or it is not—with four possible combinations. These cases are summarized in Table 
1. 
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Table 1. Cases for a Target Detection Problem 
Case 

# 
Case Target 

Present? 
Target 

Detected? 
1 True Positive Yes Yes 
2 False 

Negative 
Yes No 

3 False 
Positive 

No Yes 

4 True 
Negative 

No No 

 
One might imagine each of these cases having a different “cost” from a T&E perspective—
i.e., a false negative (target is present but not detected) may have more operational cost 
than a false positive (target is falsely detected). The goal of T&E is ultimately to characterize 
that cost, e.g., to compute its expected value, i.e., the cost of each case (Ci) times the 
probability of each case (Pi): 

𝐸𝐸(𝐶𝐶) = �𝐶𝐶𝑖𝑖𝑃𝑃𝑖𝑖

4

𝑖𝑖=1

 

 

The Bayesian framework considers each of the probabilities Pi for the final fielded system as 
a function of the probabilities for the analogous systems. That is, if the probabilities for the 
simulated environment and a lower‐fidelity prototype are Psim and Plow, respectively, then the 
final probability Pi can be written in terms of conditional probabilities: 

𝑃𝑃𝑖𝑖 = 𝑃𝑃(𝑥𝑥 ∈ 𝐶𝐶𝑖𝑖) ∝  �𝑃𝑃�𝑥𝑥 ∈ 𝐶𝐶𝑖𝑖�𝑥𝑥 ∈ 𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠�𝑃𝑃(𝑥𝑥 ∈ 𝐶𝐶𝑖𝑖𝑠𝑠𝑖𝑖𝑠𝑠)
4

𝑖𝑖=1

 

 

Here the more complicated equation has necessitated more complicated notation: P(x ∈ 
Si) is the probability of Case i and P(A| B) is the probability of A given B. So, the above 
equation means that the probability of, for example, getting a true positive (Case 1) in the 
fielded system is the probability of getting Case j in the low fidelity system multiplied by the 
probability of getting Case 1 in the fielded system given that we got Case j in the low‐fidelity 
system, summed across j. This may seem like—and indeed is—a more complicated way of 
writing the same thing. However, if we can accurately estimate the conditional probabilities 
in, it allows us estimate the probabilities Pi and ultimately the cost by mostly running lower‐
fidelity tests. The same mechanism can then be used to capture the relationship between 
the lower‐fidelity test and the simulated environment. The Bayesian network summarizing 
the relationship between these conditional probabilities is shown in Figure 11. 
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Figure 11. A Bayesian Network for the Detection Case. Scenarios are Divided into Four Cases 

(True/False Positive/Negative) Across Three Test Cases (Software Environment, Prototype/Low‐
Fidelity, Fielded System). 

Next, we describe briefly how to estimate the probabilities in the previous section. In 
this case, we actually use a different kind of Bayesian procedure known as Bayesian 
inference. We begin with an estimate of the probability distribution called the prior, and then 
update that estimate as we test. For the detection case, we can model the outcomes with a 
binomial distribution with unknown success probability p. There is a fairly standard approach 
in the statistics community to estimating p. First, the prior is typically chosen to be a beta 
distribution B(α, β) where α, β are parameters that can be tuned to the problem. For example, 
one might give the prior a weight Nprior and start with a guess for p which we denote pprior; 
we then would set α = ppriorNprior 

and β = Nprior − α. Then if tests yield s successes and f failures, we would update our 
estimate 
to be B(α + s, β + f ). This procedure is illustrated in Figure 12. Here pprior = 0.4 but we see 
the inference procedure closing in on the true value of p = 0.7 as more tests are taken. 
 

Case 1 

 
  Case 1 

Case 
3 

 
Case 1 

Case 2 Case 1 … 4 

Case 3 Case 1 … 4 

All 

Scenarios 
Case 4 Case 1 … 4 

Case 1 Case 1 … 4 
Case 
 Case 2 … 4 

Case 3 … 4 
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Figure 12. A Bayesian Approach to Estimating the Probability of Success in a Binomial Distribution; 
Here the Prior Estimate of the Probability of Success is 0.4 and the True Value is 0.7. The Inference 
Procedure Updates the Estimates as Tests are Conducted, Closing in on the True Value. 

Potential Testbed and Future Work 
A major challenge in conducting AI enabled systems research is that physical 

realizations are needed for T&E research. As a testbed for the methodologies, future work 
should explore these concepts on a full hypothetical weapons system, moving beyond the 
embedded AI algorithm. The system highlighted earlier, known as Silverfish, is a networked 
munition system designed to deny ground to the enemy using ground‐based weapons, 
known as obstacles, that can engage unauthorized persons or ground vehicles within the 
denied area. Surveillance sensors including static infrared and video cameras and target 
characterization sensors, such as acoustic and seismic sensors, monitor the area to provide 
the operator with situational awareness regarding persons and vehicles. An unmanned 
aerial vehicle also provides surveillance and early warning information. Silverfish exists as a 
hybrid simulation/hardware emulation characterized in model‐based systems engineering 
(MBSE) terms by a set of SysML models describing its architecture and functions from 
several perspectives. It also includes AI/ML models for detecting cyber-attacks on the UAV. 

Future work could leverage the Silverfish testbed and expand the testbed into 
physical implementations beyond the computer vision use case. Physical implementations in 
addition to MBSE representations would enable the direct execution of a T&E program on 
the Silverfish testbed. Future work should also include purposefully varying the systems 
knowledge (based on the onion model), the complexity of the systems and its operating 
environments (number of morphisms), and determine minimally adequate testing as a 
function of those variables. 

This paper stablished the theory and methods for exploring how T&E requirements 
can and should change as a function of the test team knowledge of the technical 
specifications of an AI enabled system. The research developed theory based in systems 
theory that captures changes in the systems and the state‐space in which it operates 
through the concept of systems morphisms. The onion model describes different levels of 
system knowledge and a context for defining the abstraction of the system. The project 
experimented with two pilot scenarios to demonstrate how multiple phases of testing 
contribute to the evaluation of an AI enabled system. Finally, we present the Bayesian 
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analytical framework for combining information across the multiple phases of testing. This 
analytical framework also reflects the changing system configuration and context. In 
summary, this work essentially constitutes the building blocks for investigating the cost‐benefit 
for test data collection on a realistic system in future phases. 
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