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Abstract 
The Secretary of the Navy disperses Navy forces in a deliberate manner to support Department 
of Defense (DoD) guidance, policy, and budget. The current strategic, laydown, and dispersal 
(SLD) process is labor intensive, time intensive, and less capable of becoming agile for 
considering competing alternative plans. SLD could benefit from the implementation of artificial 
intelligence. We introduced a relatively new methodology to address these questions which was 
recently derived from an earlier Office of Naval Research funded project that combined deep 
analytics of machine learning, optimization, and wargames. This methodology is entitled LAILOW 
which encompasses Leverage AI to Learn, Optimize, and Wargame (LAILOW). In this paper, we 
developed a stand-alone set of pseudo data that mimicked the actual, classified data so that 
experimental excursions could be performed safely. We show LAILOW produces a score from a 
wargame-like scenario for every available ship that might be moved. The score for each ship 
increases as fewer resources (e.g., lower cost) are required to fulfill an SLD plan requirement to 
move that ship to a new homeport. This produces a mathematical model that enables the 
immediate comparison between competing or alternate ship movement scenarios that might be 
chosen instead. We envision a more integrated, coherent, and large-scale deep analytics effort 
leveraging methods that link to existing real data sources to more easily enable the direct 
comparisons of potential scenarios of platform movement considered through the SLD process. 
The resulting product could facilitate decision makers’ ability to learn, document, and track the 
reasons for complex decision making of each SLD process and identify potential improvements 
and efficiencies for force development and force generation. 

Keywords: artificial intelligence, machine learning, optimization, strategic laydown, and dispersal, 
SLD, data mining 

Introduction 
The Secretary of the Navy (SECNAV) disperses Navy forces in a deliberate manner to 

support Department of Defense (DoD) guidance, policy and budget. The current strategic, 
laydown, and dispersal (SLD) process is labor intensive and may be benefited by digitalization, 
automation and application of AI.  
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The laydown and dispersal of U.S. Naval forces requires manual manipulation of data 
via weekly Working Groups, which is manpower intensive, and only presents one option to the 
Chief of Naval Operations (CNO) and SECNAV for consideration. The current SLD process 
takes one full year to develop and is not responsive to changes in the operating environment or 
strategic guidance. For example, there is no mechanism to leverage existing data resources to 
monitor plan execution and track progress toward completion. The 10 years of projected force 
laydown optimization problem can be overwhelming. The SLD plan needs more than just simple 
process revision—it needs a modernization with a holistic design leveraging digitalization, 
automation, and application of AI.  

The objective is to digitalize the SLD process with more automation using a cloud-based 
SLD database, deep analytics, ML/AI to aid decision making, and reduce manpower 
requirements to focus on the strategic basis and integration of the SLD Plan for improved 
efficiency and better-informed decision making. 

Literature Review 
More specifically, based on a memo from RDML T. R. Williams, former director for 

Plans, Policy, and Integration (N5) for the Deputy Chief of Naval Operations for Operations, 
Plans, and Strategy (N3/N5; Williams, 2021), N52 is teaming with industry and academia to 
modernize the SLD process; the challenges are described in the following phases. 
Descriptive Phase 

What decisions were made? This phase is focused on developing a new database 
utilizing modern data analytics to display information in a shareable website. The current SLD 
database exists on a standalone computer with a single user’s access in the Pentagon requiring 
manual updates. This phase’s end state is a cloud-based SLD database accessible to the SLD 
working group that offers permission controls and features improved analysis and display 
functions.  
Predictive Phase 

How are we making decisions? What happens if I make a different decision? This 
phase’s end state is an Excursion Modeling Tool. The goal is to develop a decision support tool 
that uses existing authoritative data and models SLD excursions to assist in rapid decision 
making with increased accuracy.  
Prescriptive Phase 

Are we making the right decisions? This phase’s end state will utilize deep analytics 
including AI to take the SLD calculations and other inputs to evaluate the SLD plan and create 
an optimized plan by including global and theater posture and time-phased force and 
deployment data (TPFDD) into the calculations.  

Methods 
This paper details the methods related to the research questions and the prescriptive 

phase. We apply a mathematical model (i.e., Leverage AI to Learn, Optimize, and Wargame 
[LAILOW] model) to address deep analytic aspects of the research. LAILOW was derived from 
an ONR-funded project that focuses on deep analytics of machine learning, optimization, and 
wargame, essentially Leveraging AI, and consists of the following steps:  

Learn: D data, data mining, machine learning, and predictive algorithms are used to 
learn the patterns from historical data on what and how decisions were made. Data derived from 
competing demands refer to the excursion proposals and requirements from fleet commanders, 
national leaders, and assessment data done in various function areas in different installation 
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locations. The current manual process focuses on balancing the budget of unit moving costs 
with the known demands. Moving cost is developed from permanent change of station (PCS) 
orders of manpower and readiness of infrastructure. The data are in the form of structured 
databases and unstructured data such as PowerPoint slides and .pdf documents. 

Optimize: Patterns from learning are represented as Soar reinforcement learning (Soar-
RL) rules or AGI Transformer models used to optimize future SLD plans. An SLD plan includes 
a complete gain or loss of naval assets at each installation, homeport, home base, hub, and 
shore posture location (Fd) and staff (Fg). The optimization can be overwhelming considering 
numerous combinations. LAILOW instead uses integrated Soar-RL and coevolutionary 
algorithms to map a total SLD plan to individual units mentioned in an excursion proposal, 
assessment report, and other what-if analyses. 

Wargame: There might be no or rare data for new warfighting requirements and 
capabilities. This motivates wargame simulations. An SLD plan can include state variables or 
problems (e.g., future global and theater posture, threat characteristics), which is only observed, 
sensed, and cannot be changed. Control variables are solutions (e.g., an SLD plan). LAILOW 
sets up a wargame between state and control variables. Problems and solutions coevolve 
based on evolutionary principles of selection, mutation, and crossover.  
A LAILOW framework can be set up as a multi-segment wargame played by a self-player and 
the opponent, as shown in Figure 1. The self-player or defender is the SLD enterprise. The 
opponent or attacker is the environment including competing demands. When applying 
LAILOW, we first divide the processes into state variables and decision variables as follows: 

State variables: These variables and data can be sensed, observed, and estimated, 
however, cannot be decided or changed by the self-player. They are the input variables, 
or problems that the self-player must consider. They are also called tests or attacks for 
the SLD enterprise. 
Decision variables: These variables are needed to solve the problem using 
optimization algorithms. In LAILOW, the optimization of the decision variables is 
achieved by the integration of Soar-RL and coevolutionary search and optimization 
algorithms (Back, 1996; O’Reilly et al., 2020). 

Both opponent (tests) and self-player (solutions) evolve and compete as in a wargame. LAILOW 
is like a Monte Carlo simulation but guided by ML/AI learned patterns with optimization 
algorithms. In the wargame, the opponent generates large-scale what-if tests to challenge the 
self-player to come up with better solutions, e.g., SLD configurations to answer the questions 
such as “what happens if I choose a different decision?” in a systematic simulation.  
 

 
Figure 1.  LAILOW viewed in a Coevolutionary wargame simulation; ML algorithms (i.e., Soar-

RL) are used to model the fitness or utility functions for both players. 
 

Each “learn, optimize, wargame” cycle dynamically iterates in each stage and across all 
the value areas with the analytic components and algorithms detailed as follows. 
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In a LAILOW framework, the “learn” component usually employs supervised ML 
algorithms such as classification, regression, and predictive algorithms. For example, one can 
apply a wide range of state-of-the-art supervised ML algorithms from the scikit-learn python 
such as logistic regression, decision trees, naïve Bayes, random forest, k-nearest neighbors, 
and neural networks. Deep learning or AGI Transformers can also be placed in this category 
where the input data is diversified. An AGI framework typically contains large-scale machine 
learning models (e.g., billions of parameters in the ChatGPT model; OpenAI, 2023) to learn and 
recognize patterns from multimodality data.  

Supervised ML algorithms can be used to learn the state variables and assessment 
measures in the function areas for potential SLD and excursion plans such as speed, quality, 
and fitness of deployment and execution, balance of competing demands and constraints (e.g., 
avoidance of unacceptable reduction of capability), along with Fd and Fg measures.  

In LAILOW, we use Soar-RL to learn two fitness functions separately for the self-player 
and opponent. In reinforcement learning, an agent takes an action and generates a new state, 
based on its current state and on the expected value it estimates from its internal model (Sutton 
& Barto, 2014). It also learns from the reward data from the environment by modifying its 
internal models. Soar-RL can scalably integrate a rule-based AI system with many other 
capabilities, including short- and long-term memory (Laird, 2012). Soar-RL carries the following 
advantages for the military applications, as it 

• Can include existing knowledge (e.g., rules of engagements of SLD) and also modify 
and discover new rules from data 

• Learns in an online, real-time, incremental fashion and thus does not require batch 
processing of (potentially big) data  

• Provides the advantage of explainable AI because discovered patterns are represented 
as rules  

• Links to causal learning since it fits the pillars of causal learning (e.g., associations, 
intervention, and counterfactuals; Pearl & Mackenzie, 2018) by generating the desired 
effect data using intervention (Wager & Athey, 2018). 
The “learn” component can also apply unsupervised learning algorithms. The self-player 

performs unsupervised machine learning algorithms such as k-means, principle component 
analysis (PCA), and lexical link analysis (LLA; Zhao & Stevens, 2020; Zhao et al., 2016) for 
discovering links.  

An SLD process needs to perform what-if analysis, as this motivates wargame 
simulations. An SLD plan can include state variables or problems (e.g., future global and theater 
posture, threat characteristics, fleet demands to handle these threats), which is only observed, 
sensed, and cannot be changed. Control variables are solutions (e.g., an SLD plan). LAILOW 
sets up a wargame between state and control variables. Problems and solutions coevolve 
based on evolutionary principles of selection, mutation, and crossover.  

The number of state and decision variables for an SLD plan and excursion models can 
be extremely large. Coevolutionary algorithms can simulate dynamic configurations of future 
warfighting requirements, threats, and global environment and future capabilities, and other 
competing factors in a wargame simulation. As shown earlier in Figure 1, competitive 
coevolutionary algorithms are used to solve minmax-problems like those encountered by 
generative adversarial networks (GANs; Goodfellow et al., 2014; Arora et al., 2017). Adversarial 
engagements of players can be computationally modeled. Competitive coevolutionary 
algorithms take a population-based approach to iterate adversarial engagement and can 
explore a different behavioral space. The use case tests (adversarial attacker population) are 
actively or passively thwarting the effectiveness of the problem solution (defender). The 
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coevolutionary algorithms are used to identify successful, novel, as well as the most effective 
means of solutions (defenses) against various tests (attacks). In this competitive game, the test 
(attacker) and solution (defender) strategies can lead to an arms race between the adversaries, 
both adapting or evolving while pursuing conflicting objectives. 

A basic coevolutionary algorithm evolves two populations with a tournament selection 
and for variation uses such as crossover and mutation. One population comprises tests 
(attacks) and the other solutions (defenses). In each generation, engagements are formed by 
pairing attack and defense. The populations are evolved in alternating steps: First, the test 
population is selected, varied, updated and evaluated against the solutions, and then the 
solution’s population is selected, varied, updated, and evaluated against the tests. Each test--
solution pair is dispatched to the engagement component, and the result is used as a part of the 
fitness for each of them. Fitness is calculated overall from an adversary’s engagements.  

Each SLD configuration possesses a fitness value which is related to measures that 
need to optimize, such as force development (Fd) and force generation (Fg) efficiency. Patterns 
from “learn” are used to optimize future SLD plans with the measures of the following: 

• Cost of an SLD: for a ship to move from one location to another 
o How much does it cost to move personnel: PCS cost per person x # of billets? 
o How much does it cost to prepare requisite infrastructure (matched assessments) 

to support that ship move? 
• Fd/Fg Efficiency: How many excursions or demands are met (matched)? 

The optimization can be overwhelming. LAILOW uses integrated Soar-RL and 
coevolutionary algorithms and simplifies the optimization process. 

LAILOW has been used in wargames in DMO and EABO (Zhao, 2021), discover 
vulnerability and resilience for the logistics operations for Navy ships and Marine’s maintenance 
and supply chain (Zhao & Mata, 2020), and over-the-horizon strike mission planning (Zhao et 
al., 2020; Zhao & Nagy, 2020). 

Use Case  
To illustrate the process, we first designed and developed a mock unclassified data set 

to reflect the SLD process. We began by customizing LAILOW to the SLD process in a high 
level, as shown in Figure 2. This involved defining self-player variables and opponent variables 
in the SLD process. Self-player variables are also called defender, control, decision, action, or 
solution variables. The opponent variables are also called attacker, state, problem, or test 
variables. Opponent variables include profile variables for a ship such as age, maintenance 
status, decommission schedule, current installation location, capabilities required by fleet 
commanders as reflected in the excursion plans, and assessments reflected in a collection of 
warfighting function areas; these variables are considered pre-determined and known 
information for a ship and cannot be easily changed for decision makers (defenders) at the time 
of the SLD process. Attacker variables are the state variables for the defenders to address.  
Decision variables include move (to what location) or stay, cost, manpower, and maintenance 
readiness, and are also known as defender variables. Both the defenders and attackers evolve 
and coevolve, and both are guided by their own fitness functions that reflect the self-player and 
opponent’s competing objectives.  
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Figure 2. The LAILOW is tailored to the SLD process in a high level to reflect the what-if 

decision process used by decision makers in the process. 

Figure 3 shows the unclassified mock data set to reflect the understanding of the SLD process 
in Figure 2.  

 
Figure 3. An unclassified data set designed and developed to reflect the understanding in Figure 2 

Results 
We input the mock data into the LAILOW software and simulate a large number of 

alternative configurations of Navy assets using the mock data set. Figure 4 shows LAILOW 
solutions as heatmaps (solutions). Each cell in each iteration (i.e., generation in the coevolution 
algorithm), e.g., circled as 1, 2, and 3, represents a potential SLD plan (Defender) against an 
environmental test (Attacker), is produced. The heat color shows the fitness for the solution. 
Clicking on the heatmap cell shows the detail of the corresponding solution configuration. 
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Figure 4. LAILOW solutions as heatmaps (solutions) 

We drill down details of the LAILOW simulation in Figure 4. As shown in Figure 5. The 
LAILOW software illustrates that better decision configurations (6) than ones in the historical 
databases (4 and 5) can be discovered using the LAILOW software. 

 
Figure 5. Better decision configurations (6) than ones in the historical databases (4 and 5) can be 

discovered using the LAILOW software. This shows the potential to discover alternative SLD plans for 
Naval assets. A defender is an SLD plan for a ship. 
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Discussions 
In reality, the Navy may need to consider many more variables, such as  

• Availability of maintenance, pier space, required training schools, etc.  
• The policy that requires each ship overseas to return to the continental United States 

within 10 years 
• How each unit fulfills tactical and strategic requirements that must be maintained  
• Unseen political pressures that can outweigh numerically based resource requirements 

We anticipate our findings to guide the way forward toward further exploration in this 
area through our suggested methodology. This would likely save time and energy of the 
decision makers and offer otherwise undiscovered potential alternative solutions toward the 
development of future SLD plans. In consideration of future efforts, we envision a more 
integrated, coherent, and large-scale deep analytics effort leveraging methods that link to 
existing data sources to enable direct comparisons of potential scenarios of platform movement 
considered through the SLD process. The resulting product could facilitate decision makers’ 
ability to learn, document, and track the reasons for complex decision making of each SLD 
process and identify potential improvements and efficiencies.  

Conclusions 
We demonstrate the feasibility of the methodologies of leveraging AI to learn, optimize, 

and wargame (LAILOW) using mock data. LAILOW produces a score derived from a wargame-
like scenario for every available ship that might be moved to a new homeport. The score for 
each ship increases as fewer resources (i.e., lower cost) are required to fulfill an SLD plan 
requirement to move that ship to a new homeport. This produces a mathematically optimal 
response and enables an immediate comparison between competing or alternate ship 
movement scenarios that might also be chosen, thus improving the automation, consistency, 
and efficiency of the SLD process. 
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