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Abstract 
Program test managers and test engineers should carefully consider Digital Twinning 
approaches for addressing training and testing challenges for Artificial Intelligence/Machine 
Learning (AI/ML) systems. A hybrid Hardware in the Loop (HITL) and Digital Twin (DT) 
architecture is discussed for a notional Cognitive EW system. This architecture may provide 
effective training and testing for complex AI/ML systems that incorporate extensive Cyber-
Physical interactions. Considerations for generating realistic RF test environments for 
Cognitive EW systems are also considered. 

Keywords: Digital Twin, AI/ML, Cognitive EW, HITL 

Executive Summary 
This research investigates the challenges associated with testing and training of AI/ML 
systems in the Electronic Warfare (EW) domain and how these challenges can be 
addressed using Digital Twins. The specific AI/ML testing and training challenges were 
identified during a Cognitive EW T&E working group conducted by GTRI while under 
contract to DOT&E. Several key DT capabilities are identified for addressing AI/ML training 
and testing challenges –  
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1. Simulation of the system and its operational environment with sufficient realism 
2. Ability of the DT to create training and testing data  
3. Ability to efficiently virtualize hardware models, system firmware, and software 

components into the Digital Twin, allowing for efficient Continuous 
Integration/Continuous Delivery (CI/CD) 
To better understand whether a DT can provide these capabilities, a specific detailed 

Cognitive EW receiver use case is developed. A high-level hybrid HITL DT architecture for 
this use case is discussed along with specific functional use cases, such as training and 
testing data set generation and validation, AI/ML component training and DT validation. 
Using lessons learned from the Cognitive EW Receiver use case, considerations and 
limitations for using DT for the Cognitive EW Receiver are discussed. 

Background 
Weapons systems augmented with Artificial Intelligence/Machine Learning (AI/ML) 

capabilities are a new reality and driven by several trends. The modern battlefield is 
becoming dependent on connected kill-webs and the Joint All Domain Operations (JADO) 
environment, which is driving the emergence of AI/ML weapons systems on the Blue and 
Red side (NASEM, 2021). Indeed, strategic competitors, such as China and Russia, are 
making significant investments in AI for national security purposes (GAO, 2022a). The rapid 
explosion of AI/ML in the commercial sector is also enabling the adoption of AI/ML in 
weapons systems (USAF Chief of Staff, 2020). 

According to the GAO, AI/ML is expected to transform all sectors of society, 
including, according to the Department of Defense (DoD), the very character of war. The 
failure to adopt and effectively integrate AI technology could hinder national security. As a 
result, the DoD is investing billions of dollars and making organizational changes to integrate 
AI into their warfighting plans. A total of almost 700 separate AI/ML programs were identified 
across the services either funded through R&D or procurement. This does not include 
classified programs or programs funded through O&M, which would inflate that total (GAO, 
2022b). According to a recent National Defense Strategy, “The Department will invest 
broadly in military application of autonomy, artificial intelligence, and machine learning, 
including rapid application of commercial breakthroughs, to gain competitive military 
advantages” (DOD, 2018). 

Historically, one of the more significant areas of DOD investment in AI/ML has been 
in the EW domain. GTRI has been involved in multiple efforts to develop, evaluate, and 
implement AI/ML algorithms on multiple RF EW systems. EW systems sample the RF 
environment and benefit from AI/ML capabilities designed to infer the behavior and intent of 
threat Radar waveforms in adversarial conditions. The remainder of this paper will consider 
AI/ML efforts specifically in that arena. 

AI/ML EW T&E Challenges  
GTRI, under contract to DOT&E Test and Evaluation Threat Resource Activity 

(TETRA), conducted a five session Cognitive EW T&E Working group in 2020–2021 to 
explore AI/ML T&E challenges for Cognitive EW systems. A variety of stakeholders from the 
AI/ML research community, the DOD T&E community, and acquisition and sustainment 
community gathered to identify Cognitive EW T&E challenges, gaps, and potential solutions. 
The working group findings relating to T&E challenges are summarized in Figure 1. 
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AI/ML systems present a unique set of test challenges. The massive coverage space 
and wide range of potential behaviors are difficult to address via legacy test methods. Major 
AI/ML T&E challenges are summarized as follows. 

A. Massive Coverage Space - Extensive analysis has been done for the autonomous 
driving use case, specifically looking at testing for AI/ML techniques such as Deep 
Neural Nets (DNN). For complex systems these DNNs can be very high order non-
linear functions. Common test issues arising from these functions are massive, multi-
dimensional input–output coverage spaces. This creates issues such as how to 
optimize/efficiently explore these spaces during test, how to efficiently create test 
data, and whether it is possible to create a test oracle to determine whether the test 
has passed or failed (Tian, 2018). 

 

 

Figure 1 - AI/ML T&E Challenge Summary 

 
B. Unique quality parameters - AI/ML systems, particularly AI/ML software, present 

new quality parameters or measures of performance associated with learning such 
as correctness, accuracy, explainability, system stability, timeliness, and robustness 
that are not typically considered. Rigorous definitions and processes relevant to DoD 
test systems need to be developed to address these new parameters (Chuanqi Tao, 
2019). 

C. Adversarial exploits - AI/ML systems require adversarial testing approaches to 
ensure that during operations adversarial manipulation of data does not affect the 
system in unpredictable ways (Prokhorov, 2019). Extensive research is underway to 
generate adversarial exploit data for improved system testing (Anthony Ortiz, 2018). 

D. Assurance case testing - For AI/ML enabled autonomous systems, testing to 
assure safe operation can become an issue. According to a RAND study, the current 
state of T&E for AI technologies cannot ensure the performance and safety 
of AI systems, especially those that are safety-critical. Assurance case testing is 
required for these types of systems (RAND, 2021). An assurance case is “a 
structured argument that the system is sufficiently dependable to permit fielding in a 
specific operational context” (Tate, 2019). AI/ML systems exhibiting autonomy 
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require assurance cases because they are unpredictable due to the following 
attributes: 

1. State space explosion 
2. Non-smooth or fractal response 
3. Lack of transparency 
4. Changing system behaviors over time 
5. Emergent behaviors 

E. Continuous test - Another unique challenge relates to the fact that AI/ML systems 
require train-test cycles throughout the system life cycle. This is due to the need to 
continuously train AI/ML components to cope with environmental and threat 
changes. Indeed, this is a feature - the system can learn from changes in the 
environment, but learning must be followed by testing as part of a continuous cycle. 
These cycles are short in duration and potentially continue through the fielded life 
cycle of the system. The legacy waterfall and distinct separation of 
coding/testing/fielding phases are not adequate for AI/ML systems. According to the 
Defense Science Board (DSB) Summer Autonomy study, to address the train-test 
cycle challenge, the DoD should look to commercial practices like Agile for 
developing autonomous, AI/ML based systems. Agile and DevSecOps development 
practices provide an incremental development approach enabling tight train-test 
cycles (DSB, 2016). 

F. Data Generation - Data generation for training and testing of AI/ML algorithms 
presents a significant T&E challenge. It’s been estimated that 80% of the effort 
required to implement AI/ML systems is involved in data generation, tagging, and 
curation (Antonio Nieto-Rodriguez, 2023). The difficulty of procuring data depends on 
the AI/ML application area. For EW-related AI/ML applications, which this paper 
addresses, data is a significant challenge: collected and recorded raw high-fidelity 
data is often not tagged and cannot always be correlated with Blue (U.S.), Red 
(Adversary), and Gray (Commercial) RF sources. Synthetic data can be generated 
but replicating real-world environmental and propagation effects can be difficult. 
These T&E challenges are exacerbated for AI/ML systems involving extensive 

interaction with the physical world (Autonomous vehicles, Industrial systems, RF systems). 
The Cyber–Physical interaction via sensors and effectors and the system interaction with 
the environment are often difficult or impractical to create in the real-world for test purposes. 
Testing in a real-world operational environment is ideal from a fidelity perspective, but 
testers face significant challenges generating sufficiently wide test coverage, creating edge 
cases and assuring the repeatability of complex test scenarios. Synthetic digital 
environments and DTs are often created to mitigate these challenges. 

Digital Twin Overview 
According to the Digital Twin Consortium, “A Digital Twin is a virtual representation of 

a real-world system. A digital twin is synchronized with the physical twin at a specific fidelity 
and frequency” (Digital Twin Consortium, 2020). The National Institute of Standards and 
Technology (NIST) definition is “A digital twin is the electronic representation—the digital 
representation—of a real-world entity, concept, or notion, either physical or perceived’ 
(NIST, 2021). The application and usage of the DT concept varies widely across commercial 
industry and the DoD. A DOT&E memo assessing the usage of DT in DoD testing shows 
some progress in the adoption of DT, but it also sharply illustrates how far the DoD has to 
go: 
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• Approximately 7% of programs under DOT&E oversight have built or are 
planning to build a DT. 

• Most of the programs that report usage of DTs are applying them for 
contractor-level testing in support of Engineering Manufacturing Development 
(EMD) and none have been used DT for operational testing (DOT&E, 2022). 

The DoD recognizes the need to accelerate the adoption of DTs. The increasing use 
of AI/ML introduces “never-before-seen capabilities and vulnerabilities that change at never-
before-seen dynamic rates.” The DOT&E 2022 strategy defines five strategic pillars to 
transform T&E, two of which support the use of DTs for testing AI systems – Accelerate the 
delivery of weapons by embracing digital technologies as a key action and Pioneer the 
T&E of weapons systems built to change over time where enabling adequate 
assessment of AI-enabled weapons systems is one of the desired end states (Sandra 
Hobson, 2022). 

Researchers in the Advanced Driver Assistance Systems (ADASs), Autonomous 
Vehicles (AVs), and other industries are taking up the usage of DTs and have explored the 
use of Digital Twins to address AI/ML training and test challenges. Recognizing the 
challenges of the complex Cyber-Physical interactions involved in these systems, the use of 
Hybrid DT systems has been considered (Jörn Thieling, 2021; Kirill Semenkov, 2020). 

In the AI/ML training and testing context, a Hybrid DT might consist of (1) a real 
hardware/software system design instantiated in a HITL testbed, (2) a set of digital models 
and virtualized firmware and software representing that system and the system’s operating 
environment and (3) a method for validating the digital model versus observed system 
behavior. 

The Hybrid DT concept may be able to address some of the difficult AI/ML training 
and test challenges such as Massive Coverage Space, Continuous Test, and Data 
challenges outlined above. The following DT capabilities are required to address these 
challenges: 

1. Simulation of the system and its operational environment with enough realism to 
support AI/ML training and testing to assure performance as expected in a real 
operational environment 

2. Ability of the Hybrid DT operational environment simulation to create trusted training 
and testing data suitable for the system’s AI/ML components 

3. Ability to efficiently virtualize system digital models, system firmware, and software 
components into the Digital Twin, allowing for efficient Continuous 
Integration/Continuous Delivery (CI/CD) 

Next, we’ll explore a specific Cognitive EW Receiver use case to evaluate the 
applicability of the Hybrid DT approach. 

AI/ML Training and Test Use case - Cognitive EW Receiver 
First, consider the notional EW receiver in Figure 2. The receiver system is 

segmented into RF input, receiver system, and Pilot Vehicle and Federated systems 
interfaces. 
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Figure 2 – Notional EW Receiver 

The notional EW receiver typically processes and identifies threats using fixed 
lookup tables and relatively simple signal processing algorithms. This design performs well 
in simple threat environments where the number of threats is small and the threats produce 
known, predictable RF waveforms. As the number of threats increase and produce 
unexpected, unknown RF waveforms, the receiver performance degrades. To counter this 
problem, receiver designers add AI/ML algorithms to key processing components to improve 
their overall performance. A notional Cognitive EW Receiver with some of these cognitive 
components highlighted is shown in Figure 3. 

For example, the Pulse Processor Component can be supplemented with a DNN 
based waveform discriminator. Traditional waveform discriminators measure waveform 
parameters such as frequency and phase modulation, then determine waveform type using 
a look-up table or simple heuristic. If these waveform properties are modified by the threat 
radar in a way that cannot be measured accurately, or measurements fall outside of the 
bounds of the lookup table, the traditional discriminator will not perform well. The DNN 
based waveform discriminator performs similarly to a DNN used for image recognition. The 
DNN ingests waveforms of different modulation types and attempts classification based on 
observable and latent waveform features. During training, DNN weights are iteratively 
adjusted to minimize classification error. The DNN can potentially outperform the traditional 
discriminator because the DNN extends beyond general classification and is able to handle 
waveforms with parameters that may not match pre-programmed receiver 
boundaries/features.  

 

Figure 3 – Notional Cognitive Receiver 

Typical receiver components and their AI/ML enhancements are listed in Table 1. 
This is a notional list—receiver designers may create many other AI/ML enhancements 
depending on receiver requirements. 

These AI/ML components have great potential for increasing performance but come 
at a price. As discussed above, each component requires training and adds an extra test 
burden during system development and sustainment. 
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Table 1 – Cognitive EW Receiver Components 

EW Receiver 
Component 

AI/ML Enhancements Comment 

Pulse Processor Waveform Discriminator DNN classification based on 
observable and latent waveform 
features 

Pulse Deinterleaver RF Fingerprinting Deinterleave pulse trains using RF 
features unique to a given RF threat 

Tracker/ID Multi-Hypothesis Tracker 
(MHT), Generalized classifier 

MHT uses Bayesian inference to 
more accurately establish and 
maintain tracks; generalized 
classifier uses DNN or mode-intent 
algorithms instead of lookup table to 
identify threat based on class  

Receiver Control Cognitive Look Algorithm Receiver uses inference engine to 
optimize receiver frequency look 
schedule in a dense threat 
environment 

 

Cognitive Receiver Digital Twin 
A Cognitive Receiver DT may be able to address these training and test issues. The 

DT provides a framework for training and testing individual AI/ML components efficiently. 
Without the DT, each component must be trained in a stand-alone hardware instantiation or 
in-situ in the receiver system. This may not seem like a problem, as the receiver developer 
typically implements stand-alone subcomponents for unit test. However, this is typically 
done only once during system development. AI/ML training is a continuous activity that 
needs to be done many times throughout the system’s life cycle. It is required during 
systems development, integration testing, developmental testing, operational testing and 
system sustainment. It is not practical to create and maintain stand-alone component 
training setups like this for the entire system life cycle. In-situ training is also impractical. 
Training requires the introduction of a very large set of inputs to the AI/ML component and 
adjustment based on component output. Generating this set of inputs through the entire 
system processing chain is difficult and time-consuming. Moreover, training using real 
hardware either stand-alone or in-situ can only be done at real-time system operation speed 
which could be very time-consuming for large datasets. Frequently AI/ML systems are 
virtualized to enable Faster than Real-Time (FTRT) training. 

The DT depicted in Figure 4 is implemented by digitally instantiating each system 
component using either digitally hosted hardware models or through virtualization of 
firmware and software. Note that the DT incorporates the complete Cognitive Receiver 
System and External RF and External Interface elements. Considerations with the Cognitive 
Receiver System visualization will be discussed, followed by External elements. 

The Cognitive Receiver system consists of the antenna, RF front end, the chain of 
processing elements and the Receiver control block. The antenna and RF front end are 
modeled using RF modeling tools. Depending on complexity the antenna could be an 
engineering model based on frequency and polarization dependent azimuth and elevation 
lookup tables. The RF front end is more problematic as it typically consists of a chain of 
complex linear and non-linear RF components – limiters, amplifiers, filters and mixers and 
A/D converters, that can be difficult to accurately model. These components must be 
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accurately modeled to create a useful DT. Crude engineering-based models will not re-
create the RF front end effects found in a real receiver system. These effects, such as noise, 
harmonics, distortion, ringing and filtering all impact overall receiver performance. If they 
aren’t modeled with sufficient fidelity, the DT may not accurately predict real performance. 
The digital subcomponents are more straightforward. The discrete logic and Field 
Programmable Gate Array (FPGA) firmware can be more accurately virtualized in a digital 
environment. The Operational Flight Program (OFP) can be rehosted on a virtual processor. 
Salient challenges in firmware and OFP implementation include synchronizing multiple clock 
domains, replicating propagation delays and accurately virtualizing embedded processors, 
that need to be addressed however. 

 

 
Figure 4 - Cognitive EW Receiver Digital Twin 

 

The External RF element, though not part of the Cognitive receiver system, is critical 
to implementation of the DT. An accurate replication of the RF environment must be 
generated to feed the receiver model with realistic inputs. Threat Radar models and 
Background RF models create realistic waveforms that are modified by an RF 
Environmental effects model that introduces the doppler, gain, delay and other effects 
(multi-path and other topographical effects) the waveforms will be subjected to when 
propagating from RF source to the receiver. The Threat Radar models typically create 
Waveform Descriptor Words (WDW) or Pulse Descriptor Words (PDW). Higher fidelity 
models may output Digital I/Q waveforms. There are a range of techniques for creating RF 
environmental effects from high fidelity Complex Electromagnetics (CEM) to engineering 
models using simpler RF propagation formulas. The fidelity of the Threat models and RF 
Environmental models should be matched in the DT. For the notional DT, we are assuming 
Digital I/Q for the Threat and Background RF models and RF propagation formulas for 
environmental effects. 

The External Interface shown connected to the Receiver Control components 
represents the receiver connection to the platform Pilot Vehicle Interface (PVI), which 
consists of the display and control used to operate the system. The Federated Systems are 
the avionics and other EW systems the receiver may be connected to. An ideal DT requires 
the modeling of these devices, with accurate interfaces connecting them to the DT Cognitive 
receiver control block. Note that for simplicity, we have omitted these interfaces from the 
discussion that follows. 
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Cognitive Receiver Digital Twin Use Cases 
The DT is a valuable tool for complex systems development, training, test and 

sustainment. Following is a partial list of potential DT use cases in the Development and 
Sustainment life cycle of the Cognitive Receiver: 

• System Development 
o Early algorithm development, 1st order AI/ML training 
o Verifying initial hardware design, unit test 
o Refined AI/ML Training/Testing 
o System/Integrated Test 

• Formal testing - Developmental Test/Operational Test 

• Sustainment 
o AI/ML training, firmware/software updates 
o Regression testing 

The following discussion will focus on uses of the DT for AI/ML training/testing for 
development and sustainment functions for the Cognitive Receiver and will discuss the 
Hybrid DT concept in detail for a Cognitive Receiver. 

DT applied to AI/ML Training and Testing 
As discussed earlier, a DT is a valuable tool for addressing AI/ML training and the 

unique challenges associated with AI/ML testing. Specific DT benefits for the Cognitive 
Receiver use case are:  

• It is very difficult to create the needed complex RF training and test environment 
efficiently either in the lab or on the Open-Air Range. The DT has the potential for 
doing this for the RF Threat, RF Background, and Systems interfaces needed. 

• The DT provides test scalability to traverse the training and testing coverage space 
more quickly for regression training/testing. 

o FTRT training and testing is likely needed, which may be possible in a DT. 
o The DT can virtualize multiple instantiations of AI/ML algorithms to provide 

accelerated training. 

• The use of a DT enables early Modeling and Simulation (M&S) for the design cycle, 
which is critical for AI/ML systems. 

o The DT supports AI/ML Algorithm development/design/training. 
However, there are practical limits to the realism that can be achieved simulating 

complex systems in complex environments. Specifically, the Cognitive receiver RF and 
analog components may be difficult to model accurately. A Hybrid DT combining real and 
simulated components may be able to address this limitation. 

Hybrid DT Architecture 
The basic Cognitive Receiver hardware and its DT in the Hybrid DT architecture is 

redrawn in Figure 5. The Hybrid DT architecture supports RF stimulus (a primary component 
of the training/testing dataset) from one of three sources: Recorded RF, HITL RF and Digital 
RF. The selected RF stimulus feeds an Environmental effects generator to provide realistic 
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RF that changes throughout a dynamic scenario. The Environmental Effects block can feed 
either real Cognitive receiver hardware in a HITL setup or a DT implementation of the 
Cognitive receiver. For simplicity, the receiver processing chain blocks have been broken 
into Pre-Processing, AI/ML Component, and Post-Processing blocks. The AI/ML Component 
could be any of the AI/ML component blocks included in the Notional Cognitive EW receiver 
shown in Figure 3.  

In summary, the Hybrid DT setup provides stimulus from recorded, real, and digital 
RF sources, feeding real or DT hardware. This flexibility is useful for conducting both AI/ML 
training and testing.  

We’ll discuss three major aspects of the Hybrid DT architecture – AI/ML training and 
testing dataset generation, AI/ML component isolation testing, and a specific process for 
using the Hybrid DT testbed during training and testing. 

 

 
Figure 5 – Hybrid DT Architecture 

AI/ML System Training and Testing Dataset Generation 
A Cognitive receiver training/testing dataset is required to train and test the system. It 

consists of either RF or digitized I/Q data generated by the Digital RF Environment and 
Environmental Effects blocks shown in Figure 6. Data elements are tagged so they can be 
correlated with RF emitter activity, RF band, and environmental effects used to create it. 
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Figure 6 – Generating Training/Testing Dataset 

The Scenario Generator (SG) simulates the path of the Cognitive receiver platform 
through an operational RF threat environment. It is scripted with the expected RF threat 
laydown, background RF sources, PVI and Federated system interaction and simulated 
flight path for the Cognitive receiver platform. It executes the script, generating messages 
that feed the Background RF model, RF threat model, Environmental Effects model and 
External interface models (not shown in diagram), allowing them to generate synchronized, 
scenario-representative interactions with the receiver. Note that the scenario script, SG and 
RF and Environmental Effects generator all work together to create the training and test 
data spaces for the receiver. The test designer needs a complete understanding of how 
these elements work together to create these spaces. Given the complexity of the problem a 
test coverage tool should be created to assess how well scenario scripts are covering the 
overall space. 

Based on SG inputs, the background RF model and RF threat models continuously 
generate PDWs that define discrete RF pulses. Note that the RF threat model is also driven 
by an AI/ML waveform model that generates “Novel” waveforms outside of the parameter 
space of known RF threats. This model is intended to enable generalized classification 
training for relevant AI/ML receiver components. 

The PDWs feed a digital I/Q generator that streams wide-band digital I/Q, providing 
realistic threat data for the receiver system. The I/Q data feeds an RF Propagation model 
that adds doppler, gain, delay, clutter and multipath effects that would be induced on the RF 
as the scenario executes. 

The I/Q data is then fed through a Style Transfer block where additional effects can 
be applied. These effects might be additional RF threat or environmental effects that are 
added for realism.  

Note that the receiver antenna model block is incorporated into the Environmental 
effects block, assuming that the HITL version of the receiver will not incorporate an antenna. 

The system training/testing dataset, generated via the Digital I/Q generator and 
Environmental Effects generator, needs to be validated prior to usage for training and test. 
Validation should consist of comparison of individual model performance with real data and 
validation of end-to-end performance versus real data. Note that validation in this context 
does not refer to the formal, rigorous model validation required for operational test. Several 
end-to-end validation methods are briefly considered below. The most straightforward end-
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to-end validation is done by generating an equivalent dataset using the HITL RF generator 
to generate real RF, then comparing the HITL and digital I/Q generated datasets. Recorded 
RF data could also be injected into the Environmental effects generator and compared to 
digital I/Q data as a further validation step. In this case the digital I/Q data would need to be 
driven with a scenario script matching the real scenario used when recording the RF data. 

Recall that efficient data generation is a significant issue for training and test of 
AI/ML systems. This data generation method should mitigate the issue to some degree. It’s 
important to note that real data is still required to verify the synthetic data. 

AI/ML Component Isolation 
The Hybrid DT is designed to provide individual AI/ML isolation, which allows for 

direct injection of inputs and direct access to outputs of a given component. This feature is 
required for training components in a complex system. Direct injection of component inputs 
allows for efficient input data generation and a higher degree of control for taking the AI/ML 
component input data through the complete coverage space. Direct access to outputs 
provides greater transparency when doing early training and testing – the tester can directly 
observe whether a component is performing as expected. 

Component isolation can be done readily with a digital environment, but is more of a 
challenge with real hardware in a HITL environment. Isolation is enabled by ensuring that 
algorithms implemented in software and hardware conform to interface standards that are 
transparent to an ecosystem of potential algorithm developers. This minimizes the level of 
effort required to insert these algorithms into program of record (POR) systems. 

Note that component isolation is very similar to AI/ML component training/testing in a 
standalone environment. The difference is that initial standalone development of AI/ML 
components provides a first order approximation of real inputs, meaning that the AI/ML 
algorithm at that point will not be adequate for usage in a real system. The next step for 
training should be done using AI/ML component isolation. 

Hybrid DT Training and Testing process 
To illustrate how this setup for AI/ML component training/testing can be used, the 

process is broken down into major process steps in Figure 7. 
The first process step is generating the AI/ML system training and testing dataset, 

which was discussed in detail above. The next step consists of a loop of train-test cycles 
performed for each isolated AI/ML component. Each loop is comprised of the following 
major processes – 

A. Generate isolated component training/testing Dataset 
B. Train and test Isolated component on DT 
C. Train and test Isolated component on HITL 
D. Test, train and test component on full system DT and HITL 

Once all components are trained and tested, the entire system is regression tested 
using the DT and HITL HW. Each of the major process steps is discussed below. 
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Figure 7 - AI/ML Training/Testing Process 

Generate Isolated Component Training/Testing dataset 
A dataset that is injected into an isolated component can be generated by stimulating 

the system with the system training and test dataset and recording inputs from components 
that feed the isolated component, as shown in Figure 8. These inputs are the direct injection 
data that will be used to train and test that component. The direct injection inputs are 
correlated with RF stimulus and Environmental effects that produced the data, along with 
event tags. The component designer will need to associate injected inputs with expected 
outputs for the AI/ML component model. These associations will form the truth data used for 
training and testing. 

It would be beneficial to perform a coverage space analysis to determine how much 
of the AI/ML component model input space is actually covered by the generated dataset. If 
large parts of the direct inject dataset are uncovered, the designer may need to determine if 
there are issues with the SG scripting for the RF Stimulus or Environmental Effects blocks, 
or issues with the way these blocks are functioning. 

There are challenges associated with this approach. Note in Figure 8 that Digital I/Q 
data is directly fed into the digital pre-processing model of the Cognitive Receiver, 
bypassing the RF front end model. This is done to simplify the creation of the DT. It may not 
be feasible to create a high-fidelity RF front end model. Additionally, feeding digitized RF 
into the front end may not be feasible either. The penalty paid by bypassing the RF front end 
model, is that the digital I/Q will have the RF front end effects absent, which could affect 
performance of downstream AI/ML processing in the real system. This may be mitigated by 
introducing RF front end effects in the Style Transfer Block (refer to Figure 6) during system 
training and testing dataset generation. 

Care needs to be taken with the order of isolated AI/ML components for which direct 
inject data is generated. AI/ML component blocks that precede the chosen component must 
be trained before a given downstream component is addressed. If multiple components feed 
a given component, or there is component data feedback, then this process could become 
difficult and iterative training with multiple components may need to be done. This process 
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works well for the Cognitive receiver example due to its straightforward signal processing 
pipeline. It may not work as well for more complex systems; indeed, the feasibility and 
potential success of this approach heavily depend on the specific system architecture. 

 
Figure 8 - Generating Isolated Component Dataset 

Train and test Isolated component on DT 
In this step, the Direct Inject dataset generated for the specific component is played 

back into the AI/ML component in the DT to train the component as shown in Figure 9. 
Conducting the training may involve very large data sets and require multiple training cycles. 
Doing the training on the DT using the recorded dataset allows the training to potentially be 
conducted faster than real time. This is useful in a system like a Cognitive Receiver that 
likely requires continuous training in sustainment to adapt to a changing RF and threat 
environment. 

Note that it is crucial that the digital training data used in this step be as realistic as 
possible, reflecting real threat, environment and system front end effects. If not, the AI/ML 
algorithm probably won't handle these effects properly in an operational environment. It was 
noted above that the RF front end would likely need to be bypassed with Digital I/Q data 
generation for the DT. This may be mitigated through the use of Style Transfer in the 
Environmental Effects generator, but it is anticipated that this will present its own set of 
challenges. Generally, training is conducted in training-validation-test cycles. This 
architecture should support these functions. 

 
Figure 9 – Training and Testing Isolated Component on DT 



Acquisition Research Program 
department of Defense Management - 343 - 
Naval Postgraduate School 

Train and test Isolated component on HITL 
In this step, training and testing is conducted on isolated AI/ML components on the 

HITL (refer to Figure 10). The HITL will provide a higher level of realism; it uses real RF 
sources and incorporates the RF front end signal path. The downside is that it must be run 
in real time, limiting extensive training cycles. It may be feasible to do fine tuning of AI/ML 
algorithms if the real time limitation does not create unacceptably long training cycles. It 
should be feasible, however, to use the HITL path for regression testing, which could be 
critical for verifying AI/ML performance after training on the DT. 

 
Figure 10 – Training and Testing Isolated Component on HITL 

Test, Train and test component on Full System DT and HITL 
After each component is individually trained and tested, it must be evaluated in the 

context of the overall system (refer to Figure 11). There may be interactions and 
dependencies that impact performance of the component that would only be seen in the full 
system environment. 

 
Figure 11 – Training and Testing Full System on HITL and DT 

The recommended approach is to initially test the component on the full system 
using the DT to determine whether the component has an acceptable level of performance. 
The intent is early identification of component performance issues and root cause analysis. 
If causes are related to training data variances, then it may be necessary to adjust the 
isolated training dataset and re-train and re-test the component in the isolated environment. 
If the component performs acceptably, then a train–test cycle is initiated to further refine 
training. 

Next the component is tested on the HITL setup. If performance is acceptable, the 
full process is repeated for the next AI/ML component. Root cause analysis is conducted if 
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the component fails, which may result in adjustment of training data and re-training and re-
testing in the isolated component mode. 

Depending on system complexity, there may be confounding interdependencies 
among the AI/ML components that prevent complete training and testing of a given 
component. For example, it may not be feasible to completely train/test component A, then 
completely train/test component B, etc., given component interdependencies. An iterative 
capability approach will likely be required: train/test component A with initial capability, 
train/test component B with initial capability, etc., iterating through the process repeated 
times, layering on additional capabilities for components in the chain. 

A full system regression test will be run on the DT and HITL once component training 
and testing is completed. 

Hybrid DT Model Validation 
Initial Hybrid DT validation is required as soon as real system operational data can 

be collected. Prior to or during Developmental Test and Evaluation (DT&E) and Operational 
Test and Evaluation (OT&E), it may be feasible to collect data using an Installed System 
Test Facility (ISTF) like an anechoic chamber. During DT&E and OT&E Open Air Range 
(OAR) testing, real operational data will also be available for validation. Validation will also 
continue over the life of the system, if data can be collected during operational usage. 

The type of data collected during these events will dictate how it is used for Hybrid 
DT validation. Ideally, a data recorder would collect RF data at the receiver faceplate in an 
operational environment with ground and airborne threat simulators. Truth data such as 
aircraft Time, Space, Position Information (TSPI), threat state data and range RF 
instrumentation for other emitters would also be required. The RF data would be played 
back as indicated in Figure 12. Using collected truth data, the Hybrid DT performance can 
be verified against actual Cognitive receiver performance. 

 

 
Figure 12 – Hybrid DT Model Validation - Component 

 

It would also be useful to record and playback internal Cognitive receiver 
instrumentation data such as digital I/Q, PDW buffers, or emitter track file buffers to verify 
individual receiver component performance. 

During Hybrid DT validation, it is likely that there will be some variance between the 
real system performance and the Hybrid DT performance. This should be viewed as an 
opportunity to further refine the Hybrid DT by verifying recorded playback, RF Stimulus 
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block, Environmental effects block, RF front end assumptions, and correct virtualization of 
the AI/ML components and OFP, or other potential sources of variance. As sources of 
variance are found and fixed, further confidence will be established for the Hybrid DT. 

Considerations 
The general advantages of using DTs is clearly understood and was stated above. 

For this discussion we’ll consider the advantages of a Hybrid DT versus a purely digital DT. 
The primary advantage of the Hybrid DT architecture is improved realism. Systems with 
complex Cyber-Physical interaction and heavy sensor-dependencies are difficult to 
implement with purely digital DT. Implementing high-fidelity digital models for sensors and 
complex RF and analog signal processing can be a significant challenge. The use of 
hardware in the Hybrid DT to replicate these behaviors, serving as an adjunct to the DT can 
improve realism for those elements.  

There is a basic trade-off of simulation realism versus simulation time that can be 
balanced with the Hybrid DT. The hardware components have increased realism but also 
have increased simulation time (they cannot be run faster than real time). The digital 
components will have less realism but can potentially be run faster than real time. The 
Hybrid DT uses hardware implementation only for the components that can’t be simulated 
on a digital environment with sufficient realism. Fortunately, in the case of the Cognitive 
receiver, the AI/ML and software components can be virtualized with reasonably high fidelity 
because they are already in the digital domain. 

 However, the Hybrid DT will require significant effort to develop and maintain. Some 
in the EW T&E community argue that resources should be dedicated to improve operational 
testing of systems instead of DT and Digital M&S. Certainly, digital M&S has been 
overhyped in the past, leading to false perceptions of feasibility, accuracy, and utility. 
Several of the anticipated challenges implementing the Hybrid DT are as follows:  

• There is no one-size-fits-all solution. The specific implementation and training/test 
process will vary depending on the system. The Cognitive receiver example is 
essentially an open loop system. More complex systems such as RF jammers will 
present additional difficulties. 

• It is essential to verify the Hybrid DT with real OAR data collected during 
DT&E/OT&E and to continue validation over the system life cycle. 

• For Cognitive EW applications, a critical part of the DT is the RF and threat 
environment. Great care needs to be taken to ensure that this environment is 
accurately replicated. Other AI/ML applications such as autonomous driving have 
similar challenges simulating realistic environments. 

Conclusion 
The Hybrid DT approach demonstrated above is a promising approach for providing 

the improved training and test capabilities required for complex AI/ML systems. 
Through targeted usage of real hardware, coupled with digital simulations, the Hybrid 

DT should be able to simulate the system and its operational environment with sufficient 
realism. If the RF operational environmental simulation is built with scenario generation 
capability and environmental effects simulators, much of the required training and test data 
may be able to be generated. Finally, the Continuous Integration/Continuous Deployment 
(CI/CD) process required for AI/ML systems can be supported if the system is constructed 
with a development pipeline that supports efficient virtualization of AI/ML components and 
firmware/software components. 
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Program test managers should carefully consider Digital Twinning and Digital model 
approaches, and adapt test constructs that are best suited for their system, considering 
system Cyber–Physical interactions and system complexities. This is particularly true for 
AI/ML based systems, like Cognitive EW systems. Test constructs should also be chosen in 
the context of the complete system life cycle, including design, implementation, DT&E/OT&E 
and sustainment. 
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