Decision Making for Additive Manufacturing in Sustainable Defense Acquisition

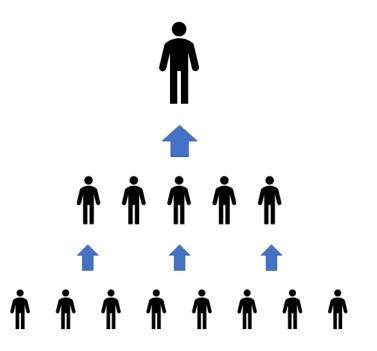
20th Annual Acquisition Research Symposium Naval Postgraduate School

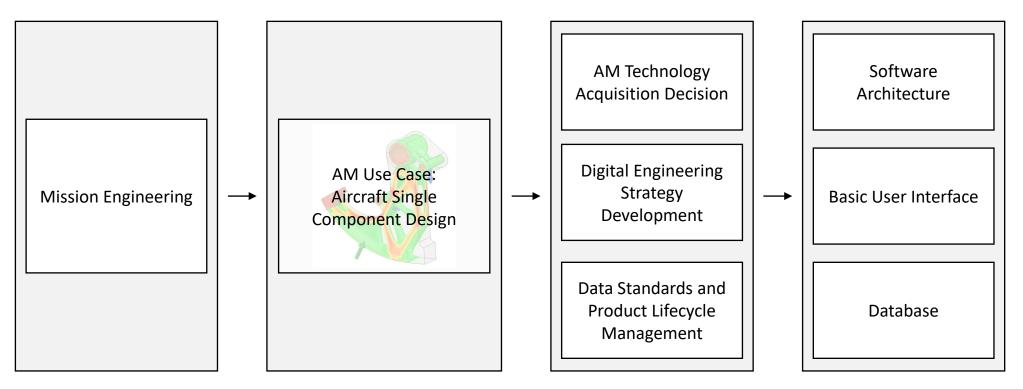
Presented by Professor Jitesh Panchal, Purdue University

Coauthors: Dr. Waterloo Tsutsui, Ms. Qian Shi, Mr. Ian Walter, Ms. Amanda Wei, Professor Christopher Williams, and Professor Daniel DeLaurentis

Acknowledgment

The authors acknowledge financial support from the U.S. Department of Defense through SERC/AIRC on research task WRT 1049.4, contract no. HQ0034-19-D-0003 and report no. AIRC-2022-TR-006.




Research Question

- Question: Can we develop a framework to support the development of:
 - An Additive Manufacturing (AM) Supply Chain and Sustainment Strategy
 - A Digital Engineering (DE) strategy spanning the lifecycle
 - Digital engineering/design
 - Manufacturing
 - Supply chain
 - Maintenance
 - Initial focus is on data and framework surrounding AM
 - We compared the AM with traditional manufacturing (TM)

- Multiple levels of decision makers
- Strategic decisions:
 - Not necessarily technical expert
 - Attributes: Cost, quality, efficiency, etc.
- Technical levels:
 - Familiar with the more technical details of the decision
 - Attributes: Maintenance cost, machine tolerance, tensile strength, accuracy, etc.

Research Methodology

Obtain mission thread

Identify factors that are relevant for decision making

Establish AM decisionsupport framework with key design and objective variables Deliver framework decision-support tool software and report

Use Case: Aircraft Single Component Design

• Scenario 1: Part Design Replication

Original Design (TM) vs. Original Design (Various AMs)

- The company is comparing the utility of different manufacturing techniques to produce 100 replicates of the aileron bellcrank geometry using 6061 Aluminum.
- The stakeholder is evaluating the effect of alternative manufacturing processes to replicate the same geometry and material as in the original design.
- Scenario 2: Part Design Improvement

Original Design (TM) vs. Topology Optimized Redesign (Various AMs)

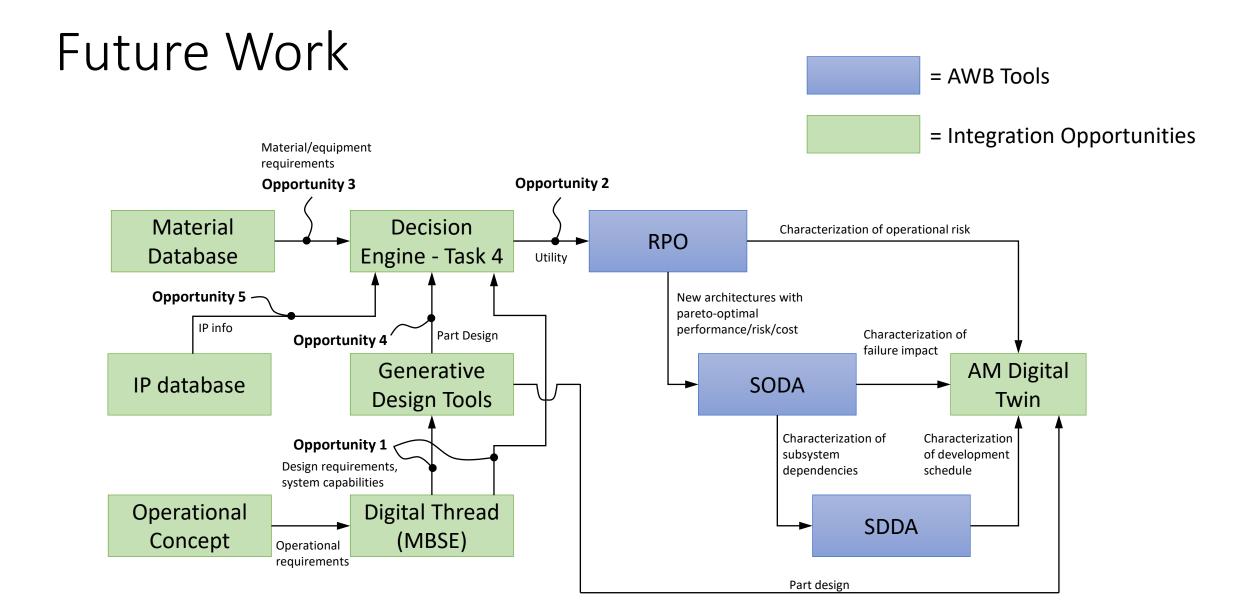
- The company is comparing the utility of different manufacturing techniques to produce 100 redesigned bellcranks, which have been optimized for light-weighting.
- The stakeholder is evaluating the effect of a change in part geometry by additive manufacturing while the material (Aluminum 6061) is held constant.

Original Design Light-weighting Analysis

Topology Optimized Aileron Bellcrank (Additive manufactured and post-processed)

Demo

Results: Scenario 1: Part Design Replication


ision: Comparison of different additive manufac	turing process	es to traditi	onal man	nufacti	uring for rep	producii	ng the orig	inal part des	ign and n	naterial.	
Alternatives		 Attribute 	s								
Name	Utility Score	Attribute	Lower	Ideal	Upper	Units	Weight				
AM - hWAAM DMS 2Cubed Al6061	0.62195	Length		87		mm					
AM - DMP Factory 500-LaserForm Al6061	0.40844	Width		350		mm					
TM - Casting Al6061	0.30780	Height		350		mm					
AM - Binder Jet ExOne X160Pro Al6061	0.56838	Cost	0.0	0	500000.0	\$		0.600			
AM - Binder Jet ExOne X160Pro Sand+Al6061	0.55567	Time	0.0	0	4000.0	Hours		0.400			
Expected Utility 0.9 0.8 0.7			Alt 2: AN Alt 3: TN Alt 4: AN	A - DMA A - Cas A - Bind	AAM DMS 2 P Factory 5 sting Al606 der Jet ExO der Jet ExO	00-Lase 1 Ine X16	erForm Al6 0Pro Al60	61			
1 0.9 0.8			Alt 2: AN Alt 3: TN Alt 4: AN	A - DMA A - Cas A - Bind	P Factory 5 ting Al606 der Jet Ex0	00-Lase 1 Ine X16	erForm Al6 0Pro Al60	61			

Results: Scenario 2: Part Design Improvement

cision: Comparison of different additive manufa Alternatives		 Attributes 							
Name	Utility Score	Attribute		Ideal	Upper	Units	Weight		
AM - hWAAM DMS 2Cubed Al6061	0.52448	Length		87	opper	mm	Trengine		
AM - DMP Factory 500-LaserForm Al6061	0.39861	Width		350		mm			
TM - Casting Al6061	0.22080	Height		350		mm			
AM - Binder Jet ExOne X160Pro Al6061	0.51044	Part mass	0.0	0	4.0	kg		0.300	
AM - Binder Jet ExOne X160Pro Sand+Al6061	0.48315	Cost	0.0	0	500000.0	s		0.400	
		Time	0.0	0	4000.0	Hours		0.300	
Expected Utility 0.9 0.8			dt 2: AM dt 3: TM dt 4: AM	- DMP - Cast - Bind	AM DMS 2 P Factory 50 ting Al6061 ler Jet ExOr ler Jet ExOr	00-Lase	rForm Alé	61	
1 0.9 0.8 0.7			dt 2: AM dt 3: TM dt 4: AM	- DMP - Cast - Bind	P Factory 50 ting Al6061 er Jet ExOr	00-Lase	rForm Alé	61	
1 0.9 0.8 0.7			dt 2: AM dt 3: TM dt 4: AM	- DMP - Cast - Bind	P Factory 50 ting Al6061 er Jet ExOr	00-Lase	rForm Alé	61	
1 0.9 0.8 0.7 8 0.6			dt 2: AM dt 3: TM dt 4: AM	- DMP - Cast - Bind	P Factory 50 ting Al6061 er Jet ExOr	00-Lase	rForm Alé	61	
1 0.9 0.8 0.7 • 0.6 • 0.6 • 0.5			dt 2: AM dt 3: TM dt 4: AM	- DMP - Cast - Bind	P Factory 50 ting Al6061 er Jet ExOr	00-Lase	rForm Alé	61	
1 0.9 0.8 0.7 e 0.6 S 0.5 2 115 0.4			dt 2: AM dt 3: TM dt 4: AM	- DMP - Cast - Bind	P Factory 50 ting Al6061 er Jet ExOr	00-Lase	rForm Alé	61	
1 0.9 0.8 0.7 e 0.6 S 0.5 115 0.4 0.3			dt 2: AM dt 3: TM dt 4: AM	- DMP - Cast - Bind	P Factory 50 ting Al6061 er Jet ExOr	00-Lase	rForm Alé	61	

Conclusions

- The research focused on the data and framework surrounding the opportunity to exploit additive manufacturing as a systems engineering problem.
- The discussion started with a description and conceptual background on the decision support tool.
 - We discussed the use case that consists of the design and manufacturing of an aircraft component, an aileron bellcrank.
- To further understand use case, we identified the critical decision and analysis variables and created a framework to understand how these variables impact each other.
 - We transferred the above framework into an algorithmic view of these variables to make an optimized decision regarding where and how additive manufacturing can have the most impact.
- We developed an interactive decision support tool (i.e., the decision engine) so that the decision makers can use the quantitative data to make a proper decision on additive manufacturing.

Thank you