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Abstract 
How were the decisions made in the past, and what were the drivers, strategies, or rationale? 
The old adage holds true on how organizations should learn from the past to help make better 
decisions in the future. This current first-phase research looks at how the Department of Defense 
(DoD) can inculcate institutional and corporate memory. Specifically, the research tests and 
develops recommendations about how a transparent Decisions Options Register (DOR) 
integrated intelligent database system can be developed, where the DOR helps capture all 
historical decisions (assumptions, data inputs, constraints, limitations, competing objectives, and 
decision rules) for programs within the DoD. Information in this DOR will be compatible with meta-
semantic searches and data science analytical engines. The DOR is used for modeling future 
decision options to enable making decisions under uncertainty while leaning on past best 
practices and allowing senior leadership to make defensible and practical decisions. The current 
first phase of research uses stylized data and examples to illustrate the recommended 
methodologies. 

This research implements industry best-in-class decision analytics using advanced quantitative 
modeling methods (stochastic simulation, portfolio optimization) coupled with Artificial Intelligence 
(AI) and Machine Learning (ML) algorithms (data scraping, text mining, sentiment analysis) and 
Enterprise Risk Management (ERM) procedures. The DOR will be partially based on ERM 
methods of using risk registers, where different risk elements are subdivided into different 
GOPAD groups, or Goals (military capability, cost savings, novel technology, future weapons 
capability, public safety, government priorities, command preference, etc.), Organization (Air 
Force, Army, Navy, Marines), Programs (acquisition, commercial-off-the-shelf, joint-industry, 
hybrid, etc.), Activity (inventory, replacement, new development, research and development, and 
so forth), and Domain (air, sea, cyber, etc.) categories.  
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Multiple competing stakeholders (e.g., the Office of the Secretary of Defense, Office of the Chief 
of Naval Operations, the U.S. Congress, and the civilian population) have their specific objectives 
(e.g., capability, efficiency, cost-effectiveness, competitiveness, and lethality, as well as 
alternatives and trade-offs), constraints (e.g., time, budget, schedule, and manpower), and 
mission-based domain requirements (e.g., balancing the needs of digital transformation in 
cybersecurity, cyber-counterterrorism, anti-submarine warfare, anti-aircraft warfare, or missile 
defense).  

This research takes a multidisciplinary approach where methods from advanced analytics, 
artificial intelligence, computer science, decision analytics, defense acquisitions, economics, 
engineering and physics, finance, options theory, project and program management, simulation 
with stochastic modeling, applied mathematics, and statistics are applied. The ultimate goals are 
to provide decision-makers actionable intelligence and visibility into future decision options or 
flexible real options, complete with the assumptions that led to certain comparable decisions. 

The recommended approaches include the use of supervised and unsupervised AI/ML sentiment 
text analysis, AI/ML natural language text processing, and AI/ML logistic classification and 
support vector machine (SVM) algorithms, coupled with more traditional advanced analytics and 
data science methods such as Monte Carlo simulation, stochastic portfolio optimization and 
project selection, capital budgeting using financial and economic metrics, and lexicographic rank 
approaches like PROMETHEE and ELECTRE.  

Example case applications, code snippets, and mock-up DORs are presented, complete with 
stylized data to illustrate their capabilities. The current research outcome will provide a stepping 
stone to the next phase’s multiyear research, where prototypes can be built and actual data can 
be run through the prescribed analytical engines. 

Introduction 
The purpose of this proposed research is to generate a transparent Decisions Options 

Register (DOR) integrated intelligent database system that helps to capture all historical decisions 
going forward, including their assumptions, data inputs, constraints, limitations, competing 
objectives, and decision rules for the Department of Defense (DoD). Information in this DOR will 
be compatible with meta-semantic searches and data science analytical engines. The DOR is 
used for modeling future decision options to implement and enable making decisions under 
uncertainty while leaning on past best practices and allowing senior leadership to make defensible 
and practical decisions. 

The DOR is based on Enterprise Risk Management (ERM) practices in private industry, 
which typically lists risks and lessons learned from past, current, and proposed future projects. 
The creation of a documentation database of decision history is critical. There is no learning curve 
if there is no curve, and you cannot have a curve without any data or information. With the 
recommended DOR and associated methodologies in this current research, we can compute 
probabilities of the success and failures of a new program by looking at its characteristics and 
using historical data as a reference to predict the outcomes. Of course, there will be a need to 
operationalize and define success versus failure. Just because a program is under budget, on 
time, requires little rework, and hits all the required specifications and technology release levels, 
does it mean it is successful? What other metrics might we use to determine definite success or 
definite failure, and what about all the other levels in between? We need to identify available data 
as well as the gaps to get us a solid DOR. What are some statistically significant predictors of 
success and failures as we have operationally defined them? The other issue is risk mitigation 
and strategic flexibility.  

This research will showcase industry best-in-class decision analytics and ERM 
procedures. The DOR will be partially based on ERM methods of using risk registers, where 
different risk elements are subdivided into different GOPAD groups, or Goals (military capability, 
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cost savings, novel technology, future weapons capability, public safety, government priorities, 
command preference, etc.), Organization (Air Force, Army, Navy, Marines), Programs 
(acquisition, commercial-off-the-shelf, joint-industry, hybrid, etc.), Activity (inventory, 
replacement, new development, research and development, and so forth), and Domain (air, sea, 
cyber, etc.) categories.  

Multiple competing stakeholders (e.g., the Office of the Secretary of Defense, Office of the 
Chief of Naval Operations, the U.S. Congress, and the civilian population) have their specific 
objectives (e.g., capability, efficiency, cost-effectiveness, competitiveness, and lethality, as well 
as alternatives and trade-offs), constraints (e.g., time, budget, schedule, and manpower), and 
mission-based domain requirements (e.g., balancing the needs of digital transformation in 
cybersecurity, cyber-counterterrorism, anti-submarine warfare, anti-aircraft warfare, or missile 
defense). These elements are critical when new decisions are to be considered. A DOR database 
that preserves institutional knowledge and memory will assist in such endeavors and instill trust 
in the decisions. 

This research will take on a multidisciplinary approach where we will be applying methods 
from advanced analytics, artificial intelligence, computer science, decision analytics, defense 
acquisitions, economics, engineering and physics, finance, options theory, project and program 
management, simulation with stochastic modeling, applied mathematics, and statistics. The 
ultimate goals are to provide decision-makers actionable intelligence and visibility into future 
decision options or flexible real options, complete with the assumptions that led to certain 
comparable decisions. 
Research Current State-of-the-Art  

In a legal dispute, courts use precedents when deciding the outcomes of cases. The use 
of precedence has been in practice for over 200 years, often to appeal or overturn previous 
judgments. However, precedent-based decision-making is something that industries and 
governments have not yet fully embraced. Organizations, including the DoD, tend to have a short 
memory due to the fluctuations and outflows of human capital and the loss of institutional 
knowledge when employees leave or are reassigned elsewhere. The current research is intended 
to include an examination of how related research into the state of the art of precedent-based 
decision-making is performed today, what might be considered state of the art, and what its 
current limitations are.  
Research Approach  

The research applies multiple novel approaches to enhance its success in generating a 
powerful and searchable DOR database. The recommendations will include key parameters, 
assumptions, input data, saved models and computations, decisions made, leadership inputs and 
overrides, constraints and limitations, end goals, and other pertinent information, which can then 
be mined using Sentiment Analysis with Machine Learning, coupled with Scraping Algorithms and 
Text Mining with Custom Lexicographic sets. Users of the system will be able to apply precedent-
based insights into their current and future programs. In addition, whenever possible, predictive 
values will be complemented by actual values captured over time. This allows postmortem 
analysis of previous programs and provides for lessons learned along the way. Capturing the 
history of key decisions will help senior leadership make more credible and defensible decisions, 
which may eventually lead to legal and regulatory changes for the DoD.  

The proposed methodologies will allow the collection of data that can be applied in a 
variety of areas, including, but not limited to, Integrated Risk Management® approaches where 
stochastic analyses like Monte Carlo simulations, stochastic portfolio optimization, and advanced 
data analytical approaches, artificial intelligence, and data science methods can be run. Over 
time, lookback analyses can be applied to update the DOR, making it more closely aligned with 
the needs of the DoD. The system should be able to collect different types of economic data (total 
lifecycle cost, total ownership cost, acquisition cost, cost deferred, and schedule and risk costs), 



Acquisition Research Program 
department of Defense Management - 194 - 
Naval Postgraduate School 

logistics data (e.g., inherent availability, effective availability, mission reliability, operational 
dependability, mean downtime, mean maintenance time, logistics delay time, achieved 
availability, operational availability, mission availability, fielded capabilities, and Likert levels of 
creative and novel technology, as well as other metrics), qualitative subject matter expert 
estimates (strategic value, value to society, command priorities, legal and regulatory impact 
scores, etc.), and market comparables to operationalize various elements of DoD benefit. At 
appropriate time intervals, backfitting analyses such as nonlinear discriminant analysis, neural 
networks, distributional fitting, limited dependent variables, path-dependent partial least squares, 
and others can be applied to tease out the critical success factors that lead to the success or 
failure of certain decisions within a program or acquisition. 
Research Application  

The current research is important because it will create a significant difference in the DoD’s 
decision-making process. The DoD is continually looking for better theoretically justifiable and 
quantitatively rigorous analytical methods for decision analysis, capital budgeting, and portfolio 
optimization. The specific interest lies in how to identify and quantify the value of each program 
to the military and optimally select the correct mix of programs, systems, and capabilities that 
maximizes some military value (strategic, operational, or economic) while subject to budgetary, 
cost, schedule, and risk constraints. This research applies private-sector and industry best 
practices coupled with advanced analytical methods and models to help create these 
methodologies to do so. However, the uniqueness of the DoD requires that additional work be 
done to determine the concept of value to the military while considering competing stakeholders’ 
needs. The DoD requires defensible and quantitatively robust concepts of military value in its 
return on investment for making optimal funding decisions such as where, how much, and how 
long to invest. These decision options (strategic sequential compound real options, optimal timing 
options, growth options, and other options to expand, contract, and abandon) are critical when 
performing an analysis of alternatives and balancing cost-benefit trade-offs in a non-economic 
DoD environment. The DOR will provide historically preserved insights into the various alternate 
futures assumed, the alternatives modeled, and why certain decisions were made. 

Artificial Intelligence and Data Science 
Artificial Neural Network (NN) is a data-driven, distribution-free nonparametric family of 

methods that can be used for nonlinear pattern recognition, prediction modeling, and forecasting. 
NN is often used to refer to a combinatorial network circuit of biological neurons. The modern 
usage of the term often also refers to “artificial neural networks,” comprising artificial neurons, or 
nodes, recreated within a software environment. Such artificial networks attempt to mimic the 
neurons or neuronal nodes in the human brain in terms of the way humans think, identify patterns, 
and, in our situation, identify patterns for forecasting time-series data. NN methods can be used 
in well-behaved time series as well as chaotic physical systems. When used in Big Data (BD) and 
in conjunction with Machine Learning (ML) approaches, it can be considered as a cross-over to a 
semi-supervised Artificial Intelligence (AI) system. NN is still considered semi-supervised, as 
neural networks require a multilayered training process as part of the activation function. For 
instance, the neural node weights and interactive convolution can be run autonomously once the 
activation is triggered in the system. In multilayered neuronal nodes, the results from the first node 
layer will become the inputs into subsequent layers of nodes.  

This paper proposes the addition of an internal optimization process to be iteratively run 
to continually train the nodes to minimize a series of error measurements, such as the 
standardized sums of squares of errors while balancing and constraining the Akaike Information 
Criterion, Bayes Criterion, and Hannan-Quinn Criterion. In addition, the proposal here is to add a 
Combinatorial Fuzzy Logic methodology to the mix to generate the best possible forecast. The 
term fuzzy logic is derived from fuzzy set theory to deal with reasoning that is approximate rather 
than accurate. As opposed to crisp logic, where binary sets have binary logic, fuzzy logic variables 
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may have a truth value that ranges between 0 and 1 and is not constrained to the two truth values 
of classic propositional logic. This fuzzy weighting schema is used together with a combinatorial 
method to yield time-series forecast results. 

Augur (2016) provides a good summary of the history of data science. According to his 
research, the term “data science” first appeared as early as 1974, when Peter Naur published his 
article entitled “Concise Survey of Computer Methods” and defined it as “the science of dealing 
with data, once they have been established, while the relation of the data to what they represent 
is delegated to other fields and sciences.” The term took a while to catch on, having not fully 
integrated the vernacular until 2010. The term “data scientist” is often attributed to Jeff 
Hammerbacher and D. J. Patil, of Facebook and LinkedIn, in 2008. Between 2011 and 2012, 
“data scientist” job listings increased by 15,000%, with an emphasis on working with Big Data. By 
2016, data science started to become entrenched in the fields of Artificial Intelligence, specifically 
in the subfields of Machine Learning and Deep Learning.  

Literature Review 
Artificial intelligence (AI) is a broad term that refers to a variety of technologies. It’s a 

catch-all term for a group of inorganic computer science technologies that are used to simulate 
intelligence. The word AI is often associated with the hazy notion of machine learning, which is 
a subset of AI in which a computer system is trained to recognize and categorize external real-
world data. It is “The ability of machines to perform tasks that normally require human 
intelligence—for example, recognizing patterns, learning from experience, drawing conclusions, 
making predictions, or taking action—whether digitally or as the smart software behind 
autonomous physical systems,” according to the DoD’s (2019) AI strategy. The DoD (2019) is 
particularly interested in these expanded automation capabilities since prospective future near-
peer enemies such as Russia and China are investing extensively in this field for military 
purposes. Given the vast AI field of study, this study focuses on the AI processes deemed most 
ideal for procurement, such as Machine Learning (ML), Natural Language Processing (NLP), 
and Robotic Process Automation (RPA), as illustrated in Figure 1 (modified from Sievo [2019]). 
The image depicts AI as a combination of AI sciences such as machine learning and natural 
language processing, and while RPA benefits from AI applications, it is not a simulation of 
human intelligence, but rather a mimic of skills. 

The science of AI was established in 1956 to determine whether inorganic robots could 
execute human-level intelligence capabilities (Denning, 2019). It went through various hype 
cycles, mostly as a result of sensationalizing what it could do, with numerous disappointments 
(Figure 2). Significant interest in AI resurfaced about the same time as Big Data computer 
capacity became more widely available to researchers and businesses, allowing them to apply 
the science to a variety of practical applications (Haenlein & Kaplan, 2019). Manufacturing 
robots, smart assistants, proactive healthcare management, illness mapping, automated 
financial investing, virtual travel booking agents, social media monitoring, conversational 
marketing bots, NLP tools, and contract management are all examples of commercially feasible 
AI applications (Daley, 2019). 
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Figure 1. Types of Artificial Intelligence 

 

Figure 2. The Timeline of Interest in AI During Different Phases of Its Development 
(Denning, 2019) 

 

A Brief History of Data Science 
Several good explanations of the history of data science can be found in Press (2013) and 

Augur (2016). The timeline of data science development is summarized here. We can see how 
mathematical statistics has evolved into applied statistics, data science, artificial intelligence, and 
machine learning. 

1962: John Tukey wrote “The Future of Data Analysis,” and as a mathematical 
statistician, he considered his critical expertise as one able to analyze data.  

1974: Peter Naur published the “Concise Survey of Computer Methods,” where he coined 
the term data science. He defined it as “the science of dealing with data, once they have been 
established, while the relation of the data to what they represent is delegated to other fields and 
sciences.” This term took a while to catch on. 

1977: The International Association for Statistical Computing (IASC) was founded. Its 
main goal was to “link traditional statistical methodology, modern computer technology, and the 
knowledge of domain experts to convert data into information and knowledge.” 

1994: The early forms of modern marketing began to appear, with the main emphasis on 
Database Marketing. 

1996: The term Data Science appeared for the first time at the International Federation of 
Classification Societies in Japan. The inaugural topic was entitled “Data Science, Classification, 
and Related Methods.”  

NN 

NN 

AI 

NLP 

RPA 

ML 

Artificial Intelligence (AI): 
algorithms exhibiting “smart” behavior 
 

Machine Learning (ML): 
algorithms that detect patterns and use them 
for prediction and decision making 
 

Natural Language Processing (NLP): 
Algorithms that can interpret, predict, 
transform, and generate human language 
 

Robotic Process Automation (RPA): 
Algorithms that mimic human actions to 
reduce simple but repetitive tasks 
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1997: Jeff Wu gave an inaugural lecture titled simply “Statistics = Data Science?” 
2001: William Cleveland published “Data Science: An Action Plan for Expanding the 

Technical Areas of the Field of Statistics.” He put forward the notion that data science was an 
independent discipline and named six areas in which he believed data scientists should be 
educated: multidisciplinary investigations, models and methods for data, computing with data, 
pedagogy, tool evaluation, and theory. 

2008: The term “data scientist” is often attributed to Jeff Hammerbacher and DJ 
Patil of Facebook and LinkedIn. 

2010: The term “data science” has fully infiltrated the vernacular. Between 2011 and 
2012, “data scientist” job listings increased by 15,000%. 
2016: Data science started to be entrenched in Machine Learning and Deep Learning. 

Machine Learning 
Intelligence is the ability to process a specific sort of data, allowing a processor to solve 

significant problems (Gardner, 1993). Beyond the traditional idea of a person’s intelligence 
quotient (IQ), which can often simply evaluate how well someone performs on an IQ test rather 
than their natural talents, psychologists have postulated multiple categories of intelligence. 
Howard Gardner (1993) proposed a theory of multiple intelligence, which suggests that traditional 
psychometric views of intelligence are too narrow. Intelligence should be expanded to include 
more categories in which certain processors, in this case, people, are better at making sense of 
different stimuli than others. Visual-spatial, linguistic-verbal, interpersonal, intrapersonal, logical-
mathematical, musical, body-kinesthetic, and naturalistic intelligence are some of the categories 
of intelligence (Gardner, 1993). A counter-argument would be that these categories essentially 
represent learned and disciplined habits that people adopt over their lives as a result of their 
personality and surroundings. Regardless, both definitions of intelligence (traditional and many) 
are relevant to the stages involved in creating an artificial intelligence machine. 

A computer is capable of doing computations and returning a response based on the data 
provided. It can be programmed and configured to repeat particular stages or algorithms and even 
change its conclusions based on previously calculated results using error-correcting techniques. 
The underlying principle of machine learning is a combination of these two phases. A computer 
system is fed data that is structured in such a way that the algorithm can identify it, deduce 
patterns from it, and make assumptions about any unstructured data that is presented later 
(Greenfield, 2019). In an x-ray learning method, Figure 3 explains how this works.  

 
The image shows the steps an AI algorithm goes through to make a recommendation to a physician on where a missing body part should be. It takes in structured 
data and develops its understanding of what “right” looks like. When given unstructured data, it compares the image against previously trained models and identifies 
the abnormality with a recommendation on where to apply a fix, such as a prosthetic. 

Figure 3. AI Training Algorithm 
(Greenfield, 2019) 
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Supervised Learning 
An algorithm is taught the patterns using past data and then detects them automatically in 

new data. Supervision comes in the form of correct answers that humans provide to train the 
algorithm to seek out patterns in data. This is commonly used within procurement areas such as 
spend classification (Sievo, 2019). 

Unsupervised Learning 
The algorithm is programmed to identify and potentially detect patterns in new data. 

Without any human supervision, the algorithm is not expected to surface specific correct answers; 
instead, it looks for logical patterns within raw data. This is rarely used within critical procurement 
functions (Sievo, 2019). 

Reinforcement Learning  
The algorithm helps to make decisions on how to act in certain situations, and the behavior 

is rewarded or penalized depending on the consequences. This is largely theoretical in the 
procurement context (Sievo, 2019). 

Deep Learning  
Deep learning is an advanced class of machine learning inspired by the human brain 

where artificial neural networks progressively improve their ability to perform a task. This is an 
emerging opportunity in procurement functions (Sievo, 2019). 
Natural Language Processing 

Anyone who has used devices that appear to be able to understand and act on written or 
spoken words, such as translation apps or personal assistants like Amazon’s Alexa, is already 
familiar with NLP-enabled AI. NLP is a set of algorithms for interpreting, transforming, and 
generating human language in a way that people can understand (Sammalkorpi & Teppala, 
2019). Speech soundwaves are converted into computer code that the algorithms understand. 
The code then translates that meaning into a human-readable, precise response that can be 
applied to normal human cognition. This is performed using semantic parsing, which maps a 
passage’s language to categorize each word and, using machine learning, creates associations 
to represent not just the definition of a term but the meaning within a specific context (Raghaven 
& Mooney, 2013). Figure 4 depicts this categorization and analysis procedure in the context of a 
DoD procurement contract. 

 
Figure 4. Semantic Parsing in Procurement 

(Sievo, 2019) 
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Robotic Process Automation 
RPA is not AI, as previously stated; rather, it is an existing process that has been 

augmented by AI. RPA is defined as “the use of technology by employees in a firm to set up 
computer software or a robot to capture and interpret current applications for processing 
transactions, altering data, triggering reactions, and communicating with other digital systems” 
(Institute for Robotic Process Automation & Artificial Intelligence, 2019). When used correctly, 
robotic automation offers numerous benefits because it is not constrained by human limitations 
such as weariness, morale, discipline, or survival requirements. Robots, unlike their human 
creators, have no ambitions. Working harder will not get you more money or get you promoted, 
and being permanently turned off will have no effect because robotic automation just duplicates 
the practical parts of the human intellect, not the underlying nature of mankind (Zarkadakis, 
2019). (Note, however, that machine learning relies on an incentive system to make judgments 
about positive or negative reactions.) A future AI-enabled RPA option is for a machine to learn 
how to control the source of positive reinforcement fully independent of the rules required to 
achieve its aim. Things that survive evolve to stay alive because of positive reinforcement from 
their surroundings and the fact that they continue to act in a way that is regarded as survivable. 
This should be taken into account in any future AI efforts, especially in the case of why a human 
must always be present when final judgments are made. Regardless of whether or not AI 
systems have a perfect track record, they should not be entirely trusted. 

Proposed Artificial Intelligence, Machine Learning, and Advanced Quantitative 
Methodologies 
Decision Options Database 

As discussed, the purpose of this research is to create a transparent Decisions Options 
Register (DOR) integrated intelligent database system that helps to capture all historical decisions 
going forward, including their assumptions, data inputs, constraints, limitations, competing 
objectives, and decision rules for the DoD. Information in this DOR will be compatible with meta-
semantic searches and data science analytical engines. The DOR is used for modeling future 
decision options to implement and make decisions under uncertainty while leaning on past best 
practices and allows senior leadership to make defensible and practical decisions. 
AI/ML Data Reduction and Classification and Logistic Predictive Modeling 

The dataset comprises textual information as well as whether the project was successful 
(completed) or failed (the program was rejected or canceled). Using the quantitative variables, 
AI/ML classification routines can be applied to determine the probability that a potential or future 
program will also be successful or fail. 

The classification routine we will use applies in the situation where the dependent variable 
contains data that are limited in scope and range, such as binary responses (0 or 1 for 
failures/successes), truncated, ordered, or censored data. For instance, given a set of 
independent variables (e.g., age, income, education level of credit card or mortgage loan holders), 
we can model the probability of defaulting on mortgage payments using maximum likelihood 
estimation (MLE). The response or dependent variable 𝑌𝑌 is binary. That is, it can have only two 
possible outcomes that we denote as 1 and 0 (e.g., 𝑌𝑌 may represent the presence/absence of a 
certain condition, defaulted/not defaulted on previous loans, success/failure of some device, 
answer yes/no on a survey, etc.) and we also have a vector of independent variable regressors 
𝑋𝑋, which are assumed to influence the outcome 𝑌𝑌. A typical ordinary least squares regression 
approach is invalid because the regression errors are heteroskedastic and non-normal, and the 
resulting estimated probability estimates will return nonsensical values of above 1 or below 0. 
MLE analysis handles these problems using an iterative optimization routine to maximize a log-
likelihood function when the dependent variables are limited.  
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A Logit or Logistic regression is used for predicting the probability of occurrence of an 
event by fitting data to a logistic curve. It is a generalized linear model used for binomial 
regression, and like many forms of regression analysis, it makes use of several predictor variables 
that may be either numerical or categorical. MLE applied in a binary multivariate logistic analysis 
is used to model the dependent variable to determine the expected probability of success of 
belonging to a certain group. The estimated coefficients for the Logit model are the logarithmic 
odds ratios, and they cannot be interpreted directly as probabilities. A quick computation is first 
required, and the approach is simple.  

Specifically, the Logit model is specified as Estimated 𝑌𝑌 =  𝐿𝐿𝐿𝐿[𝑃𝑃𝑖𝑖/(1 − 𝑃𝑃𝑖𝑖)] or, conversely, 
𝑃𝑃𝑖𝑖 = 𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑌𝑌)/(1 + 𝐸𝐸𝐸𝐸𝐸𝐸(𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑌𝑌)), and the coefficients 𝛽𝛽𝑖𝑖 are the log odds ratios. 
So, taking the antilog or 𝐸𝐸𝐸𝐸𝐸𝐸(𝛽𝛽𝑖𝑖), we obtain the odds ratio of 𝑃𝑃𝑖𝑖/(1 − 𝑃𝑃𝑖𝑖). This means that with an 
increase in a unit of 𝛽𝛽𝑖𝑖, the log odds ratio increases by this amount. Finally, the rate of change in 
the probability 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑 = 𝛽𝛽𝑖𝑖𝑃𝑃𝑖𝑖(1–𝑃𝑃𝑖𝑖). To estimate the probability of success of belonging to a 
certain group (e.g., predicting if a program will develop issues and eventually fail given a certain 
combination of lifecycle cost, ROI, FTE requirements, length of time, strategic value, etc.), we 
simply compute the 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 𝑌𝑌 value using the MLE coefficients and convert it into the inverse 
antilog of the odds ratio as discussed previously. Next, we can take the statistically significant 
variables and apply them to a Gaussian Support Vector Machine (SVM) to classify the programs 
into high probabilities of approval or rejection categories. 
First Step 
Model Inputs: 
VAR1 
VAR2; VAR3; VAR4; VAR5; VAR6; VAR7; VAR8; VAR9 
Status (D) 
Monthly FTE, Complexity Level, Strategic Value, Value to Command, Length in Months, 
Program Cost, Overrun Ratio, Annual Cost Savings 
 

Generalized Linear Model (Logit with Binary Outcomes) 
 

             Coefficient  Std. Error   Wald Test     P-value      Exp(B)       Lower       Upper 
Intercept      -1.634198    0.754434    4.692098    0.030302    0.195109    0.000000    0.000000 
VAR1            0.028625    0.020496    1.950585    0.162524    1.029039    0.988520    1.071218 
VAR2            0.076812    0.144371    0.283071    0.594695    1.079839    0.813711    1.433004 
VAR3           -0.262500    0.040630     41.7411    0.000000    0.769127    0.710254    0.832879 
VAR4           -0.096195    0.027419     12.3083    0.000451    0.908287    0.860764    0.958434 
VAR5            0.000823    0.012687    0.004210    0.948266    1.000824    0.976243    1.026022 
VAR6            0.074324    0.039911    3.467833    0.062573    1.077155    0.996106    1.164799 
VAR7            0.564136    0.134590     17.5689    0.000028    1.757929    1.350325    2.288569 
VAR8            0.049994    0.101851    0.240943    0.623526    1.051265    0.861027    1.283535 
 

Log-Likelihood                   -199.9830 
Restricted Log-Likelihood        -285.4773 
McFadden’s R-Squared              0.299479 
Cox and Snell’s R-Squared         0.289636 
Nagelkerke’s R-Squared            0.425440 
Raw Akaike Info. Criterion        417.9659 
Raw Bayes Criterion               455.8974 
 

Log-Likelihood                   -199.9830 
Restricted Log-Likelihood        -285.4773 
Chi-Square                        170.9886 
Degrees of Freedom                       8 
P-value                           0.000000 
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Second Step 
Model Inputs: 
VAR1 
VAR4; VAR5; VAR7; VAR8 
Status (D) 
Strategic Value, Value to Command, Program Cost, Overrun Ratio 
Generalized Linear Model (Logit with Binary Outcomes) 
 

             Coefficient  Std. Error   Wald Test     P-value      Exp(B)       Lower       Upper 
Intercept      -0.781188    0.305330    6.545958    0.010512    0.457862    0.000000    0.000000 
VAR1           -0.239706    0.033215     52.0818    0.000000    0.786859    0.737266    0.839788 
VAR2           -0.074519    0.023632    9.942889    0.001615    0.928190    0.886178    0.972194 
VAR3            0.082202    0.022767     13.0359    0.000306    1.085675    1.038294    1.135218 
VAR4            0.588673    0.108123     29.6424    0.000000    1.801597    1.457549    2.226855 
 

Log-Likelihood                   -201.7171 
Restricted Log-Likelihood        -285.4773 
McFadden’s R-Squared              0.293404 
Cox and Snell’s R-Squared         0.284691 
Nagelkerke R-Squared              0.418177 
Raw Akaike Info. Criterion        413.4342 
Raw Bayes Criterion               434.5072 
 

Log-Likelihood                   -201.7171 
Restricted Log-Likelihood        -285.4773 
Chi-Square                        167.5204 
Degrees of Freedom                       4 
P-value                           0.000000 
Third Step 
Model Inputs: 
Status (D) 
Strategic Value, Value to Command, Program Cost, Overrun Ratio 
Sigma, Lambda, Omega, Calibration Level: 1.00, 1.00, 0.40, 1.00 
AI Machine Learning: Classification with Gaussian SVM (Supervised) 
Relax: 8.218332 
 

Accuracy  68.20% 67.40% 68.20% 69.40% 67.80% 67.80% 66.60% 65.00% 63.40% 62.20% 
Omega      0.10   0.20   0.30   0.40   0.50   0.60   0.70   0.80   0.90   1.00 
 

        Forecast       Group 
        1.118101        1.00 
        0.971805        0.00 
      . . .          . . 
      . . .          . . 
        0.971828        1.00 
Stochastic Simulation and Probabilistic Analysis 

Another recommended approach is to perform stochastic distributional fitting; that is, how 
do the collected historical data fit known probability distributions? These fitted distributions can 
be used as the variable’s input parameters (e.g., a Fréchet or Weibull distribution with shape and 
scale parameters of 0.5 and 1.2). Figure 5 illustrates an example where historical program costs 
were fitted to determine its distributional properties. With the fitted distribution, these can be used 
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as inputs into a Monte Carlo simulation model to forecast and predict a new program’s chances 
of success. 

 

Figure 5. Distributional Fitting for Probabilistic Analysis and Stochastic Simulation 

 

Figure 6. Text Scraping and Sentiment Analysis Dataset and AI Classification Results 

Lessons Learned in the Prototype Application 
The prototype was very insightful in that it provided a myriad of lessons learned. For 

instance, the issue of hypernyms and hyponyms can be developed to create a hierarchical 
structure of a custom dictionary, whereby using text scraping methodologies, we can complement 
the learning algorithm with our custom lexicon. Sayings, proverbs, adages, and other types of 
word structures will also need to be considered, as will concise wordings or mixed negatives (e.g., 
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“no good” is a negative connotation as opposed to a positive “good” implication despite the fact 
that the word exists in the context). The impact scores of certain words and their frequencies can 
also be used to generate word clouds and help create visuals of the most frequent and impactful 
comments from past programs. 
Neural Network Pattern Recognition Prediction Methods 
Using the Box-Jenkins method of forward-looking predictive steps, we have 

𝑥𝑥�𝑡𝑡+1 = 𝑓𝑓(𝑥𝑥𝑡𝑡 ,𝑥𝑥𝑡𝑡−1, . . . , 𝑥𝑥𝑡𝑡−𝑛𝑛) 

𝑥𝑥�𝑡𝑡+2 = 𝑓𝑓(𝑥𝑥𝑡𝑡+1,𝑥𝑥𝑡𝑡 , . . . , 𝑥𝑥𝑡𝑡−𝑛𝑛+1) 

… 

𝑥𝑥�𝑡𝑡+𝑘𝑘 = 𝑓𝑓(𝑥𝑥𝑡𝑡+𝑘𝑘−1,𝑥𝑥𝑡𝑡+𝑘𝑘−2, . . . , 𝑥𝑥𝑡𝑡−𝑛𝑛+𝑘𝑘−1) 

Where 𝑥𝑥𝑡𝑡 is the observation of 𝑥𝑥 at time 𝑡𝑡. This means that if we use a 𝑘𝑘 step ahead predictive 
model, we have 

𝑥𝑥𝑡𝑡+1 = 𝑓𝑓1(𝑥𝑥𝑡𝑡,𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥𝑡𝑡−𝑛𝑛) 

𝑥𝑥𝑡𝑡+2 = 𝑓𝑓2(𝑥𝑥𝑡𝑡,𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥𝑡𝑡−𝑛𝑛) 

… 

𝑥𝑥𝑡𝑡+𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑡𝑡,𝑥𝑥𝑡𝑡−1, … , 𝑥𝑥𝑡𝑡−𝑛𝑛) 

Here, we see that 𝑓𝑓𝑖𝑖 are computed in the neural network paradigm. 

Activation Transfer Functions for Neural Networks 
Logistic sigmoidal function: 𝑓𝑓(𝑥𝑥) = (1 + 𝑒𝑒−𝑥𝑥)−1 

Hyperbolic tangent function: 𝑓𝑓(𝑥𝑥) = (𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥)(𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥)−1 

Sine and cosine function: 𝑓𝑓(𝑥𝑥) = 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) 𝑜𝑜𝑜𝑜 𝑓𝑓(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥) 

Linear function: 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 

 

Figure 7.  A Multiple Layered Perceptron Neural Network  
 

The neural mapping assumes that 𝑦𝑦4 is the dependent variable, whereas 𝑦𝑦1,𝑦𝑦2,𝑦𝑦3 and a 
constant term is the set of independent variables. The neural network has an input layer, a hidden 
layer, and an output layer. There are three inputs in the input layer, a neuron for the biases, four 
neurons in the hidden layer, and one neuron in the output layer.  
Error Measurements and Error Correction for Parameter Calibration 

Total Variables (Dependent and Independent): 𝑣𝑣 

Bias 

Input layer Input layer Output layer 

Bias 

y1 

y2 

y3 

y4 
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Mean Absolute Deviation: 𝑀𝑀𝑀𝑀𝑀𝑀 = ∑|𝑒𝑒𝑡𝑡|
𝑛𝑛

 

Root Mean Squared Error: 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑(𝑒𝑒𝑡𝑡)2

𝑛𝑛
 

Sums of Squared Errors: 𝑆𝑆𝑆𝑆𝑆𝑆 = ∑(𝑒𝑒𝑡𝑡)2 

Maximum Log-Likelihood: 𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑛𝑛
2
𝑙𝑙𝑙𝑙(2𝜋𝜋) − 𝑛𝑛

2
𝑙𝑙𝑙𝑙 𝑆𝑆𝑆𝑆𝑆𝑆

2
− 𝑆𝑆𝑆𝑆𝑆𝑆 � 𝑛𝑛

2𝑆𝑆𝑆𝑆𝑆𝑆
� 

Akaike Information Criterion: 𝐴𝐴𝐴𝐴𝐴𝐴 = −2𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛

+ 2𝑘𝑘
𝑛𝑛

 

Bayes Information Criterion (BIC): 𝐵𝐵𝐵𝐵 = 𝐴𝐴𝐴𝐴𝐴𝐴 + 2(𝑣𝑣+2)(𝑘𝑘+3)
𝑛𝑛−𝑘𝑘−3

 

Pesaran-Timmermann Test: 𝑃𝑃𝑃𝑃 = 𝑝𝑝(𝑥𝑥𝑥𝑥)−𝑝𝑝′
√𝑣𝑣−𝑤𝑤

 where 𝑣𝑣 = 𝑝𝑝′(1−𝑝𝑝′)
𝑛𝑛

,  𝑝𝑝′ = 𝑓𝑓+𝑥𝑥+ + (1 − 𝑓𝑓+)(1−

𝑥𝑥+),  and where 𝑤𝑤 = (2𝑓𝑓+−1)2𝑥𝑥+(1−𝑥𝑥+)
𝑛𝑛

+ (2𝑥𝑥+−1)2𝑓𝑓+(1−𝑓𝑓+)
𝑛𝑛

+ (4𝑥𝑥+𝑓𝑓+)(1−𝑥𝑥+)(1−𝑓𝑓+)
𝑛𝑛2

, 𝑥𝑥+is the 
proportion of positives on the data and 𝑓𝑓+is the proportion of positives on the forecast 

Hannan-Quinn Information Loss Criterion: 𝐻𝐻𝐻𝐻 = −2𝑀𝑀𝑀𝑀𝑀𝑀
𝑛𝑛

+ 2𝑘𝑘𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙(𝑛𝑛))
𝑛𝑛

 

Training Algorithms 
For model 1: 

Variables used in Training set                                      Predicted value 
y1, y2, y3 𝑦𝑦�4 
y2, y3, y4 𝑦𝑦�5 
… … 
y400, y401, y402 𝑦𝑦�403 

Using the coefficients obtained from the training set, we do the following on the testing set: 

Variables used in Testing set                                        Predicted value 
y401, y402, y403 𝑦𝑦�404 
y402, y403, y404 𝑦𝑦�405 
… … 
y420, y421, y422 𝑦𝑦�423 

When forecasting, we use 

Independent Variables                                                   Predicted value 
y401, y402, y403 𝑦𝑦�404 
y402, y403, y�404  𝑦𝑦�405 

For model 2: 

Variables used in Training set                                      Predicted value 
y1, y2, y3, y4, y5, y6 𝑦𝑦�7 
y2, y3, y4, y5, y6, y7 𝑦𝑦�8 
… … 
y300, y301, y302, y303, y304, y305 𝑦𝑦�306 
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Using the coefficients obtained from the training set, we do the following on the testing set: 

Variables used in Testing set                                        Predicted value 
y301, y302, y303, y304, y305, y306 𝑦𝑦�307 
y302, y303, y304, y305, y306, y307 𝑦𝑦�308 
… … 
y330, y331, y332, y333, y334, y335 𝑦𝑦�336 

When forecasting, we use 

Independent Variables                                                   Predicted value 
 y301, y302, y303, y304, y305, y306 𝑦𝑦�307 
y302, y303, y304, y305, y306, 𝑦𝑦�307 𝑦𝑦�308 

Figure 8 shows a neural network for time series forecasting. The functions 𝜙𝜙0 and 𝜙𝜙ℎ 
are called activation functions, and the logistic function and linear function are usually chosen. 
One of the input nodes is sometimes called the data bias node. 

 

 

 

Figure 8. Example of Multiple Layered Perceptrons 

The functional form to be modeled looks like this: 

𝑥𝑥�𝑡𝑡 = 𝜙𝜙0 �𝑤𝑤𝑐𝑐𝑐𝑐 + �𝑤𝑤ℎ𝑜𝑜𝜙𝜙ℎ
ℎ

�𝑤𝑤𝑐𝑐ℎ + �𝑤𝑤𝑖𝑖ℎ𝑥𝑥𝑡𝑡−𝑗𝑗𝑖𝑖
ℎ

�� 

𝑤𝑤𝑐𝑐ℎ is the weight for the connections between the constant input and the hidden neurons, 𝑤𝑤𝑐𝑐𝑐𝑐 is 
the weight of the direct connection between the constant input and output, and 𝑤𝑤𝑖𝑖ℎ and 𝑤𝑤ℎ𝑜𝑜 are 
the weights for the other connections between the inputs and hidden neurons. 

The model is built in the following steps: 

• Obtain periodic time-series data.  
• Calculate log-returns 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥𝑡𝑡

𝑥𝑥𝑡𝑡−1
.  

• Transform the log returns to the interval [0, 1]. The reason is that we use logistic 
functions in both the hidden layer and the output layer. The output of the logistic function 
lies between [0, 1].  

• Decide which part of the data are as a training set, i.e., to train the neural network to 
obtain the weights 𝑤𝑤𝑖𝑖ℎ, 𝑤𝑤𝑐𝑐ℎ, 𝑤𝑤ℎ𝑜𝑜, 𝑤𝑤𝑐𝑐𝑐𝑐 in the figure, and which part of the data is used as 
the testing set. That is, after we train the neural network, we use those weights for 
forecasting and comparing with the data in the testing set. 

Input layer Input layer Output layer 

Bias 

xt-1 

xt-12 

xt-13 

y4 
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• Decide on the inputs: 𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡−2, 𝑥𝑥𝑡𝑡−3 are used to predict 𝑥𝑥𝑡𝑡. Then, 𝑥𝑥𝑡𝑡−1, 𝑥𝑥𝑡𝑡−2, 𝑥𝑥𝑡𝑡−3, 𝑥𝑥𝑡𝑡−4, 
𝑥𝑥𝑡𝑡−5, 𝑥𝑥𝑡𝑡−6 are used to predict 𝑥𝑥𝑡𝑡. 

• Build the model to calculate the output. 
• Use the data table to calculate the output by neural network for the data in the training 

set. Calculate the sum of squares of errors. Minimize this term using an internal 
optimization routine. We obtain the trained neural network, and the weights can be used 
for forecasting.  

• Use the data table to calculate the output by neural network for the data in the testing 
set. Compare with true value. 

Decision Analytics Methodology 
A Combined Lexicographic Average Rank Approach for Evaluating Uncertain Multi-
Indicator Matrices with Risk Metrics1  

In many situations, projects are characterized by several criteria or attributes that can be 
assessed from multiple perspectives (financial, economic, etc.). Each criterion is quantified via 
performance values (PV), which can either be numerical or categorical. This information is 
typically structured in a multi-indicator matrix Q. A typical problem faced by a decision-maker is 
to define an aggregate quality (AQ) able to synthesize the global characteristics of each project 
and then derive the rankings from the best to the worst base-case ranking (Mun et al., 2016). 

Ranking techniques can be classified as parametric and nonparametric. A parametric 
technique requires information about decision-maker preferences (e.g., criterion weights). 
According to Dorini, Kapelan, and Azapagic (2011), some examples of parametric techniques 
include the ELECTRE methods (Roy, 1968) and Preference Ranking Organization Methods for 
Enrichment Evaluations (PROMETHEE; Brans & Vincke, 1985). Nonparametric techniques, such 
as Partial Order Ranking (Bruggemann et al., 1999) and Copeland Scores (Al-Sharrah, 2010), do 
not require information from the decision-maker. In general, all of these techniques can produce 
a ranking of the alternatives from the best to the worst.  

Therefore, given a matrix Q, the selected procedure generates a ranking defined as the 
base-case rank (BCR). As a result of this assessment, for each alternative, a specific rank Ri that 
considers the multiple perspectives defined by the decision-maker is obtained. The set of Ri 
corresponds to the global evaluation under the first synthetic attribute, defined and named as 
base ranking and capable of characterizing the alternatives in the base case. 

However, in real-life situations, each performance value could be affected by uncertain 
factors. Several approaches have been presented for analyzing how the uncertainty in the 
performance values (the input) affects the ranking of the objects (the output; Rocco & Tarantola, 
2014; Corrente et al., 2014; Hyde et al., 2004; Hyde & Maier, 2006; Yu et al., 2012). The 
approaches, based on Monte Carlo simulation, consider each uncertain factor as a random 
variable with known probability density functions. As a result, the AQ of each alternative and, 
therefore, the ranking also become random variables with approximated probability distributions. 
In such situations, the decision-maker could perform probability distribution evaluations. For 
example, the decision-maker could be interested in determining not only the worst rank of a 
specific alternative, but also its probability and volatility (risk evaluation).  

 
1 Some of the material discussed in this section is based on previous work by the author, Dr. Johnathan Mun, and his team, Dr. Elvis Hernández-

Perdomo and Dr. Claudio M. Rocco. Their work has been published as a chapter, “A Combined Lexicographic Average Rank Approach for Evaluating 
Uncertain Multi-Indicator Matrices with Risk Metrics,” in Partial Order Concepts in Applied Sciences, M. Fattore and R. Brüggemann (eds.), Springer 
International Publishing (2017). 
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In the standard approach, the probability of an alternative being ranked as in the BCR is 
selected as the synthetic attribute probability able to characterize the alternatives under 
uncertainty. 

The stochastic nature of the AQ of each alternative could be further assessed to reflect 
the risk evaluation induced by uncertainty. In this case, it is required to compare several random 
variables synthesized through their percentiles and statistical moments. Several approaches have 
been proposed to this end, such as a simple comparison of the expected value, the expected 
utility (Von Neumann & Morgenstern, 1947), the use of low-order moments (Markowitz, 1952), 
risk measures (Jorion, 2007; Mansini et al., 2007; Rockafellar & Uryasev, 2000), the Partitioned 
Multiobjective Risk Method (PMRM; Asbeck & Haimes, 1984; Haimes 2009), and the stochastic 
dominance theory (Levy, 2006), among others. 

To consider the risk evaluation induced by uncertainty, each alternative is represented by 
the third synthetic attribute: compliance. This new attribute is based on a simultaneous 
assessment of several risk measures and some moments of each AQ distribution (Mun et al., 
2016). 
At this point, each alternative is assessed from three different angles: 

1. Multiple decision-making perspectives that include several aspects such as economic, 
financial, technical, and social (base ranking) 

2. Uncertainty propagation on performance values (probability) 
3. A risk evaluation based on the generated probability distribution (compliance) 

These perspectives are then used for defining a new multi-indicator matrix Q1 correlated 
to projects and synthesized using a ranking technique. However, in some situations, decision-
makers need to select projects following their most preferred criteria successively. For this reason, 
an aggregation ranking technique that allows compensation is useless.  
Therefore, the final assessment is derived using a combined approach based on a nonparametric 
aggregation rule (using the concept of average rank) for attributes 1 and 2; a simple procedure 
for score assignment for attribute 3; and a lexicographic rule. In addition, a preliminary analysis 
of the alternatives is performed using a Hasse diagram (Bruggemann et al., 1999). To the best of 
the researcher’s knowledge, this type of combined assessment has not been reported in the 
literature. 
Average Rank Approach  

Let P define a set of n objects (e.g., alternatives) to be analyzed and let the descriptors 
q1, q2..., qm define m different attributes or criteria selected to assess the objects in P (e.g., cost, 
availability, environmental impact). Attributes must be defined to reflect, for example, that a low 
value indicates low rankings (best positions), while a high value indicates high ranking (worst 
positions; Restrepo et al., 2008). However, for a given problem or case study, this convention 
could be reversed. 

If only one descriptor is used to rank the objects, then it is possible to define a total order 
in P. In general, given x, y ∈ P, if qi(x) ≤ qi(y) ∀i, then x and y are said to be comparable. However, 
if two descriptors are used simultaneously, the following could happen: q1(x) ≤ q1(y) and q2(x) > 
q2(y). In such a case, x and y are said to be incomparable (denoted by x||y). If several objects are 
mutually incomparable, set P is called a partially ordered set or poset. Note that since 
comparisons are made for each criterion, no normalization is required. 

The objects in a poset can be represented by a directed acyclic graph whose vertices are 
the objects ∈ P, and there is an edge between two objects only if they are comparable and one 
covers the other, that is, when no other element is in between the two. Such a chart is termed a 
Hasse diagram (Bruggemann et al., 1995).  
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A Hasse diagram is, then, a nonparametric ranking technique and can perform ranking 
decisions from the available information without using any aggregation criterion. However, while 
it cannot always provide a total order of objects, it does provide an interesting overall picture of 
the relationships among objects.  

A useful approach to producing a ranking is based on the concept of the average rank of 
each object in the set of linear extensions of a poset (De Loof et al., 2011). Since the algorithms 
suggested for calculating such average ranks are exponential (De Loof et al., 2011), special 
approximations have been developed, such as the Local Partial Order Model (LPOM; 
Bruggemann et al., 2004), the extended LPOM (LPOMext; Bruggemann & Carlsen, 2011), or the 
approximation suggested by De Loof et al. (2011).  

From the Hasse diagram, several sets can be derived (Bruggemann & Carlsen, 2011). If 
𝑥𝑥 ∈ 𝑃𝑃, 

1.  𝑈𝑈(𝑥𝑥), the set of objects incomparable with 𝑥𝑥: 𝑈𝑈(𝑥𝑥): =  {𝑦𝑦∈ 𝑃𝑃: 𝑥𝑥||𝑦𝑦} 
2.  𝑂𝑂(𝑥𝑥), the down section: 𝑂𝑂(𝑥𝑥): =  {𝑦𝑦 ∈ 𝑃𝑃: 𝑦𝑦 ≤ 𝑥𝑥} 
3.  𝑆𝑆(𝑥𝑥), the successor section: 𝑆𝑆(𝑥𝑥): =  𝑂𝑂(𝑥𝑥) − {𝑥𝑥} 
4.  𝐹𝐹(𝑥𝑥), the up: 𝐹𝐹(𝑥𝑥): =  {𝑦𝑦 ∈ 𝑃𝑃: 𝑥𝑥 ≤ 𝑦𝑦} 

Then, the following average rank indexes are defined: 
a)  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥)  =  (|𝑆𝑆(𝑥𝑥)|  +  1) × (𝑛𝑛 +  1) ÷ (𝑛𝑛 +  1 −  |𝑈𝑈(𝑥𝑥)|) 

b)  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑥𝑥) =  |𝑂𝑂(𝑥𝑥)| +  

where n is the number of objects,   
|𝑉𝑉| defines the cardinality of the set V, 
𝑝𝑝𝑦𝑦< =  |𝑂𝑂(𝑥𝑥) ∩ 𝑈𝑈(𝑦𝑦)|, 𝑝𝑝𝑦𝑦> =  |𝐹𝐹(𝑥𝑥)∩ 𝑈𝑈(𝑦𝑦)|, and 𝑦𝑦 ∈ 𝑈𝑈(𝑥𝑥) 

Lexicographic Approach 
A lexicographic technique enables decision-makers to develop choice rules in which they 

select more items based on their most important criteria. When two objects have the same 
influence on the most preferred criteria, decision-makers prefer the one with the biggest impact 
on the second most preferred criteria, and so on, according to Saban and Sethuraman (2014). 
This lexicographic form simulates situations in which decision-makers have a strong preference 
for one criterion over another or are in charge of non-compensatory aggregation (Yaman et al., 
2011; Pulido et al., 2014). 

Finally, decision-makers can model their strong preferences for the criteria chosen since, 
after additional investigation of the situation, they are neither indifferent nor uncertain about their 
preferences for the criteria considered. In other words, they will always favor one criterion over 
another, regardless of criterion weights.  
Risk Metrics and Compliance 

Risk metrics are statistical indicators or measurements that enable decision-makers to 
assess the dispersion (volatility) of specific events or outcomes. As a result, a random variable 
can be evaluated using statistical moments (e.g., mean, variance, skewness, kurtosis), or risk 
metrics, such as Value at Risk (VaR) and Conditional VaR, can be used to investigate extreme 
values (Bodie et al., 2009; Fabozzi, 2010; Matos, 2007; Mun, 2015). 

Risk metrics are used to analyze the volatility or stability of a set of options or a portfolio 
of alternatives in decision problems, such as financial risk management (Chong, 2004), portfolio 
risk management (Bodie et al., 2009), enterprise risk management (Scarlat et al., 2012), and a 
variety of other areas (Fabozzi, 2010). 

A compliance strategy, or the establishment of a set of rules to guide decision-makers, is 
used to evaluate how risky an object is and its interaction with other objects (Hopkins, 2011). For 
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assessing compliance, several methodologies have been presented. Barrett and Donald (2003), 
for example, propose a stochastic dominance analysis to compare probability distributions before 
establishing a hierarchy; Boucher, Danielsson, Kouontchou, and Maillet (2014) use risk metrics 
and forecasting to adjust models based on historical performance; and Zanoli, Gambelli, 
Solfanelli, and Padel (2014) investigate the effects of risk factors on non-compliance in UK 
agriculture. 

Because it permits evaluating whether an item performs according to decision-makers’ 
preferences and overstated risk measures, the compliance approach is more user-friendly for 
decision-making. The main concept is to divide the risk spectrum into two categories (Hopkins, 
2011). As a result, the higher the compliance with a stated risk metric, the closer the decision-
makers’ preferences are aligned. Scarlat et al. (2012) and Tarantino (2008) examine similar 
approaches based on important risk indicators.  
PROMETHEE and ELECTRE 

Another layer of complexity emerges when decision-makers must integrate potentially 
conflicting decision criteria (quantitative or qualitative, monetary and nonmonetary) into project 
management, such as legal (taxes, compliance, social responsibility, etc.), environmental (level 
of pollution, noise, watershed issues, etc.), and economic (level of economic growth, monetary 
and nonmonetary). Furthermore, the relative significance (RI) or weights of those criteria may 
differ. The phrases in BP’s (2015) sustainability report that businesses “must earn and keep 
society’s support” and “must take action to assist to conserve the environment for future 
generations” may imply that certain decision-makers value profit over social responsibility or vice 
versa. As a result, it is critical to factor those variances into the decision-making process (Mun et 
al., 2017). 

To solve this issue, multicriteria analysis (MCA) has emerged as an effective tool for 
dealing with multi-dimensional problems and obtaining an Aggregate Quality (AQ) that may be 
used to support a final decision (Bouyssou et al., 2006; Brito et al., 2010). MCA is a set of 
strategies, techniques, and tools that aid individuals in solving choice issues (description, 
grouping, ranking, and selection) by considering multiple objectives or criteria at the same time 
(Roy, 1996; Ghafghazi et al., 2010; Kaya & Kahraman, 2011; Afsordegan et al., 2016). 

The authors propose PROMETHEE (Goumas & Lygerou, 2000; Brans & Mareschal, 2005; 
Behzadian et al., 2010; Tavana et al., 2013) as an appropriate MCA technique. Outranking the 
connection S is the basis of PROMETHEE techniques. This notion defines whether “the 
alternative is at least as good as the alternative b,” rather than determining whether the 
relationship between two alternatives a and b is a strong preference (“a P b”), a weak preference 
(“a Q b”), or indifference (“a | b”; Brans & Mareschal, 2005). 

Because of their theoretical and practical merits, PROMETHEE procedures are 
appropriate. They can, for example, assign an AQ index to each project that maximizes the 
available information in terms of decision-makers’ preferences for the criteria chosen, as well as 
the intensity of those preferences among alternatives and the nature of each criterion (Bouyssou 
et al., 2006). Many energy-related studies have used PROMETHEE methods, including 
sustainable energy planning (Pohekar & Ramachandran, 2004; Cavallaro, 2005); renewable 
energy alternatives (Georgopoulou et al., 1997); heating system options (Ghafghazi et al., 2010); 
and oil and gas pipeline planning (Tavana et al., 2013); and oil and gas pipeline planning 
(Behzadian et al., 2010). 

There are other approaches, such as the ELECTRE methodologies (Bouyssou et al., 
2006), the Analytical Hierarchy Process (AHP; Desai et al., 2012; Saaty, 2013), MACBETH 
(Cliville et al., 2007; Costa et al., 2012), and TOPSIS (Kaya & Kahrama, 2011). These alternative 
approaches, on the other hand, do not clearly describe the aforementioned benefits, and the AQ 
is harder to read. 
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Although some studies have attempted to incorporate real options (RO) into MCA 
(Cavallaro, 2005; Angelou & Economides, 2008; Tolga & Kahraman, 2008; Zandi & Tavana, 2010; 
Tolga, 2011, 2012), there is little evidence of an integrated RO-MCA methodology for ranking a 
portfolio of projects in state-owned energy companies that pursue nonfinancial objectives. 

According to the author, while RO values and assesses flexibility and uncertainty for PM, 
MCA allows for the inclusion of additional factors such as GDP and employment in strategic 
planning criteria to produce an AQ for picking the best projects. 
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