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Abstract 
The research team developed a model-based acquisition decision support tool (i.e., the 
decision engine) for additive manufacturing materials and technologies selection. In order to 
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develop the framework, the team focused on a use case involving aircraft single-component 
(i.e., an aileron bellcrank) design and manufacturing. In the use case, the team identified the 
key decision factors in considering additive manufacturing alternatives against traditional 
manufacturing methods. Preliminary findings indicate that the decision engine provides the 
users with an algorithmic view of the variables to make an optimized decision regarding where 
and how additive manufacturing can have the most impact. To this end, the team designed the 
user interface in such a way that the decision engine visualizes the relative performance of 
each alternative considered, thereby assisting a stakeholder in the decision-making process. 
More specifically, the decision engine provides quantitative information about the usefulness 
of each alternative relative to others. As a result, the decision engine supports stakeholders in 
making informed decisions on additive manufacturing opportunities throughout the mission 
engineering and sustainment defense acquisition. 

Introduction 
Additive manufacturing provides an alternative approach to manufacturing products 

across the supply chain. Some of the benefits of using additive manufacturing are inventory 
reduction in the supply chain, increase in supply chain resilience through alternate options, 
quicker response to surge demands and warfighter readiness, and manufacturing products 
with complex design while actively reducing the number of serviceable components. From a 
sustainable acquisition standpoint, the team needed to figure out how to quantitatively 
approach the decision-making process of additive manufacturing for defense-related 
acquisition. That is, it is crucial to develop a model-based decision-support tool for the 
defense-related acquisition of additive manufacturing components and equipment.  

As the team initiated the research effort of producing the decision framework, some of 
the questions we asked ourselves were as follows: Can the whole supply chain and 
sustainment strategy change, given the use of additive manufacturing instead of traditional 
manufacturing? In what timeframe? What are the limits (e.g., materials science, systems 
engineering, cost, reliability, infrastructure)? Obviously, these are open-ended and difficult 
questions to answer. To address these questions adequately while also ensuring component 
readiness through additive manufacturing in mission engineering, the team realized the 
importance of having a sufficiently narrowed-down digital environment with the capabilities we 
need. Thus, to narrow the scope of the research, the team focused on the digital data and 
framework surrounding the opportunity to exploit additive manufacturing as follows:  

• Identification of necessary data in digital system models to understand how additive 
manufacturing could support system readiness and sustainment; 

• Isolation of the most critical system elements from the perspective of sustainment; 
identification of the variables that are key to understanding criticality from this point of 
view; 

• Development of a framework that would allow the focused allocation of additive 
manufacturing to impact system readiness and sustainment; and 

• Development of a framework of items and contractual elements that would be critical 
for the DoD to negotiate during the contract phase (e.g., any intellectual property 
rights or options needed to support an additive manufacturing strategy for certain 
types of supplies and equipment). 

 

Accordingly, we explored additive manufacturing as a systems engineering problem 
as follows: First, we identified the critical decision and analysis variables and created a 
framework to understand how these variables impact each other. Second, we transferred the 
above framework into an algorithmic view of these variables to make an optimized decision 
regarding where and how additive manufacturing can have the most impact. Third, we 
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developed an interactive decision support tool (i.e., the decision engine in additive 
manufacturing) and tested its use in a user case. As a result, this research paper starts with 
the conceptual background of decision engine development. Then, the discussions transition 
to a use case, “Aircraft Single Component Design,” to demonstrate the decision engine’s 
effectiveness.  

Decision Support Tool for Additive Manufacturing: Overall Scenario 
Additive Manufacturing (AM) is playing an increasingly important role in DoD 

acquisition and sustainment. Decisions about additive manufacturing technology are made 
within various agencies ranging from the USD(A&S) to individual military departments. 
Decision makers range from high-level decision makers interested in overall mission 
effectiveness to field engineers who are responsible for operating specific equipment. There 
is a wide range of decisions related to additive manufacturing, such as decisions about 
whether to use additive manufacturing or traditional manufacturing, supplier selection, a 
decision on contract type; AM technology selection, machine and material selection, and 
process parameter selection (e.g., layer thickness, speed, part orientation).  

Furthermore, the decision-making criteria vary widely from high-level attributes such 
as resilience and mission effectiveness to technical attributes such as part accuracy and 
structural performance. Other decision factors may include material availability, machine 
availability, machine maintainability, competition, technology capability, technology maturity, 
cost, number of parts, intellectual property ownership, and supply chain resilience. 

While there are several initiatives to support specific types of decisions within the AM 
domain, there is a lack of a decision support tool that can be adopted or customized to support 
different decision makers for a range of AM-related decisions. Thus, in this task, the team 
addresses this limitation by developing the decision engine and demonstrating it using use 
cases that are relevant to mission engineering. The activities carried out in this project are 
illustrated in Figure 1. Please note that this research paper focuses on the decision support 
tool (decision engine) development, followed by the demonstration of the decision engine 
using “Aircraft Single Component Design,” which is shown in Figure 1 as the “AM Use Case 
2.” For the “AM Use Case 1,” please see a separate paper (Q. Shi et al., 2022).  

 

 
Figure 1. Overall Development Process 
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Visualization of Decision Engine 
Each decision to be made by a decision maker can be split into two types of 

components: the objectives of the decision maker (e.g., what their goals are, what they want 
to improve, minimize, and prevent from happening) and the alternatives (the different options 
the decision maker can choose from). Each alternative is composed of the relevant attributes 
to the decision problem, examples of which can be seen in the use cases. The final output 
from the decision engine is a bar chart displaying the expected utility values of each alternative 
considered and is intended to assist the decision maker by providing them with quantitative 
information about the usefulness of each alternative relative to others. 

For this project, we make several assumptions that impact the implementation of the 
decision engine. One assumption is that each decision has a finite number of alternatives. 
This assumption implies that the decision engine tool would not be suitable for choosing the 
optimal parameters in a continuous design space. However, if the options could be 
constrained to a finite subset of parameters, then this tool could be used. Another assumption 
is that the attributes of any alternative are utility-independent. If two attributes were not utility 
independent, then as the value of one attribute changes, the utility that the decision maker 
gets from another attribute will change. The assumption of utility independence is standard in 
the literature (Fernández et al., 2005) and greatly reduces the complexity of implementation 
and makes the process of using the engine significantly easier for an end-user. 

The process of using the decision engine is described in the context of decisions being 
made in a hierarchy, with one individual making the final decision and an individual or team 
of technical engineers who determine the information relevant to the decision context. The 
general steps for the decision-making process are outlined in Fernández et al. (2005). In the 
context of a hierarchy, we assume that the decision makers and technical engineers are 
distinct groups, but they could, in practice, be the same. The decision maker should set out 
the specifics of the decision, answering questions such as: 

• What exactly is the decision being made? 
• What are the specific objectives or goals that want to be achieved from this decision? 
• What kind of attributes will be important when comparing multiple alternatives? 

 

Once the decision context has been clearly established by the decision maker, the 
technical engineers may begin translating this information into data usable by the engine. The 
information about the decision scenario is fed into the decision engine via .json files, which 
are a type of structured data file that is human-readable. There are two categories of files 
used by the decision engine: the decision objective file and the alternative information files. 

Decision Objective File 
The first type of file is the decision objective file, and there is typically only one of these 

in each decision-making context. The decision objective file contains information specific to 
the decision context and the decision maker. In this file, each attribute being considered by 
the final decision maker has some general information listed, such as its name, description, 
and units of measurement, as well as information relating to the utility function of the decision 
maker. This information describes the general shape of the utility function, such as the risk 
attitude of the decision maker and whether it is monotonically increasing, decreasing, or 
neither. Lastly, specific numerical data about each utility function is provided. Each utility 
function takes the form of the equation 𝑢𝑢𝑖𝑖(𝑥𝑥) = 𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑒𝑒𝑑𝑑𝑑𝑑, where 𝑖𝑖 is the index of the 
attribute being considered, 𝑥𝑥 is the attribute’s value, 𝑢𝑢𝑖𝑖(𝑥𝑥) is the utility of attribute 𝑖𝑖 with value 
𝑥𝑥, and 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑 are the specific parameters of the utility function. The decision objective 
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file contains these parameters 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, and 𝑑𝑑. The information about the decision context must 
be collected from the final decision maker or someone else with a clear understanding of the 
goal of the decision. 

Alternative Information Files 
The other files used by the decision engine contain information about the alternatives 

being considered. Each file contains information about the attributes relevant to the specific 
decision being made. For the alternative attribute information, the data can either be collected 
manually by technical engineers or automatically if there is access to a relevant database. 
Currently, each attribute is given either as a constant value or as a uniform distribution if there 
is uncertainty about the attribute’s value. We plan to implement additional distributions in the 
future to enable a more accurate representation of the uncertainty in various attributes. Figure 
2 shows the way information flows into the two types of files and then into the decision engine. 
Figure 3 depicts the main screen of the decision engine’s user interface, which allows the 
selection of use cases for analysis. These use cases come from folders containing JSON data 
files, so these can be added to, removed from, or updated as needed. After the user selects 
a use case on the main screen (Figure 3), another user interface appears. The use case 
specific user interface is shown in the Use Case section below. 

 
Figure 2. Decision Engine Information Flow 

 

 
Figure 3. Main Screen for “Decision Engine for Additive Manufacturing” 
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Use Case: Aircraft Single Component Design 
Background/Overview 

The research team was approached by a large aerospace original equipment 
manufacturer (OEM) looking to leverage additive manufacturing (AM) to replace damaged, 
out-of-production parts for fleet sustainment. Specifically, this OEM is looking for a means to 
produce 100 replacement aileron bellcranks on a legacy aircraft. Traditionally made through 
metal casting, the original part supplier has discontinued production. Because the continuous 
operation of the fleet is critical, the company is eager to find a new means of sourcing the part 
quickly. In this transition period, the company is interested in assessing the utility of the 
traditional manufacturing metal casting approach against those of metal additive 
manufacturing methods, as additive manufacturing typically has lower lead times and supply 
chain costs (Gradl et al., 2022). The goal of this use case study is to apply the decision engine 
to compare the utility of several manufacturing approaches for low-volume production of a 
custom aircraft part for fleet sustainment. The information of this use case was adapted from 
past collaborative work with the OEM, and thus the simulated decisions represent an example 
of a real issue modern companies may face with respect to the desire to cut rising costs and/or 
sourcing parts that have become obsolete on the market. 
Problem Statement 

The original design of the bellcrank is shown on the left side of Figure 4. The 
dimensions of the bellcrank used in this case study have been augmented from the actual 
part so as to protect the OEM’s intellectual property. The decision engine is used to evaluate 
the utility of producing these parts using traditional metal casting and several different additive 
manufacturing solutions, including: 

Hybrid wire arc additive manufacturing (hWAAM): In this hybrid process, a wire arc 
welding head selectively deposits metal in a layer-wise fashion. A CNC milling spindle 
selectively removes material at each layer to refine the part quality and surface finish. 
Following fabrication, the fully dense metal part needs moderate heat treatment prior to use. 

Metal binder jetting (mBJT): In this process, the binder is selectively ink-jetted into a 
metal powder bed to fabricate a green part. Following printing, post-processing steps include 
binder curing, part de-powdering, binder pyrolysis, and metal sintering. 

Sand Binder Jetting (sBJT): In this process, binder jetting is used to 3D print molds 
from foundry sand. Following printing, the printed molds are de-powdered and assembled for 
traditional metal casting processing. 

Metal laser powder bed fusion (L-PBF): In this process, a laser selectively melts the 
metal powder in a layer-wise fashion. The printed part is fully dense and can be inserted into 
the application following post-processing steps, including de-powdering, heat treatment, 
support removal, and surface finishing. 

This case study is separated into two decision scenarios as follows: 
Scenario 1: Part Replication 

In the first scenario, the company is comparing the utility of different manufacturing 
techniques to produce 100 replicates of the bellcrank geometry using 6061 Aluminum. In this 
decision, the company is only evaluating alternative manufacturing processes to replicate the 
same geometry and material as in the original design shown on the left side of Figure 4. 
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Scenario 2: Topology Optimized Redesign vs. Original Design 
In the second scenario, the company is evaluating the utility of different manufacturing 

techniques to produce 100 redesigned bellcranks, which have been optimized for 
lightweighting. Specifically, topology optimization software (Autodesk Fusion 360, n.d.) has 
been employed in which part mass is generatively removed from the original design as guided 
by an iterative evaluation of the stresses within the part (Shanmugasundar et al., 2021). The 
optimization algorithm sought to minimize part mass while still retaining sufficient part stiffness 
to meet the load specifications. The resulting topology optimized geometry is shown on the 
right side of Figure 4. In this scenario, the effects of a change in part geometry enabled by 
additive manufacturing are explored while the material (Aluminum 6061) is held constant. 

 

 
Figure 4. Aileron bellcrank 

 

(Left) CAD model of the original aileron bellcrank. The bellcrank is traditionally 
manufactured through the traditional metal casting of 6061 Aluminum. 

(Right) Topology optimization was used to redesign the aileron bellcrank for mass 
minimization. Colored regions indicate where material should be placed within the volume. 
Red regions represent regions of high stress; green regions represent areas of low stress. 
The material used in the optimization is the same as that in the original design, 6061 
Aluminum. The grey bounding box around the optimized geometry is included to illustrate the 
mass savings enabled by topology optimization. 
Attributes 

In decreasing order of importance, the customer is concerned with the minimization of 
cost, time, and part mass. These customer concerns form the attributes of the decision. In 
addition to these customer concerns, part bounding box size was added as an attribute to 
ensure that the part could fit within the allowable build volume of each additive manufacturing 
process. Thus, the attributes of the decision are part bounding box size, total cost, total time, 
and part mass. 
Utility Functions 

Utility functions generated for each attribute are shown in Table 1. A minimum point, 
an intermediate point, and a maximum point were used to fit the functions. A utility function 
was not fitted for the part bounding box attribute. Instead, this function had the form of a binary 
“on/off” condition where, if the bounding box volume of the manufacturing process being 
considered is below the requirement, the utility of that process is zero regardless of the utility 
values. 
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For the total cost, a monotonically decreasing linear function was chosen because 
utility for the customer decreases proportionally as manufacturing cost increases. For both 
total time and part mass, a concave function was chosen because utility for the customer 
decreases more sharply as each of these attributes increases. The utility functions are 
summarized in Table 1. Figure 5, Figure 6, and Figure 7 show the points used to fit utility 
functions for cost, time, and mass, respectively. In these figures, please note that the data 
points were obtained from customer surveying. 

Table 1. Utility Functions 

Attribute Utility Function Type 

Utility Function: 𝒖𝒖(𝒙𝒙) = 𝒂𝒂 + 𝒃𝒃𝒃𝒃 + 𝒄𝒄𝒆𝒆𝒅𝒅𝒅𝒅 

𝒂𝒂 𝒃𝒃 𝒄𝒄 𝒅𝒅 

Part Bounding Box 
(mm x mm x mm) On/Off - - - - 

Total Cost ($) Linear 1 -2e-6 0 0 

Total Time (hours) Exponential (Concave) 0 0 1.002 -0.00198 

Mass (kg) Exponential (Concave) 0 0 1.019 -0.41000 

 

 
Figure 5. Fitted Utility as a Function of Cost 

 

 
Figure 6. Fitted Utility as a Function of Time 
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Figure 7. Fitted Utility as a Function of Mass 

A weight was assigned to each attribute’s utility function to represent the customer’s 
preferences for the relative importance of each attribute. In Scenario 1, in which manufacturing 
processes are evaluated for their utility to replicate the original part geometry and material, 
the customer has a slightly stronger preference for reducing cost than time. On the other hand, 
in Scenario 2, in which the utility of replicating the original part geometry via metal casting is 
compared to the additive manufacturing processes’ ability to fabricate the topology optimized 
part geometry (Figure 4, right), the customer has a near equal preference for minimizing cost, 
time, and part mass. These weighting values are shown in Table 2. 

Table 2. Weights of Attributes Generated From Customer Requirements 

Attribute Scenario 1: Weight Scenario 2: Weight 

Total Cost 0.6 0.4 

Total Time 0.4 0.3 

Mass - 0.3 

 

Decision Engine Data Inputs 
Part Bounding Box 

The bounding box size of the part was obtained by measuring the length, width, and 
height of the part’s computer-aided design (CAD) model. The bounding box of the bellcrank 
measures 350 mm x 350 mm x 87 mm; thus, the requirements for this attribute are these 
dimensions. The bounding box size is the same for both scenarios. 
Total Cost 

Cost estimates for traditional metal casting were obtained from a vendor’s website 
(Liaoning Borui Machinery Co., n.d.). The estimated cost for manual green sand casting of a 
large complex shape is $2,500 per part. Cost estimates for the additive manufacturing 
processes were generated by a cost model from Additive Manufacturing Technologies: Rapid 
Prototyping to Direct Digital Manufacturing (Gibson et al., 2015) given by: 
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𝑃𝑃 is the prorated machine purchase cost; 

𝑂𝑂 is the machine operation cost; 

𝑀𝑀 is the material cost; and  

𝐿𝐿 is the labor cost.  
 

In order to calculate these four sub-costs, information on part geometry, material 
specification from suppliers, and machine process parameters are needed. At a high level, 
the model first uses part geometry information to calculate total scan length (the total linear 
distance traveled by the print head during fabrication), which is estimated from the part 
volume, the average cross-sectional area of each layer, and deposition diameter. The 
estimated scan length is then used in combination with known process parameters (i.e., scan 
speed, deposition head diameter, and layer height) to estimate the total part build time. Once 
the build time is obtained, estimates for the cost of machine purchase, operation, materials, 
and labor can be calculated. Process parameters were sampled from works in the literature 
for each manufacturing process. Process parameters for hWAAM were adapted from X. Shi 
et al. (2017). Process parameters for binder jetting were adapted from Bai et al. (2017). 
Process parameters for powder bed fusion were adapted from Uddin et al. (2018). Cost 
estimates were rounded to the nearest hundred dollars, and an error of ±10% in estimated 
cost is assumed in order to account for discrepancies. 
Total Time 

Times estimates for traditional metal casting were obtained from information published 
on the Impro website (Impro). Time estimates for the additive manufacturing processes were 
calculated using build time models from the Additive Manufacturing Technologies: Rapid 
Prototyping to Direct Digital Manufacturing textbook (Gibson et al., 2015). Build time is 
estimated from the total printing scan length and process parameters specific to each additive 
manufacturing process, such as layer height, hatch spacing, deposition head diameter, and 
scan speed. Values for hWAAM process parameters were adapted from X. Shi et al. (2017). 
Values for binder jetting process parameters were adapted from Bai et al. (2017). Values for 
powder bed fusion process parameters were adapted from Uddin et al. (2018). 

In addition to machine build time, the time required for human hands-on labor, which 
includes printer facilitation and post-processing, is accounted for in each process. The 
estimated human time varies for each process and depends on the process and post-
processing needs. The pertinent assumptions are listed in Table 3 and Table 4 for Scenario 
1 and Scenario 2, respectively. 
Part Mass 

The part mass is obtained from the CAD model of the bellcrank. In Scenario 1, since 
the part design and material are unchanged from that of the original, the part mass produced 
by each process is the same as the original part, 4.02 kg. 

In Scenario 2, the additive manufacturing processes’ utility is re-evaluated for their 
ability to fabricate topology optimized design with reduced mass (Figure 4, right). According 
to Maurer (n.d.), topology optimization can be used to reduce the mass of components by up 
to one-third. Thus, the topology-optimized design has an estimated part mass of 2.68 kg. The 
more complex geometry generated from topology optimization is not manufacturable using 
traditional metal casting, and thus the part mass for the casting process is kept at 4.02 kg. An 
uncertainty of 1% in mass is assumed to account for discrepancies and tolerances in 
manufacturing. 
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Table 3. Data Inputs for Scenario 1 

Attribute (units) Require
ment 

AM: 
hWAAM 
DMS 
2Cubed 
Al60611 

AM: Binder 
Jet ExOne 
X160Pro 
Al60612 

AM: Binder 
Jet ExOne 
X160Pro 
Sand+Al6061 

AM: PBF 
DMP Factory 
500-
LaserForm 
Al60613,4 

TM: 
Casting 
Al6061 

Part Bounding Box 
(mm x mm x mm) 

87 x 350 
x 350 

610 x 610 x 
610 

800 x 500 x 
400 

800 x 500 x 
400 

500 x 500 x 
500 

- 

Parts per batch (no.) - 6 8 5 5 - 
Part Mass (kg) - 4.02 4.02 4.02 4.02 4.02 
Total Cost ($) $100,000 $34,600 $98,500 $58,900 $164,100 $250,0005 
Prorated Machine 
Cost ($) 

- $1,000 $500 $800 $5,700 - 

Operation Cost ($) - $11,800 $5,700 $9,100 $51,700 - 
Materials Cost ($) - $9,800 $85,1006 $32,800 $90,5006 - 
Labor Cost ($) - $11,900 $7,300 $16,200 $16,200 - 
Total Time for 100 
Parts (hours) 

900 930 774 1,377 2,186 2,0007 

Machine Time 
(hours)8  

- 590 566 915 1,724 - 

Human Time 
(hours) 

- 3409 20810 46211 46212 - 

(Uncertainty assumptions: ±10% for cost and time, ±1% for mass) 

 
1 2Cubed printer information from Diversified Machine Systems (n.d.) 
2 X160Pro printer information from ExOne X1 160PRO Review - Industrial Metal and Ceramic 3D Printer 
(n.d.) 

3 Factory-500 printer information from GF Machining Solutions (n.d.) 
4 Data from Uddin et al. (2018) 
5 Sand mold cost estimate from Liaoning Borui Machinery Co. (n.d.) 
6 Data from MSE Supplies (n.d.) 
7 Data from Impro Precision (n.d.) 
8 Gibson (Gibson et al., 2015) 
9 Estimate roughly 10 hours of post-processing per batch of printed parts. Includes time for print set up, part 
removal, and finishing machining 

10 Estimate roughly 15 hours of post-processing per batch of printed parts. Includes time for print set up, de-
powdering, and time to set up curing and sintering of parts 

11 Estimate roughly 22 hours of post-processing per batch of printed parts. Includes time for print set up, de-
powdering, curing, and casting 

12 Estimate roughly 8 hours of post-processing per batch of printed parts. Includes time for print set up, part 
removal, and machining 
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Table 4. Data Inputs for Scenario 2 

Attribute (units) Requirement 

AM: 
hWAAM 
DMS 
2Cubed 
Al6061 

AM: Binder 
Jet ExOne 
X160Pro 
Al6061 

AM: Binder 
Jet ExOne 
X160Pro 
Sand+Al6061 

AM: PBF 
DMP 
Factory 500-
LaserForm 
Al6061 

TM: 
Casting 
Al6061 

Part Bounding Box 
(mm x mm x mm) 

87 x 350 x 
350 

610 x 610 
x 610 

800 x 500 x 
400 

800 x 500 x 
400 

500 x 500 x 
500 

- 

Part Mass (kg) 4.02 2.6813 2.6813 2.6813 2.6813 4.02 
Total Cost ($) $100,000 $31,300 $79,000 $48,000 $134,000 $250,000 
Prorated Machine Cost 
($) 

- $1,000 $500 $800 $5,700 - 

Operation Cost ($) - $11,800 $5,700 $9,100 $51,700 - 
Materials Cost ($) - $6,500 $56,700 $21,900 $60,400 - 
Labor Cost ($) - $11,900 $7,300 $16,200 $16,200 - 
Total Time for 100 
Parts (hours) 

900 930 774 1,377 2,186 2,000 

Machine Time (hours) - 590 566 915 1,724 - 
Human Time (hours) - 340 208 462 462 - 

(Uncertainty assumptions: ±10% for cost and time, ±1% for mass) 
 

Results: Decision Engine Recommendations 
Scenario 1: Part Replication 

The attribute weights, attribute data, and utility functions were input into the decision 
engine in order to calculate the utility of each manufacturing process for Scenario 1. The 
Scenario 1 data inputs for the decision engine are summarized in Table 3. The expected utility 
of each process is plotted in the bar graph in Figure 8. 

It is observed from these results that traditional casting has the lowest utility (0.31), 
while hybrid wire arc additive manufacturing (hWAAM) has the highest utility (0.62). This result 
follows expectations, as the total cost and time for hWAAM are lower than those of the other 
processes (Table 3). Because the customer prioritizes cost minimization in their attribute 
weighting, it is reasonable to expect a process that has a lower cost to have a higher utility. 

The expected utility of each manufacturing technique is plotted. The hWAAM process 
offers the highest utility, while traditional casting offers the lowest utility. 
Scenario 2: Topology Optimized Redesign vs. Original Design 

The attribute weights, attribute data, and utility functions were input into the decision 
engine in order to calculate the utility of each manufacturing process for Scenario 2. The 
Scenario 2 data inputs for the decision engine are summarized in Table 4. The expected utility 
of each process is plotted in the bar graph in Figure 9. Once again, traditional casting has the 
lowest utility (0.22), while hybrid wire arc additive manufacturing (hWAAM) has the highest 
utility (0.52). 

 
13 Data from Maurer (n.d.) 
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However, note that the gap in utility between hWAAM (0.52) and binder jetting with 
6061 Aluminum (0.51) has decreased significantly, suggesting that the two manufacturing 
processes are now comparable in this scenario. Between Scenario 1 and Scenario 2, the 
difference in utility between the two processes is 0.04, indicating that the introduction of 
topology optimization into the decision process can have an impact on recommendation 
output by the engine. This change is largely due to the fact that the bulk of the cost for the 
binder jetting process comes from the powder material feedstock, which can be quite 
expensive (~$185/kg; MSE Supplies, n.d.). However, in hWAAM, the cost of material is 
substantially less (~$20/kg) as it uses conventional welding wire (WeldingSupply 1100-116-
3, n.d.). 
 

 
Figure 8. Decision Engine Outputs for Scenario 1 

 
Figure 9. Decision Engine Outputs for Scenario 2 
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The expected utility of each manufacturing technique is plotted. The hWAAM process 
still offers the highest utility; however, due to decreased material costs from design mass 
reduction, the binder jetting process now has comparable utility. Traditional casting is still 
predicted to have the lowest utility. 

Mass reduction of the bellcrank design through topology optimization has reduced the 
amount of material required to manufacture the part by one-third, which in turn has driven the 
total cost of the binder jetting process down by roughly 20%. An image of the optimized 
component, manufactured with hWAAM, is provided in Figure 10. Thus, this particular 
scenario highlights the possible changes in utility ranking of different processes as a result of 
subtle changes in the attributes by the introduction of topology optimization enabled in additive 
manufacturing processes. 

 
Figure 10. Topology Optimized Bellcrank Produced by hWAAM 

(Note: The surface finish indicates that the AM part was post-processed using a milling machine.) 
 

Final Thoughts on the Use Case: Aircraft Single Component Design 
In this use case, a fleet sustainment decision by an aerospace company was explored. 

Within this decision, two possible scenarios for the design and manufacturing of an aileron 
bellcrank were explored. The first scenario enabled a comparison between traditional casting 
and different additive manufacturing processes’ utilities in replicating the original bellcrank 
geometry and material. 

In Scenario 2, the decision was re-evaluated with considerations that additive 
manufacturing processes can be used to produce a redesigned bellcrank geometry that was 
optimized for lightweighting. In both scenarios, the hybrid wire arc additive manufacturing 
process had the highest utility as it offered a sufficiently large build volume and offered the 
lowest cost and lead time among the alternatives. Between Scenario 1 and Scenario 2, a 
decrease in the relative ranking in utility between the two top manufacturing processes, 
hWAAM and binder jetting, was observed, indicating that additional consideration of additive 
manufacturing’s ability to manufacture topology optimized parts in the decision process can 
impact engine outputs. 
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In the future, a third scenario that could be explored would be looking at how changing 
both the design and the material of the part for each process changes the utility. The change 
in material would change the design output by topology optimization, so each process/material 
combination would be tied to a unique design. Integration of the topology optimization process 
with the decision tool in an iterative fashion would also be a natural extension of this work. 

Conclusions 
The research focused on the data and framework surrounding the opportunity to 

exploit additive manufacturing as a systems engineering problem. The discussion started with 
a description and conceptual background on the decision support tool. Then, we discussed 
the use case, Design, Manufacturing, and Maintenance of Aircraft Components. To further 
understand use case, we identified the critical decision and analysis variables and created a 
framework to understand how these variables impact each other. Then, we transferred the 
above framework into an algorithmic view of these variables to make an optimized decision 
regarding where and how additive manufacturing can have the most impact. Finally, we 
developed an interactive decision support tool (i.e., the decision engine) in additive 
manufacturing so that the decision makers can use the quantitative data to make a proper 
decision. 

As future work, further possibilities of the decision engine development include: (1) 
driving the decision engine using Model-based Systems Engineering (MBSE); (2) Integration 
of the decision engine with System-of-Systems (SoS) Analytic Workbench (AWB) for Mission 
Engineering; (3) Integration of the decision engine with AM machine/material databases (e.g., 
Senvol, PW Communications); (4) Integration of the decision engine with generative design 
tools to explore part redesign opportunities (and associated savings) via the use of AM (e.g., 
Autodesk Fusion 360); and (5) Expansion of decision engine to other DoD’s area of interest, 
such as crisis management as discussed during the Additive Manufacturing Workshop in June 
2022 at the MxD Headquarters in Chicago, IL (Brown, 2022). 
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