
NPS-HR-23-251 

ACQUISITION RESEARCH PROGRAM 
SPONSORED REPORT SERIES 

Who Leaves? Individual-Based Predictive Modeling of Non-End 
of Active Service Attrition for Enlisted Marines 

March 2023 

Maj Aaron Falk, USMC 

Thesis Advisors:  Dr. Marigee Bacolod, Associate Professor 
Dr. Chad W. Seagren, Senior Lecturer 

Department of Defense Management 

Naval Postgraduate School 

Approved for public release; distribution is unlimited. 

Prepared for the Naval Postgraduate School, Monterey, CA 93943. 

 Disclaimer: The views expressed are those of the author(s) and do not reflect the official policy or 
position of the Naval Postgraduate School, US Navy, Department of Defense, or the US government. 

 

Acquisition Research Program 
Department of Defense Management 
Naval Postgraduate School 



The research presented in this report was supported by the Acquisition Research 
Program of the Department of Defense Management at the Naval Postgraduate School. 

To request defense acquisition research, to become a research sponsor, or to print 
additional copies of reports, please contact the Acquisition Research Program (ARP) via 
email, arp@nps.edu or at 831-656-3793. 

Acquisition Research Program 
Department of Defense Management 
Naval Postgraduate School 



ABSTRACT 

Talent Management 2030 posits that the United States Marine Corps’ manpower 

system hails from the industrial era and calls for broad modernization. This thesis serves 

as a proof of concept designed to implement modern predictive machine-learning 

algorithms and techniques to an age-old military manpower problem. Current Marine 

Corps attrition modeling is conducted using historical averages and does not account for 

individual attributes of each Marine. This study employs two machine-learning models, a 

Random Forest classifier and a multinomial logistic regression with least absolute 

shrinkage and selection operator predictor selection. It uses individual, disaggregated data 

and compares the prediction results to current Marine Corps attrition modeling processes. 

Two key findings are reported. First, the Random Forest classifier models outperform the 

current trailing average models at predicting aggregate attrition. One caveat is that these 

models have difficulty at correctly classifying non-end of active service attrition at the 

Marine level, achieving an average of 45% correct individual classification. Second, even 

though the machine-learning models provide superior prediction, they may not be 

managerially relevant because of the opportunity cost of construction due to the current 

database structure, data systems, and capabilities employed by Marine Corps manpower 

entities. 
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EXECUTIVE SUMMARY 

The United States Marine Corps (USMC) has been urged to modernize its 

manpower systems to meet the operational demands of the 21st century, according to recent 

strategic guidance. As part of this effort, this thesis explores the modernization of pre-

contract, or, non-end of active service (NEAS), attrition prediction within the USMC. The 

cost of NEAS attrition to the institution is significant, and current Manpower and Reserve 

Affairs (M&RA) attrition prediction modeling relies on historical averages, which fails to 

account for specific attributes of individual Marines or predict attrition classification at the 

individual level. I implement modern predictive machine learning (ML) algorithms and 

techniques to classify individual Marines within the current enlisted inventory using two 

modeling techniques, a Random Forest classifier and a least absolute shrinkage and 

selection operator multinomial logistic regression. I compare the prediction results to 

current USMC attrition modeling processes, thus providing a proof of concept for the 

implementation of modern ML techniques to improve NEAS attrition prediction.  

The models are trained on separate monthly data pooled between fiscal year (FY) 

17 and 19, while the model is validated using data from the same month in FY20. Each 

monthly model training data consists of roughly 450,000 observations. Figure 1 depicts an 

example of the generalized model design for the month of October. Total Force Data 

Warehouse and Manpower Information Systems Branch supplied all data. The model 

defines and classifies each individual Marine into three predictive states within the specific 

month: continue service, end of active service, and non-end of active service. 

Figure 1. Model Design 
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Two key findings are reported. First, the Random Forest classifier series of models 

generally outperform currently used trailing average models at predicting aggregate NEAS 

attrition. The Random Forest classifier models underestimate aggregate annual NEAS 

attrition by 4% compared to the current modeling process that underestimates by 12% on 

the FY20 validation data. Figure 2 and Figure 3 compare NEAS predictions using the 

current modeling technique and the Random Forest classifier by month.  

Figure 2. M&RA Current Non-End of Active Service (NEAS) Model 

Figure 3. Random Forest Classifier Machine Learning NEAS Model 
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Second, even though the ML models provide superior aggregate prediction, they 

may not be immediately managerially relevant. Currently, the database structure, data 

systems, and capabilities employed by the services’ manpower planners are not designed 

to support the use of these nascent ML techniques. For example, there is a significant effort 

and cost in construction of training data, from pulling data tables across multiple systems 

to cleaning and verification of data. Training ML models also requires significant 

computing power that is not easily accessible.  

The results of this thesis indicate that harnessing ML to modernize manpower 

models can yield better predictive results, at least for aggregate NEAS attrition. 

Additionally, even though correct NEAS classification at the individual level hovered 

around 45% accuracy, value can be obtained from correctly identifying this half of Marines 

for potential targeting. More broadly, having demonstrated the proof of concept in this 

thesis, there are likely many other applications for ML within the USMC manpower 

system.  

The institution should focus on three areas. First, it should optimize its data systems 

and data infrastructure to better facilitate the use of ML. Second, it should continue to look 

for opportunities to employ ML in areas that currently use legacy systems or techniques. It 

should also explore using ML techniques in conjunction with legacy modeling in a hybrid 

fashion. Finally, the institution should continue to strive to collect better data that can help 

build more accurate future ML models. 
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I. INTRODUCTION

Personnel attrition remains a significant concern for both public and private 

organizations of all types and all sizes. The Department of Defense (DOD) has a vested 

interest in studying and understanding attrition and its causes. This is especially true given 

the DOD’s constant manpower resource constraints; it must internally grow and develop 

its own talent. Additionally, the DOD must be able to effectively operate within an 

environment of constant manpower turnover. The services must be able to predict future 

attrition to accurately reach their annually mandated end strength goals, and more 

importantly, meet their operational missions.  

Manpower modeling and data analysis techniques have continued to advance in the 

current data driven environment, specifically within the private sector. The DOD, and the 

United States Marine Corps (USMC), has not been able to maintain pace with these 

advancements. This thesis explores nascent manpower modeling approaches to try and 

better predict enlisted attrition, specifically those who will depart the service before their 

contract expires, using data that is already collected on the individual Marine.  

A. BACKGROUND

The Fiscal Year (FY) 2022 National Defense Authorization Act (NDAA) is the

primary legislative document that “authorize(s) appropriations for fiscal year 2022 for 

military activities of the Department of Defense, for military construction, and for defense 

activities of the Department of Energy, to prescribe military personnel strengths for such 

fiscal year, and for other purposes” (National Defense Authorization Act for Fiscal Year 

2022, 2021). For the purposes of my thesis, the primary applicable component of the 

NDAA is the mandated end strength for the USMC. This end strength number must be met 

at the conclusion of each FY. Manpower planners within the USMC work throughout the 

fiscal year adjusting various components within the system to achieve the mandated end 

strength number. 

Figure 1 depicts the end strength formula. USMC manpower planners begin with 

the current strength of the force, subtract the losses that occur, add the gains, and conclude 
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with an overall force end strength. This process is conducted monthly and subdivided 

between officers and enlisted personnel (J. Cruz, personal communication, August 23, 

2022). One difficultly that manpower planners face is accurately predicting the institutions’ 

enlisted losses, especially when they occur outside of contract. Loss prediction has direct 

impacts on the number of accessions needed, which in turn, affects the institution’s ability 

to meet end strength. 

 
Figure 1. End Strength Defined 

The Commandant of the Marine Corps (CMC) has authored strategic level 

guidance,  Talent Management 2030, aimed at modernizing the overall Human Resource 

Development Process (HRDP) that the organization employs (Berger, 2021). This 

guidance seeks to reexamine the manpower system in light of the institution’s new focus 

on Great Power Competition and the changing expectations and views of human capital 

within the United States (Berger, 2021). This document also calls for an improvement of 

the current manpower planning models. The CMC states that “our manpower model was 

devised in an era before personal computers, mobile phones, and the Internet, when 

Marines received paper orders and paper paychecks” (Berger, 2021).  

The USMC maintains a robust database of personnel information within the Total 

Force Data Warehouse (TFDW), and other databases, that can support more advanced 

manpower and attrition modeling. The breadth of this data and the lack of employment of 

advanced modeling makes it difficult for manpower planners to meet the CMC’s 

modernization intent. My thesis leverages existing data coupled with emerging machine 

learning (ML) modeling techniques to attempt to meet the CMC’s intent in one small area 

of research. 
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B. INSTITUTIONAL BACKGROUND 

The primary institution responsible to the CMC for manpower issues within the 

USMC is the Deputy Commandant (DC), M&RA. DC, M&RA manages “the current 

inventory of Marines, builds plans for the creation and distribution of future inventory, and 

assigns available inventory against billets manned” (MCO 5250.1). Within M&RA, the 

Manpower Plans and Policy (MPP) division is responsible to DC M&RA for the future 

inventory of the force to include “manpower plans for force development and 

implementation of HRDP initiatives, provides manpower policy support, and prepares 

manpower budget estimates and justifications” (MCO 5250.1). MPP is further subdivided. 

MPP 20, Enlisted Plans Section, is the department primarily responsible for developing the 

enlisted accession plans for each fiscal year. A component of this accession planning is 

forecasting enlisted attrition. 

Attrition remains a cyclical and necessary component of the USMC’s HRDP. 

Within the institution, attrition possesses a certain degree of predictability and seasonality. 

The inflow of new Marines into the organization is necessary due to the current force 

structure requirements; grade shaping requires a large base of junior enlisted Marines from 

which to promote. Simply stated, the Marine Corps has the most need at the junior enlisted 

levels (E1-E3). These population levels also comprise most of the enlisted attrition. 

Attrition that occurs prior to the contractual end of active service (EAS), is considered 

especially harmful to the institution as it creates fiscal costs, readiness costs, and personnel 

costs.  

Manpower Planners at M&RA describe this type of loss as non-EAS (NEAS) 

attrition (J. Cruz, personal communication, August 23, 2022). They have categorized 

NEAS attrition into three areas. The first is Base NEAS, the second is Recruit NEAS, and 

the final is Retirements. Base NEAS attrition represents all attrition that is not EAS 

departures, attrition of Recruits at the two enlisted Recruit Depots, or attrition due to 

retirements. Base NEAS attrition, as defined, represents Marines who have already 

completed a portion of their training but depart the service prior to their contractual 

obligation. Planners divide enlisted attrition in this manner because it allows them to better 

model and forecast these rates. Additionally, understanding these numbers in their 
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appropriate context aids in policy and process improvement. Base NEAS attrition is the 

primary subject of this thesis. 

Base NEAS attrition for enlisted Marines is currently tabulated by the Enlisted End 

Strength Planners residing within MPP 20. The current forecasting model for Base NEAS 

attrition relies heavily on manual inputs from the planners. The processes involves 

manually moving spreadsheets and data across multiple platforms and between multiple 

people (J. Cruz, personal communication, August 23, 2022). The computation of the 

specific projections are done manually using spreadsheet modeling. 

The accuracy of the current model requires a relatively stable composition and 

disposition of the force (J. Cruz, personal communication, August 23, 2022). The process 

amounts to compiling a three-year trailing average of the ratio of monthly Base NEAS 

attrition to monthly end strength goals (J. Cruz, personal communication, August 23, 

2022). The planners forecast the Base NEAS for subsequent months and provide those 

predictions to the recruiting apparatus of the institution. Variations of this method have 

existed as far back as 2008, as evidenced by a previous NPS thesis on the same subject 

authored by Sanford Orrick. Each subsequent planner has approached the modeling 

technique with slight variations but have ultimately used the same trailing average 

technique.  

The planner’s goal is to achieve an accurate forecast to meet the legally mandated 

enlisted end strength numbers by the close of the fiscal year. This is best achieved by 

accurately forecasting losses at the monthly interval. This allows for incremental 

adjustments to be made on both the accession and retention sides of the institution. 

Accurate prediction of Base NEAS attrition is especially useful to the institution’s Enlisted 

End Strength Planners because it represents the attrition variable that is the costliest to the 

institution.  

Historical data shows that retirement and recruit attrition exhibit generally 

predictable behavior. Additionally, the institution has limited control over retirements. This 

control can allow the institution the ability to influence its losses by artificially stabilizing 

them through management of who is allowed to retire and when they are allowed to retire. 
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Within the last 5 years, roughly 20% of NEAS attrition is credited to retirements (R. 

Johnson, personal communication, June 8, 2022). Recruit attrition tends to be predicable 

in nature as well. It accounts for roughly 30% of NEAS attrition over the last five years.  

C. RESEARCH QUESTIONS 

The following research questions are proposed. 

1. Primary Research Questions 

a. Can a manpower model be developed using ML that predicts monthly 
Base NEAS attrition using individual Marine data contained in existing 
USMC personnel databases?  

In this thesis, I successfully develop multiple models using two ML techniques that 

predict Base NEAS attrition at the individual Marine level. 

b. Are ML modeling approaches using individual data better at predicting 
aggregate Base NEAS attrition compared to current models?  

The ML models that I develop often outperform the current modeling techniques. 

Across the entirety of FY20, they dramatically improve upon the current process 

underestimating Base NEAS attrition by 4% compared to the current process which 

underestimates by 12%. Additionally, the cumulative error observed at each month within 

the FY remains more stable with the ML models. 

2. Secondary Research Questions 

a. Does using disaggregated data and an ML model better account for 
various shocks to the USMC manpower system?  

The use of disaggregated data and prediction at the individual Marine level enables 

the ML models to account for individual differences in Marines. It achieves greater success 

than current processes at accounting for shocks within the manpower system. This thesis 

posits that the individual differences in Marines can be exploited by the ML algorithms 

employed. 
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b. Is the predictive ML model developed feasible for Marine planners to 
implement given their current systems, software, and programs? 

Further research is needed to determine the feasibility of employing the ML 

modeling techniques from this thesis. Current USMC data systems and collected data 

increase the opportunity costs associated with employing these techniques. 

D. SCOPE 

This thesis focuses on the enlisted population of Marines. It uses currently collected 

data from FY10–FY21 to construct a series of monthly models that predicts whether or not 

a Marine departs the service, with a given month, before their contractual end of active 

service (EAS). This type of attrition is only a small subset of total losses within the 

institution, as will be discussed in more detail. I compare the output of these more advanced 

models to the currently employed models and examine the benefits and shortfalls of both. 

E. THESIS ORGANIZATION 

This thesis contains six chapters. Chapter I contains the introduction and 

institutional background on the currently employed enlisted end strength modeling 

processes. Chapter II contains the literature review of four relevant studies along with a 

small meta-analysis of civilian and military personnel attrition. Chapter III outlines the data 

and methodologies I employ for this study. It also includes further details on data cleaning 

and the specific models chosen. Chapter IV is an analysis of results of the methodologies 

I employ. Chapter V contains recommendations and topics for future research. Finally, 

Chapter VI contains the appendices consisting of useful summary statistics and additional 

model information. 
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II. LITERATURE REVIEW 

This chapter reviews previous attrition prediction literature from both the military 

and civilian sectors. The studies selected for this thesis were chosen because of the differing 

analytical techniques employed including traditional regression and more modern ML. 

These techniques are relevant because end strength planners can employ them within the 

USMC HRDP. This literature review is divided into three categories. First, traditional 

attrition modeling techniques that employ older regression and probability modeling. 

Second, modern attrition modeling techniques that employ compute intensive ML. And 

third, outcomes and explanatory factors that influence attrition that are consistent 

throughout the reviewed literature.  

A. CONVENTIONAL ATTRITION PREDICTION 

In his Rand study on military attrition behavior, Richard Budding (1984) employs 

four service specific multivariate logistic regression models designed to deduce the 

significance of collected predictors associated with early attrition. His study represents one 

of the earlier attempts at quantifying and identifying the differences between enlisted 

military members and their civilian counterparts. He finds that an individual’s work history 

prior to enlistment bares significant weight on their likelihood of attrition, increasing 

specifically in those service members nineteen years of age having more than four previous 

employers (Buddin, 1984). He also finds that non-high school graduates and older services 

members are more prone to early attrition. His study represents an early attempt at 

identifying problematic military attrition at the individual service member level.  

Sanford Orrick (2008) examines the Marine Corps’ NEAS enlisted attrition with 

the goal of designing a model using existing, in service, observational data to predict NEAS 

attrition. At the time of Orrick’s study, the Marine Corps was employing two methods of 

modeling NEAS attrition. First, a steady state weighted average approach of past monthly 

attrition numbers, and second, a Monte Carlo simulation that also incorporated weighted 

averages of attrition numbers. These models are very similar to what Marine Corps 

manpower planners are currently employing.  
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Orrick employs logistic regression on USMC personnel data from TFDW, spanning 

from 1998 – 2008. He designed the outcome variable as a Marine being either a NEAS or 

EAS attrite (Orrick, 2008). His model uses aggregated data from 1998 to 2004 to predict 

the probability of NEAS attrition on 2005 data. This framework was replicated for the years 

2006, 2007, and 2008 using the same training and validation method. The cross validation 

on the 2005 data yielded an overall accuracy rate of 76.18%, which includes accurately 

predicting NEAS attrition and EAS attrition (this is based upon the construction of the 

outcome variable NEAS and EAS as the outcome options). Orrick selected a 0.5 classifier 

that identified a Marine as NEAS attrition if the predicted value was greater than 0.5 and 

an EAS attrition if the predicted value was less than 0.5 (Orrick, 2008). His model 

performed better at identifying specificity, or correctly classifying Marines who would 

execute normal EAS attrition, achieving 85.25% accuracy (Orrick, 2008). This is compared 

to a sensitivity rate, or correctly assessing a Marine as a NEAS loss, of 61.11%. 

Statistically, this is only marginally better than a random guess, which would yield a 50% 

probability of either outcome.  

Orrick’s study has several limitations. First, his model solely focuses on predicting 

EAS or NEAS on those Marines who had already separated and not on the total inventory 

within each year or month. His data also suffered severely from duplicate entries and from 

missing separation codes. His cleaned dataset was reduced by 40%, from over 500,000 to 

approximately 300,000 observations. His study also used aggregated results for prediction. 

It is likely that some of the seasonality within USMC attrition was lost in employing this 

technique. Additionally, predicting at the annual interval is less useful to end strength and 

recruiting planners because of the monthly operating cycle they employ. Finally, the 

predictors selected did not exhaust all possible options that exists within TFDW. 

Another study that employs similar methods is authored by James Marrone (2020). 

He develops a predictive model for attrition within the first 36 months of a new military 

member’s career. Using pre-accession data, he identifies predictors of first term attrition 

with the goal of constructing a model that can indicate attrition risk prior to a service 

members entry into the institution.  
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This research focuses on comparison of recruit characteristics at accession, 

probability of attrition using probit regression modeling, and the marginal effect of specific 

variables that his regression identified as significant. Additionally, he grouped variables 

together to attempt to extract any additional significance from their interaction. His model 

proved to be marginally effective at predicting recruit attrition, ultimately achieving a  

55–60% sensitivity rate, or properly identifying service members who attrite before the 

expiration of their first 36 months. 

Marrone’s research consists of aggregated observations across all four services. 

This is noteworthy because Marrone’s probit model was trained on the complete dataset 

and then applied individually to each service. This may have led to improper 

characterization of attrition within each service, given that each service has its own unique 

characteristics and personality traits of its recruits. Additionally, Marrone’s study only 

employed a probit regression model. Other modern ML techniques can be applied, such as 

predictor selection, before modeling to help draw out statistical significance. Finally, the 

model failed to incorporate cross validation, or a test-train split. This is crucial to ensuring 

that a model can accurately predict future events and helps guard against overfitting. 

B. NASCENT ATTRITION PREDICTION 

Patrick Gallagher (2020) examines the use of ML techniques to predict retention 

among enlisted Marines. The goal of his research is twofold. First, he employs ML 

techniques to predict retention, and second, he seeks to determine if individually targeted 

bonuses for enlisted Marines could prove successful at increasing retention. His study uses 

data prior to the reenlistment decision to predict retention, in his case, reenlistment. 

Gallaher employs nine different ML and regression techniques on his data to 

determine the best model for predicting reenlistment, representing a form of retention. He 

evaluates his results using the F1 score, a common ML evaluation metric that employs the 

harmonic mean of precision, the total percentage of correct predictions, and recall, the 

actual positives that were correctly identified (Gallagher, 2020).  

Gallagher finds that the Random Forest classifier, logistic regression, and Naïve 

Bayes algorithms are best at predicting reenlistment with F1 scores of 0.686, 0.672, and 
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0.668 respectively. His modeling is unable to facilitate targeting Marines at the individual 

level, however, application of his models prove to be beneficial when basic cost analysis 

of retention is performed. If used, his models could provide cost savings by identifying 

Marines that would reenlist regardless of bonus incentive; the institution would not need 

to offer a bonus to secure their reenlistment.  

Attrition prediction in manpower systems is not limited to the DOD. Private firms 

and organizations employ human resources arms to assist with retention and attrition 

related evaluation. In a recent study by Fallucchi et al. (2020), researchers employ several 

ML techniques to predict attrition and identify indicators that could be useful for managers 

to incentivize retention. 

The authors conclude that the most effective model is a Gaussian Naïve Bays 

classifier followed by logistic regression. The associated F1 score for these models is 0.446 

and 0.445 respectively. These two techniques have the best performance at true positive 

identification, or simply stated, correctly predicting the probability of an employee leaving 

a company (Fallucchi et al., 2020). 

Fallucchi’s research is distinct from the other literature reviewed because it focuses 

on non-military personnel data. The variables available to the researchers fall into three 

distinct bins. First, the dataset includes demographic information, second, the data includes 

current employment information, and third, it includes environmental factors that influence 

both the individual and the job, including things like satisfaction derived from the job, 

interoffice relationships, and workplace environment. 

In their paper, Alduayj et al. (2018) use synthetic data to develop a series of 

predictive ML models designed to identify individual civilian employee attrition. They first 

employ three separate ML techniques, including a Random Forest classifier, on their 

unbalanced training dataset (Alduayj & Rajpoot, 2018). They then employ a data balancing 

technique and run the same set of models. The balanced training data provides significantly 

better results for all ML algorithms, with an F1 score increase on the Random Forest 

classifier from 0.269 to 0.921 (Alduayj & Rajpoot, 2018). They also employ feature 

selection techniques to reduce the size of the predictor dataset. This paper represents a 
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convergence of computer science and statistical analysis employed on a manpower 

problem. The paper lacks the formal development of a proper training and validation data 

split and is employed on synthetically created data. However, the employment of the 

selected techniques and the logical process used to properly leverage ML contribute to the 

development of my research.   

C. OUTCOMES AND EXPLANATORY FACTORS 

Table 1 is a meta-analysis of independent variables that are consistent across the 

reviewed literature. These predictors are found to have a statistically significant 

relationship with attrition. Data from Gustavo Terrazas’ (Terrazas, 2020) study on 

implementing ML techniques on USMC reenlistment data and an additional study from 

Marrone et al. (2021) on U.S. Army attrition, are also analyzed to develop the table below. 

Similar variables between civilian and military datasets are combined together within the 

table, such as time in service and occupational tenure. It is important to note that results 

from ML techniques do not always indicate the direction of the relationship between the 

feature and the outcome, only that the predictor is significant. In these cases, the notes 

section will indicate ML. 

Table 1. Meta-analysis of Reviewed Literature on Attrition Related 
Outcomes 

Metanalysis of Predictors: Relationship with Attrition  
 Relationship Notes         Study 

Age Negative 

- Negative as age 
increases 
- Most positive at 26–30 
years old 
 

Marrone 
Fallucchi 

Gender  Positive 
- Positive for women Orrick 

Marrone 

Race  Negative 
- Negative for non-whites Orrick 

Marrone 

Marital 
Status 

Negative 
- Negative for married 
- Positive for widowed 

Orrick 
Marrone 
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Metanalysis of Predictors: Relationship with Attrition  

Citizenship Varies 
- Negative when non-U.S. 
Citizen 

Marrone 

Dependents Negative 
- More than one 
dependent is negative  
- Negative with children 

Orrick 
Marrone 

Education Negative 
- Negative as education 
increases 

Orrick 
Marrone 

Rank/Income Negative 
- Significant Feature 
- Negative as rank 
increases 

Marrone 
Fallucchi 

Commute 
Distance 

Varies 
- Significant Feature Fallucchi 

Overtime Varies 
- Significant Feature 
- More overtime, higher 
attrition 

Fallucchi 

AFQT Negative 

- Higher scores, lower 
attrition 
- Positive as scores 
decrease 

Orrick 
Marrone 
 

MOS 
Category 

Varies 

- Positive towards sales 
jobs 
- Positive toward combat 
jobs 

Marrone 
Fallucchi 
Terrazas 

Unit Type Varies 
- Positive toward combat 
units 

Marrone 

Bonus Negative - Negative Marrone 
Contract 
Length 

Positive 
- Positive as term length 
increases 

Orrick 
Marrone 

Duty 
Location 

Varies 
- Varies and determined 
by MOS 

Marrone 

 Leadership Negative 
- Negative towards good 
leadership 

Marrone 

Unit Culture Significant 
- Significant Feature (ML) Marrone 

Terrazas 
Fallucchi 

Accession 
Month 

Varies 
- Less likely at beginning 
of quarters (Jan, Apr, Jul, 
Aug) 

Marrone 

Prior Active 
Duty 

Positive 
- Positive Marrone 

ENTNAC Positive - Positive toward waivers Marrone 
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Metanalysis of Predictors: Relationship with Attrition  

DEP Negative 
- Negative if time spent in 
DEP 

Marrone 

Combat Tour Negative 
- Significant for 
Reenlistment outcome 
(ML) 

Orrick 
Terrazas 

Deployment Significant 
- Significant for 
Reenlistment outcome 
(ML) 

Terrazas 

Time in 
Service 

Negative 
- Positive for > 4 years TIS 
Negative for those with 
>11yrs 

Orrick 
Fallucchi 

Pro/Con 
Composite 

Score 
Significant 

- Significant for 
Reenlistment outcome 
(ML) 

Terrazas 

Legal Significant 
- Significant with 
Reenlistment (ML) 

Terrazas 

 

The literature shows a positive relationship between attrition and gender (women), 

marital status of widowed, lower AFQT scores, combat designated units, contract length 

(increasing as length increases), prior Active-Duty status, time in service, and receipt of an 

entrance national agency check (ENTAC) waiver. Intuitively, these predictors’ positive 

relationship with attrition make sense and are consistent with common understanding and 

theory. The literature in Table 1 also shows a negative relationship between attrition and 

numerous predictors, most notably, marital status, having dependents, receiving a bonus, 

having good unit leadership, and time spent in a delayed entry processing (DEP) status. 

These predictors are also congruent with theory and common understanding of human 

behavior. Finally, the ML algorithms used in the reviewed literature indicate that 

deployment, proficiency and conduct score, legal action, unit culture, commute distance, 

and overtime worked, are significant predictors. While these predictors are not given any 

directional relationship with attrition, theory and literature agrees with their selection. 
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D. CONCLUSION 

My research benefits from the reviewed literature in three distinct areas. First, my 

models have a deliberately constructed training dataset broken down at the monthly level. 

Second, I employ traditional multinomial logistic regression techniques, and two more 

modern ML techniques, least absolute shrinkage and selection operator (LASSO) and 

Random Forest classifier. Finally, this thesis employs feature engineering and pulls in a 

large set of predictors, many of which are indicated as significant in the reviewed literature.  
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III. DATA AND METHODOLOGY  

A. DATA SOURCES 

The data for this study is drawn from various data tables contained in the USMC 

TFDW and other data provided by Manpower Information Systems Branch. The study 

population includes all enlisted Marines in the active duty component in service from 

October 2009 through October 2021, corresponding to FY10 to FY21. The data is 

longitudinal, where an individual Marine is observed over this period and followed every 

month until that Marine attrites or leaves active duty service. The primary data cleaning 

program I use is Stata 17 MP and the primary modeling program I use is R 4.2.2. 

B. DATA CLEANING  

1. TFDW Data Structure 

TFDW operates the primary Sequel database for historical data for the USMC. It 

stores data based upon monthly snapshots of the total force. These snapshots are referred 

to as sequence numbers (J. Forbes, personal communication, July 26, 2022). There are 

multiple data tables within each sequence number that store specific types of information 

based upon their category. This structure allows users to access specific historical 

information without having to access the entire database. Additionally, it allows 

researchers the ability to construct longitudinal datasets for detailed analysis.  

2. Data Preparation 

The data extracts from TFDW for this study are Microsoft Excel .CSV files of nine 

distinct data tables. The process of data cleaning and merging these tables is best illustrated 

using a hub and spoke structure. The primary data hub captures the total inventory or 

population of Marines in that month or sequence number, coming from two TFDW data 

tables that describe general characteristics of each Marine in service during that given 

sequence number or month. All other data tables are merged to this hub table using a 

combination of unique identification numbers for individual Marines and the associated 

sequence number. Figure 2 depicts the data table merge process. 
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Figure 2. Data Tables Merge Process 

The specific data tables merged to the hub contain useful attributes that prior 

literature has shown to have a relationship with attrition. Table 2 contains a list and 

description of these data tables. Most of these data tables are entered per transaction rather 

than longitudinal; that is, individual Marines are not followed over time but data are entered 

when an event or transaction, such as a Legal Action, occurs. In some instances, multiple 

entries can occur in a given month or sequence number, such as when a Marine acquires 

more than one Award in a month. Thus, data within each of the spoke tables are first 

collapsed to just one row per sequence number for each unique individual Marine, prior to 

merging with the hub. An example of this is Physical Fitness Test (PFT) scores. When a 

Marine has multiple PFT entries performed in that sequence number, I kept the maximum 

PFT score a Marine achieves in that sequence number or month. Other similar instances of 

multiple entries use the most recent non-missing value or date. The data tables also contain 

a significant amount of overlap, and I kept the variable from the table with the most fidelity. 

Finally, I drop predictors that are not relevant to the research.  
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Table 2. Merged Data Tables 

Data Table Description 

Hub Contains all basic information about each Marine in inventory 

Separations / 

Losses 
Contains all separations / losses from the USMC inventory 

Awards Contains all types of awards given to individual Marines 

Legal Action 
Contains all judicial and non-judicial actions for individual 

Marines 

PFT Contains all Physical Fitness Test (PFT) scores 

MCMAP 
Contains all Marine Corps Martial Arts Program (MCMAP) belts 

achieved 

FitRep Contains all Fitness Report data 

Accessions Contains all data on Marines collected at time of accession 

 

Numerous predictors contain missing values. This is not uncommon in USMC 

longitudinal datasets. For example, if a Marine is an E4 or below, they will not receive a 

Fitness Report (FitRep). In this instance, that Marine would have a missing value in the 

FitRep Cumulative Value variable. The ML methods I employ in this thesis require a 

complete dataset with no missing values. To overcome this challenge, I create indicator 

predictors for each predictor that has more than one missing value. This indicator is binary 

with 0 equating to no missing data and 1 equating to missing data. This method allows the 

algorithm to quantify the presence or absence of a value in the predictor in question. After 

I create indicators for missing data, all missing values are replaced with zeros and no 

appreciable change in distributions are noted. In very few cases, values are imputed from 

adjacent or closely related predictors. In its entirety, the merged raw dataset includes over 

22 million individual Marine-month observations and over 700 predictors. 
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The predictor formats within the data are numeric, continuous, categorical, and 

calendar date. These require little preparation prior to executing the selected modeling 

techniques. In certain cases, the date predictors are required to be in numeric form, 

ascending from zero with an origin date of January 1, 1970. The primary approach I use is 

to compute dates as the number of days between the predictor calendar date and the 

sequence number date equivalent. This gives unique values of the count of days between 

each date predictor and each sequence number. Categorical predictors that contain levels 

with zero as a value are consolidated to remove the level with no value or data. I also 

remove predictors contained in the data that have zero variance in their values as these will 

not impact the outcome variable. 

3. Response Variable 

The primary goal of this thesis is to predict aggregate Base NEAS attrition. Upon 

separation from the USMC, each Marine is given a specific separation code corresponding 

to the type of separation they receive. TFDW maintains a lookup table to correspond with 

these separation codes. This lookup table consists of 708 unique separation codes. Broadly, 

NEAS contains 322 different separation codes. I further narrow this list of separation codes 

down to clearly define Base NEAS attrition, which is separate from attrition at Recruit 

Training and attrition due to Retirement. I identify Recruit Training attrition using the 

Recruit Depot present monitored command code (PMCC) and the Recruit assignment 

primary military occupational specialty (PMOS). This ensures that only recruits who attrite 

while assigned to the two Recruit Depots are removed, and not permanent personnel 

assigned to the Recruit Depot parent units. Separately, I remove Retirements using specific 

separation codes. This allows me to create a cleanly defined Base NEAS response variable 

that is the closest possible replication to how End Strength Planners at M&RA define Base 

NEAS. I also assign these categories based off current Fleet Marine Force and M&RA 

processes, streamlining where appropriate (C. Dowling, personal communication, October 

12, 2022). For example, a Marine who deserts his unit and is separated is included in Base 

NEAS attrition.  
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Over 75% of the separations data entered in TFDW appears in the sequence number 

after a Marine has separated. This is due to the time of the month the database sequence 

number snapshots are taken. For example, if a Marine separates in sequence number 350, 

their separation could be recorded in sequence number 351. Because of this, I merge 

separations data that spans from sequence 247–394 (FY10–FY21 plus October FY22), 

even though my primary hub dataset only spans from sequence number 247–393. The 

additional sequence number captured by the separations table allows me to capture  

the separations that occur in the last sequence number of the hub dataset, sequence  

number 393. 

Thus, there are three possible states or outcomes for Marines within this data. First, 

they can remain in service during the course of the specific sequence number under 

observation, known as continue service. In this case, they do not have a separation code in 

that month. For example, if a Marine does not receive a separation code in the month of 

October, they are classified as continue service for that month. Second, they can attrite via 

normal EAS within the sequence number or month under observation, which I identify 

based upon the set of associated separation codes. Finally, they can attrite via Base NEAS 

within the sequence number or month under observation, based upon the set of associated 

separation codes discussed above.  

Thus, the final composition of my response variable is categorical and looks at a 

Marines state only within the specific month or sequence number under observation. It 

takes on three forms: Continue Service, Normal EAS, and Base NEAS. This design 

facilitates the multinomial logistic regression and the multiclass Random Forest classifier 

models with the goal of giving the models more options for classification. It properly 

isolates each of the three states described above. The underlying logic behind this approach 

is that predictors and indicators between the various subcategories are different. Figure 3 

depicts the categorical outcome variable. 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =  �
0  𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
1  𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛         
2  𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁                          

 

Figure 3. Outcome Variable Defined 
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C. DESCRIPTIVE STATISTICS 

1. Predictors 

The cleaned dataset for each model consists of over 470 predictors used for 

determining the classification of each Marine. These predictors fit into five broad 

categories. First, pre-service data represents information pulled while an individual 

undergoes the recruitment and screening process. Second, personal attributes data 

describes individual background characteristics that do not frequently change. Third, 

performance data depicts all aspects of a Marine’s performance while in service. Fourth, 

date data captures all time related events. Fifth, separations data captures attributes of a 

Marine at the time of separation from service. Table 3 lists example predictors from each 

of the five broad data categories. A full list of summary statistics for the training and testing 

data for the October model can be found in the appendix. 

Table 3. Predictor Categories and Examples 

Pre-service 
Personal 

Attributes Performance Dates Separations 

Home of 
Record Education 

FitRep 
Cumulative 

Value 

Armed Forces 
Active-Duty 
Base Date 

Separations 
Code 

Source of 
Entry Code CONUS Proficiency 

 Score 
End of Active 

Service - 

AFQT Score Ethnicity Conduct  
Score 

Promotion 
Restriction date - 

Recruiter 
Rank 

Number of 
Dependents 

Legal  
Action Date of Birth - 

Medical 
Disposition Deployments PFT Extension  

Date - 

Ship To MOS 
Category Awards 

Crisis 
Participation 

Date 
- 
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D. METHODOLOGY 

Predictive modeling involves assigning a classification or probability to an outcome 

variable based upon observed attributes found in the predictors. The two modeling methods 

I estimate are multinomial logistic regression and Random Forest classifier. As with ML 

algorithms, how well the models predict the outcomes is validated by splitting the data into 

training and testing data.  

1. Model Design 

Both modeling techniques I employ revolve around a calendar month dataset. To 

enable comparison with the current trailing average model, I compile monthly datasets 

comprising of that specific month over a three-year historical period. For example, the 

October model training data is comprised of data from October 2017, October 2018, and 

October 2019. Each monthly dataset consists of roughly 450,000 observations. This 

structure mimics the current trailing average model, in that the average Base NEAS 

attrition from the last three years for that month is generally used to predict current FY 

month’s attrition. Additionally, this structure allows for faster data training and 

computation. Figure 4 is a graphical depiction of the model design using October as a 

representative example.  

 
Figure 4. Model Design 
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2. Data Imbalance 

The nature of this prediction problem results in an imbalanced dataset. This occurs 

because in a given month, there are far more Marines who continue service than Marines 

who attrite due to EAS or NEAS. This poses a difficult problem for the classification 

algorithms and is not easily solved.  

The balancing procedure I use is Synthetic Minority Oversampling Technique 

(SMOTE). This technique creates additional data of the minority class, in this case, Base 

NEAS attrition, and adds it to the training dataset. It creates the additional minority class 

by using elements of the existing minority class data, employing randomly chosen k-

nearest neighbors technique (Chawla et al., 2002). Table 4 and Table 5 depict the 

unbalanced and balanced training data for each monthly model. This balancing technique 

is used to better train the Random Forest classifier algorithm by exposing it to additional 

cases of the minority classes, EAS, and Base NEAS. The testing data is not subjected to 

this data balancing technique and is depicted in Table 6. Figure 5 shows the response 

variable for October FY17-19 training data before SMOTE was applied. Figure 6 shows 

after SMOTE is applied. The multinomial logistic regression models are not trained using 

SMOTE. 
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Table 4. Imbalanced Observations Training Data by Classification 
(Response Variable) 

Month Continue Service EAS NEAS Predictors 

October (FY17-19) 419,603 4,185 1,098 471 

November (FY17-19) 419,386 4,216 922 466 

December (FY17-19) 416,425 5,725 976 465 

January (FY17-19) 421,144 4,356 1,021 466 

February (FY17-19) 420,944 4,477 1,136 465 

March (FY17-19) 424,538 3,851 1,225 464 

April (FY17-19) 422,472 4,268 1,232 465 

May (FY17-19) 418,576 8,569 1,045 465 

June (FY17-19) 418,733 7,894 1,168 466 

July (FY17-19) 418,020 8,252 1,122 464 

August (FY17-19) 416,596 8,458 979 465 

September (FY17-19) 416,913 5,386 1,183 466 
 

Table 5. Balanced Observations Training Data by Classification (Response 
Variable) 

Month Continue Service EAS NEAS Predictors 

October (FY17-19) 419,603 209,801 209,801 471 

November (FY17-19) 419,386 209,693 209,693 466 

December (FY17-19) 416,425 208,212 208,212 465 

January (FY17-19) 421,144 210,572 210,572 466 

February (FY17-19) 420,944 210,472 210,472 465 

March (FY17-19) 424,538 212,269 212,269 464 

April (FY17-19) 422,472 211,236 211,236 465 

May (FY17-19) 418,576 209,288 209,288 465 

June (FY17-19) 418,733 209,366 209,366 466 

July (FY17-19) 418,020 209,010 209,010 464 

August (FY17-19) 416,596 208,298 208,298 465 

September (FY17-19) 416,913 208,456 208,456 466 
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Table 6. Testing Data Metrics, Observations, and Predictor Count 
(Response Variable) 

Month Continue Service EAS NEAS Predictors 

October (FY20) 140,378 1,352 326 471 

November (FY20) 141,639 1,653 372 466 

December (FY20) 139,034 2,076 314 465 

January (FY20) 142,457 1,696 397 466 

February (FY20) 141,542 1,276 493 465 

March (FY20) 142,375 1,159 544 464 

April (FY20) 142,500 1,419 540 465 

May (FY20) 138,412 2,642 581 465 

June (FY20) 135,050 2,274 408 466 

July (FY20) 132,659 3,137 411 464 

August (FY20) 132,015 2,759 344 465 

September (FY20) 133,641 1,910 257 466 

 
Figure 5. Pre-SMOTE Response Variable (October FY17–19) 
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Figure 6. Post-SMOTE Response Variable (October FY17–19) 

3. M&RA Trailing Average Replication 

I recreate the current Base NEAS trailing average model in order to compare it to 

the ML techniques I develop. I average the historical Base NEAS attrition for FY17-19, 

monthly, and project that value for FY20 monthly Base NEAS attrition (J. Cruz, personal 

communication, August 23, 2022). The difference between the trailing average projection 

and the actual observed values makes up the accuracy of the model. Table 7 depicts this 

process. The specific trailing average approach that M&RA has employed has varied 

slightly depending on the staff’s preference but ultimately, it has revolved around this basic 

trailing average since 2008 (Orrick, 2008). In addition to employing this model, I also 

replicate this trailing average model on all training data to further lend credibility to how I 

define my response variable and build my model.  
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Table 7. Base NEAS Model Replication 

  Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 
FY17 NEAS-
Base 282 500 307 432 439 503 356 539 463 348 458 328 
FY18 NEAS-
Base 465 394 365 413 405 444 561 509 449 549 540 316 
FY19 NEAS-
Base 500 376 419 376 398 348 515 432 339 537 374 517 
3 Year Average 416 423 364 407 414 432 477 493 417 478 457 387 
                          
                          
  Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 
FY20 NEAS-
Base 509 368 413 316 481 533 625 610 653 498 465 377 

 

Variation between how I define Base NEAS and how current End Strength Planners 

define it does exist, but it is minimal and due in part to the changing nature of the USMC’s 

separation codes. Certain codes that are used in earlier instances of the data, are not seen 

in current data. This creates a difficult problem, one that I solve by cataloging separations 

according to the separations data table definitions, the Marine Corps Separations manual, 

and by consulting with subject matter experts within the Fleet Marine Force. A specific 

example of this is separation due to homosexual misconduct. This is not currently 

considered a separation offense but within certain times in my dataset, it is. Table 8 depicts 

the trailing averages pulled from M&RA and the trailing averages I compute from my 

training data. 

Table 8. FY20 NEAS M&RA and Testing Data Variation 

 Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep 
M&RA 
NEAS 
Data 

509 368 413 316 481 533 625 610 653 498 465 377 

Testing 
Data 
NEAS 

326 372 314 397 493 544 540 581 408 411 344 257 
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4. Managerial Relevance 

Statistician George Box is credited with the adage that all models are wrong, some 

are just useful. In order to be useful, end strength planning models have to meet certain 

success thresholds. Managerial relevance refers to the idea that a model can be realistically 

implemented by end strength planners. The complexity of data collection, computation, 

and interpretation must be considered as factors when determining this. For this thesis, 

managerial relevance is defined by the current Enlisted End Strength Planner’s process. If 

the currently employed processes can be replicated or improved within reasonable 

measures, managerial relevance is achieved. This supports the secondary research question.   

5. Prediction versus Causality 

The objective of this thesis is the prediction of Base NEAS attrition within the 

USMC enlisted population. Since the desired end state is predictive in nature, I do not 

attempt a causal interpretation of any predictor’s effect on Base NEAS attrition. I seek to 

develop the most accurate model possible and identify predictors that correlate 

significantly to the response variable, Base NEAS attrition. I use multiple individual 

characteristics as predictors with the only goal of increasing the likelihood of correct 

predictions. The specific methodologies I discuss in the follow-on paragraphs are chosen 

to support the desired predictive end state of the model. Additionally, interpretation of 

marginal effects of specific predictors are not always possible with certain ML techniques 

that I employ. 

6. Logistic Regression 

Broadly defined, logistic regressions also estimate a probability of an outcome that 

can be interpreted as a classification. The primary advantage of this model is that the fitted 

values, or predictions, are constrained between 0% and 100% (Lemeshow et al., 2013). 

Additionally, the non-constant partial effects that the model allows for make it more 

effective at predicting non-linear outcomes. This allows for the model to perform better at 

predicting individual differences between individual Marines. Figure 7 depicts the basic 

logistic regression formula (Lemeshow et al., 2013). 
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 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑦𝑦𝑖𝑖 = 𝑗𝑗) =  𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑋𝑋1𝑖𝑖+⋯+𝑏𝑏𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘

1+ 𝑒𝑒
𝑏𝑏0+𝑏𝑏1𝑋𝑋1𝑖𝑖+⋯+𝑏𝑏𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘

 

Figure 7. Logistic Regression Formula 

Multinomial logistic regression is identical to binary logistic regression but with a 

categorical response variable. The interpretation of the outcome in a multinomial logistic 

regression is relative to one of the levels, in the case of this thesis, the base level is set to 

continue service. The classification threshold for the multinomial logistic regression I 

employ is the greatest probability. This means that that the response variable class with the 

largest probability becomes the observation classification. Figure 8 depicts the multinomial 

logistic regression formula I employ (Lemeshow et al., 2013).  

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑦𝑦𝑖𝑖 = 𝑗𝑗) =  
𝑒𝑒𝑏𝑏0+𝑏𝑏1𝑋𝑋1𝑖𝑖+⋯+𝑏𝑏𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘

1 + 𝑒𝑒𝑏𝑏0+𝑏𝑏1𝑋𝑋1𝑖𝑖+⋯+𝑏𝑏𝑘𝑘𝑋𝑋𝑘𝑘𝑘𝑘
 

 

𝑗𝑗 =  �
0  𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
1  𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛         
2  𝑖𝑖𝑖𝑖 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁                          

 

Figure 8. Multinomial Logistic Regression Formula 

7. LASSO Machine Learning 

In this thesis, I also employ the LASSO ML technique (Tibshirani, 1996). This 

technique allows for a plethora of predictors to be added into the initial stages of model 

creation. The LASSO algorithm derives the most significant predictors to the desired 

outcome, in this case, Base NEAS attrition. The LASSO technique also helps to avoid 

incorrect correlations or overfitting of the predictors to the outcome by penalizing the 

addition of uncorrelated predictors (Tibshirani, 1996). I employ the LASSO technique with 

the primary goal of predictor selection for the multinomial logistic regression model. 
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8. Random Forrest Classifier  

The Random Forrest classifier is a supervised ML algorithm that operates using 

multiple decision trees. The algorithm compiles numerous and randomly selected subsets 

of the data, known as bagging, sampling with or without replacement, and then compiles a 

classification using decision trees (Breiman, 2001). The majority classification decision is 

then selected as the observation prediction. Random Forest classifiers have numerous 

benefits, including protection from overfitting, due to the random process associated with 

bagging, and relatively little required data preparation (Wright & Ziegler, 2015).  

Random Forrest classifier algorithms require hyperparametric tuning to maximize 

their accuracy. The primary parameters that can be tuned are the number of randomly 

drawn candidate variables (Mtry), the number of trees grown, and the minimum node size 

(MinN) (Probst et al., 2019). I optimize each model by systematically changing Mtry, 

which the literature shows is the most influential parameter in a Random Forest classifier 

(Probst et al., 2019). Table 9 depicts the optimized hyperparameters per model. 

Table 9. Optimized Hyperparameter Values 

Model Tree 
Count Mtry MinN Variable Importance 

Mode Split Rule 

October 500 350 5 Impurity Gini 
November 500 385 5 Impurity Gini 
December 500 385 5 Impurity Gini 
January 500 385 5 Impurity Gini 
February 500 165 5 Impurity Gini 
March 500 375 5 Impurity Gini 
April 500 385 5 Impurity Gini 
May 500 350 5 Impurity Gini 
June 500 375 5 Impurity Gini 
July 500 350 5 Impurity Gini 
August 500 325 5 Impurity Gini 
September 500 300 5 Impurity Gini 

 

Acquisition Research Program 
Department of Defense Management 
Naval Postgraduate School 

29



9. Test Train Split 

I employ a separate testing dataset using a separate year of data in order to ensure 

that models are not overfit to the training data. The training data consists of 75% of the 

total data and represents three monthly snapshots of the month being modeled using data 

from FY17–FY19, as shown in Figure 1. The testing data equates to 25% of the total data 

and it is a single snapshot of the month being modeled from FY20 data. This validation 

data represents completely new data for the model to be run against. These methods ensure 

that the reported metrics are a true representation of how each algorithm used will perform 

on new, real-world data.  

10. Feature Engineering 

To help overcome the lack of specific types of in-service data, I conduct feature 

engineering to create variables to attempt to deduce statistical significance that otherwise 

would go unnoticed (Patel, 2021). Example features that I engineer include time to EAS, 

change in education status (did a Marine receive more education while in service), and 

change in marital status during service. Creating categorical variables based upon 

perceived and calculated variance also assists in engineering statistically significant 

predictors. The step of feature engineering was not specifically noted in any of the reviewed 

literature but remains an important component as borne out by the results of this thesis.  

11. Supervised ML 

Supervised ML describes the framework of how a computer algorithm computes 

data to train a specified model. In this case, a supervised ML model is given the correct 

outcomes to train it (Marsland, 2009). In my application, this equates to providing the 

separation status of each Marine or row of data; either continue service, EAS, or Base 

NEAS. Both the logistic regression and Random Forest classier algorithms are considered 

supervised ML models. 

12. Evaluation Metrics 

I report several evaluation metrics to analyze the model results. The most relevant 

for my primary research question is the model’s deviation from the test data. I evaluate this 
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as the total number of Base NEAS predictions minus the number of actual Base NEAS 

observations, divided by the observed number of Base NEAS observations, all within the 

testing dataset. Figure 9 depicts this definition. I predict aggregate Base NEAS attrition 

monthly, and this simple metric is easily interpreted, evaluated, and understood. The output 

is understood as the percent difference, plus or minus, between the model and the testing 

data, with 0% representing a model no deviation, or perfect fit. This definition generates 

the most utility for Enlisted End Strength Planners at M&RA. I also report conventional 

metrics found in the confusion matrix, Receiver Operating Characteristic (ROC) curve, 

area under the ROC curve (AUC), precision and recall, and F1 score (Zheng, 2015). I report 

the model deviation of the currently employed M&RA trailing average technique using the 

same method outlined in Figure 9. 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 
 

Figure 9. NEAS Model Deviation 

13. High Performance Computing 

I employ the Naval Postgraduate School (NPS) supercomputer, Hamming, as my 

primary computing resource. Hamming is a Linux based, multi-node computing cluster 

that contains thousands of cores and terabytes of memory. The size of the data and 

computing complexity of the algorithms I use require these resources. In numerous 

instances, I employ over 500 gigabytes of high-performance computing (HPC) memory, 

far beyond the capacity of a normal personal computer. The size of the composited training 

and validation dataset requires significant memory allocation to clean and manipulate. The 

HPC also allows for a file batching process, enabling multiple R coding scripts to be run 

simultaneously. I leverage this capability to reduce computation time by simultaneously 

running all twelve Random Forest classifier and multinomial logistic regression models at 

once.  

Computing time varied greatly depending on the type of model being run. The finial 

series of Random Forest classifier models require between six and twelve hours to run. The 
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multinomial logistic regression models require between two and six hours. These finalized 

models had to be intentionally limited in scope to enable computation as initial runs using 

additional optimization techniques and algorithms take over seven days to compute. 

Further discussion on Hamming and other computing shortfalls is discussed in the 

limitations section of this thesis. 
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IV. RESULTS AND ANALYSIS 

The results and analysis chapter explores the outputs of the ML models and 

compares them against the currently employed trailing average Base NEAS models. This 

section also includes a discussion of the predictors that are found to be significant within 

each modeling technique. The two ML techniques are also compared against each other 

using the previously discussed accuracy metrics. The ML techniques are also evaluated 

against the currently employed modeling technique. The current modeling process cannot 

be evaluated using all the metrics used for the ML techniques as it does not employ 

classification at the individual level. 

A. RESULTS 

Table 10 depicts the results from the optimized Random Forest classifier models. 

The F1 score, and balanced accuracy employ an averaging approach that reports the 

aggregate results from each class of the response variable. The F1 score is computed using 

the harmonic mean of precision and recall (Zheng, 2015). The balanced accuracy is 

calculated by summing the sensitivity scores, true positives divided by true positives plus 

false negatives, and dividing them by the total number of response variable classes. All 

models report a high degree of overall accuracy. However, this is a poor metric for 

evaluation due to the imbalance of the majority class, continue service. The models perform 

exceptionally well at classifying continue service, and this skews the overall accuracy 

results. F1 score and balanced accuracy represent a better metric for comparison and 

interpretation. All twelve Random Forest classifier models perform in a generally uniform 

manner. Table 10 depicts the metrics for each model including the AUC broken down by 

the class of the response variable. These results are also consistent with the F1 score and 

balanced accuracy metrics. Generally, the models do an excellent job at correctly 

classifying continue service, and EAS. The models have a more difficult time at correctly 

predicting Base NEAS returning the lowest scores of all the classes. This is supported by 

the confusion matrix discussed later in this section. 
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Table 10. Random Forest Classifier Evaluation Results 

Model Overall 
Accuracy 

Balanced 
Accuracy 

F1 
Score 

AUC: 
Continue 
Service 

AUC: 
EAS 

AUC: 
NEAS 

October 0.995    0.804    0.782    0.972 0.749 0.501 
November 0.996    0.786     0.789    0.972 0.717 0.559 
December 0.996    0.790    0.793    0.970 0.735 0.533 
January 0.996    0.810    0.816    0.973 0.754 0.510 
February 0.995    0.793    0.794    0.962 0.735 0.515 
March 0.992    0.784    0.744    0.953 0.732 0.519 
April 0.991    0.793    0.744    0.967 0.732 0.526 
May 0.993    0.798    0.788    0.972 0.732 0.527 
June 0.995    0.809    0.802    0.979 0.753 0.498 
July 0.993    0.822    0.819    0.975 0.772 0.541 
August 0.995    0.793    0.796    0.978 0.723 0.551 
September 0.994    0.807    0.783    0.972 0.744 0.502 

 

Table 11 depicts the results from the multinomial logistic regression models. 

Overall accuracy is again a poor metric for evaluation due to the class imbalance resident 

within the response variable. F1 score and balanced accuracy is defined identically as the 

Random Forest models. AUC is also reported for each class of the response variable. The 

twelve multinomial logistic models also perform in a uniform manner.  

Table 11. Multinomial Logistic Regression Evaluation Results 

Model Overall 
Accuracy 

Balanced 
Accuracy F1 Score 

AUC: 
Continue 
Service 

AUC: 
EAS 

AUC: 
NEAS 

October 0.989 0.599 0.616 0.757 0.681 0.504 
November 0.989 0.534 0.602 0.702 0.615 0.454 
December 0.989 0.652 0.691 0.827 0.655 0.574 
January 0.990 0.634 0.690 0.750 0.713 0.437 
February 0.990 0.620 0.663 0.792 0.662 0.548 
March 0.990 0.591 0.630 0.787 0.617 0.613 
April 0.984 0.480 0.510 0.596 0.640 0.568 
May 0.985 0.599 0.648 0.807 0.613 0.637 
June 0.985 0.601 0.626 0.820 0.617 0.650 
July 0.983 0.654 0.699 0.826 0.673 0.553 
August 0.985 0.644 0.671 0.852 0.628 0.644 
September 0.987 0.668 0.671 0.790 0.734 0.434 
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The metrics reported in Table 10 and Table 11 are not the primary interest of this 

thesis. They do not completely capture the accuracy of the aggregate Base NEAS 

prediction results. However, the Random Forest classifier models do consistently 

outperform the multinomial logistic regression models at individual classification using the 

comparison metrics of both the F1 score and balanced accuracy.  

Both ML techniques report the output of each predictive model in the form of a 

multiclassification confusion matrix. Figure 10 and Figure 11 report the confusion matrix 

for the Random Forest classifier and multinomial logistic regression October models. The 

rows in Figure 10 and Figure 11 represent the model predictions, and the columns represent 

the truth data, or actual observations of each classification type. The values in each square 

indicate the proportion of the overall classification, the count of the classification, and the 

accuracy of the count in relation to the predicted and observed values. The summation of 

predicted and observed values is found in the farthest right column and in the bottom row. 

The summation of predicted Base NEAS compared to the summation of observed Base 

NEAS is the primary method I use to evaluate the overall performance of the models. It 

best represents the Base NEAS aggregate prediction desired by end strength planners. The 

Random Forest classifier model in Figure 10 predicts a Base NEAS attrition total of 322 

comparted to an actual Base NEAS attrition of 326. Likewise, the multinomial logistic 

regression model in Figure 11 predicts Base NEAS attrition of 313 compared to the 

observed value of 326. 
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Figure 10. Random Forest Classifier October Model Confusion Matrix 
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Figure 11. Multinomial Logistic Regression October Model Confusion Matrix 

Figure 12 and Figure 13 report the ROC and AUC for the Random Forest classifier 

and multinomial logistic October models. Each specific class of the response variable has 

its own ROC and AUC reported. These curves indicate that both ML modeling techniques 

perform better at predicting continue service, and EAS than they do at predicting Base 

NEAS. 
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Figure 12. ROC / AUC Random Forest Classifier October Model 
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Figure 13. ROC / AUC Multinomial Logistic Regression October Model 
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B. MODEL COMPARISON 

Model comparison is accomplished by calculating the difference between the total 

predicted value of Base NEAS and the actual observed values of Base NEAS attrition for 

each model. This model deviation calculation is conducted for each monthly model and 

plotted for the entirety of FY20. The summation of FY20 predicted values compared to the 

summation of FY20 actual values is used to describe the effectiveness of the entirety of all 

twelve models. The distance between the prediction and actual lines represents the error 

between the model’s prediction of Base NEAS and the actual observed values. This applies 

across all models run.  

These evaluation methods facilitate the best evaluation of aggregated monthly and 

annual Base NEAS prediction. Additionally, the cumulative model error is compounded 

and reported at each monthly model. This metric is useful because it indicates the attrition 

error up to that specific point in time, for the given FY. For example, Figure 14 shows that 

as of December 2020, the FY20 series of models has underestimated Base NEAS attrition 

by 7%. This gives manpower planners the ability to understand and adjust their retention 

and accession numbers accordingly. 

Figure 14 depicts the trailing average models currently employed by M&RA 

planners. The current modeling process has difficulty responding to various shocks to the 

manpower system as evidenced by the divergence seen between February to July. The 

model predictions generally exhibit a smoothed horizontal trend. This is expected as the 

averaging technique removes major outliers and spikes. The cumulative error of the model 

generally trends downward, indicated that the aggregate effect of the model is to 

underestimate Base NEAS attrition. 
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Figure 14. M&RA Trailing Average Base NEAS Models FY20 

Figure 15 depicts the three-year trailing average model run on the training data. The 

results from these models are consistent with the results seen in the M&RA trailing average 

models in Figure 14. This provides further evidence that although I am not able to replicate 

the separations data to an exact figure, the underlying process and results are consistent 

and correct. The trailing average model behaves as expected providing a relatively smooth 

and linear prediction of Base NEAS. It suffers from the same inability to respond to shocks 

or spikes in the manpower system and tends to underestimate Base NEAS attrition. 
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Figure 15. Training Data Trailing Average Base NEAS Models FY20 

Figure 16 depicts the results from the multinomial logistic regression models. The 

models perform poorly and consistently underestimates aggregate Base NEAS attrition. 

The models may suffer from a smaller predictor pool, due to the employment of the LASSO 

technique, required for timely computation. Additionally, this regression technique has 

limited ability to alter the algorithms parameters making it difficult to find an optimum. 
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Figure 16. Multinomial Logistic Regression Base NEAS Models FY20 

Figure 17 displays the Random Forest classifier models. These models consistently 

track the validation data and demonstrate an improved ability to accurately account for 

manpower shocks or spikes in the system. This is specifically seen in the February to July 

models and in contrast to the other models. The Random Forest technique is particularly 

suited to adjust for differences at the individual Marine level. The cumulative error remains 

relatively stable throughout FY20. The models still consistently underestimate Base NEAS 

attrition, however, by a reduced margin.  
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Figure 17. Random Forest Classifier Base NEAS Models FY20 

Table 12 depicts the comparison results, by monthly model, of each technique I 

employ. It reports the model deviation calculations in terms of the percent, plus or minus, 

difference between each model’s predictions and the actual Base NEAS observations. For 

example, for the month of October, model projections using the M&RA Monthly Trailing 

Average resulted in underestimated NEAS attrition by 18%. Likewise, the Random Forest 

Classifier model for the same month underestimates Base NEAS attrition by 1%. The 

results indicate that the Random Forest classifier models generally outperform the other 

monthly models that are employed. The Random Forest classifier models attain 

significantly higher annual Base NEAS prediction accuracy achieving an underestimation 

of 4% on the entire FY20 validation data. This is compared to the current M&RA modeling 

process which achieves an underestimation of annual Base NEAS attrition by 12%. 

 

 

Acquisition Research Program 
Department of Defense Management 
Naval Postgraduate School 

44



Table 12. Base NEAS Models Deviation Comparison 

Modeling Technique Oct Nov Dec Jan Feb Mar 
M&RA Monthly Trailing Average -18% 15% -12% 29% -14% -19% 
Multinomial Logistic Regression  -4% -56% -44% -28% -49% -60% 
Training Data Trailing Average 12% -17% 4% -14% -23% -25% 
Random Forest Classifier -1% -10% -11% -7% 0% 0% 

 
Modeling Technique Apr May Jun Jul Aug Sep 

M&RA Monthly Trailing Average -24% -19% -36% -4% -2% 3% 
Multinomial Logistic Regression -20% -66% -65% -51% -55% 9% 
Training Data Trailing Average -24% -40% -5% -9% -5% 53% 
Random Forest Classifier -6% 3% 0% -11% -8% 4% 

 
Modeling Technique Cumulative Annual Totals 

M&RA Monthly Trailing Average -12% 
Multinomial Logistic Regression -44% 
Training Data Trailing Average -12% 
Random Forest Classifier -4% 

 

C. PREDICTORS 

The multinomial logistic regression models require a condensed pool of predictor 

variables for efficient computation. I employ the LASSO technique for each monthly 

model to select the most significant predictors associated with the response variable. 

LASSO is applied on the training dataset. Figure 18 reports top fifty LASSO selected 

predictors for the multinomial logistic regression October model. If the selected variable is 

categorical, the LASSO algorithm I use reports the specific category of that variable that 

is selected. I use the entire categorical variable as I am not able to remove the less predictive 

individual categories. I then estimate the multinomial logistic regression on the set of 

predictor variables that were optimally selected using the LASSO technique. The color of 

the bars in Figure 18 represents the direction of the relationship between the predictor and 

the response variable. Blue indicates a positive directional relationship and red represents 

a negative one. For example, the red bar for years of service indicates that the longer a 

Marine has served, the more likely that Marine is to NEAS. 
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Figure 18. October Model LASSO Predictor Variables 

Meanwhile, the Random Forest classifier variable importance plot indicates the 

most significant predictor variables for the response variable. Figure 19 depicts the top fifty 

predictor variables associated with the October Random Forest classifier model. Random 

Forest models do not report the direction of the relationship between the predictor and the 
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response variable, nor can they report an interpretable predictor coefficient. In both  

Figure 18 and Figure 19 all date predictors represent the count of days between the date 

predictor and the sequence number, or month, under observation. 

 
Figure 19. October Model Random Forest Variable Importance Plot 

Each monthly model within the Random Forest classifier has a unique variable 

importance plot. Each model within the multinomial logistic regression also possesses a 
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unique LASSO selected predictor variable set. I observe substantial overlap in the set of 

predictors between all of the models from both techniques. Figure 20 reports the predictor 

overlap for the Random Forest classifier monthly models. Figure 20 shows predictors that 

occurred eight or more times across all twelve models. The Average Predictor Rank 

column represents the summation of the rank order within each model, divided by the total 

number of models, with the lowest score equating to the highest rank. It represents the most 

significant predictor in the training dataset, across all twelve Random Forest classifier 

models. For example, the predictor expiration_of_active_service_ occurred in all twelve 

models and has an average rank of 1.5, the most significant predictor in the family of 

Random Forest classifier models. The Count Of Occurrence column indicates the number 

of times that the specified predictor occurs in total over the twelve different models. The 

variables timetoeas, miss_timetoeas, and conus are all examples of feature engineered 

predictors. 
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Figure 20. Random Forest Classifier Predictor Overlap  

The Random Forest classifier models do also contain many unique predictors 

specific to each monthly model. These models exhibit a non-parametric relationship. This 

supports the premise that each monthly model be trained independently on past data from 

that same month, not on aggregated yearly data. Figure 21 depicts the relationship between 

each model and its predictors.  

Predictor Count Of Occurance Average Predictor Rank
expiration_of_active_service_ 12 1.5

prom_restricted_term_dt_ 12 2.2
timetoeas 12 3.5

months_active_duty 12 4.9
prom_restricted_status_cd 12 6.3
conduct_average_service 12 6.5

proficiency_average_service 12 8.8
pland_reenl_ext_ret_flag_v2 12 9.0

exp_of_current_contract_ 12 10.9
armed_forces_act_du_base_date_ 12 11.3

pay_entry_base_date_ 12 11.6
duty_status_code_v2 12 13.3

pro_con_service 12 14.7
company_code_v2 12 17.3

mcmap_tanbelt 12 17.4
miss_timetoeas 12 18.2

relm_recom_code_v2 12 20.8
rank 12 20.9

geographic_location_began_dt_ 12 25.8
years_of_service 12 33.1

i_program_element_number_v2 11 24.9
conus 11 26.2

i_planned_reenl_ext_retire_date_ 11 28.8
primary_mos_assignment_dt_ 11 30.0

mos_cat_v2 10 21.5
date_enlistment_or_acceptance_ 10 22.3

prior_enl_acceptance_date_ 10 28.1
mental_group_ 10 28.7

i_prior_enl_acceptance_date_ 9 19.7
i_career_status_flag_v2 9 25.8

comd_mon_com_code_v2 9 29.9
conduct_average_grade 8 17.8

planned_reenl_ext_retire_date_ 8 21.1
to_date 8 21.3
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𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑓𝑓𝑚𝑚(𝑥𝑥) 

𝑚𝑚 = 𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ 

𝑥𝑥 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

Figure 21. Non-parametric Modeling Relationship 

D. LIMITATIONS 

Several limitations are present within my research. The first limitation is the size of 

the training dataset that I employ. The data represents three years of data for a given month. 

ML techniques are equipped to operate on much larger datasets. I am unable to employ the 

full ten years of data for this research due to computing power issues.  

An additional limitation is the inability to employ a hyperparametric tuning 

algorithm to find the optimal model parameters. I use a manual method of finding the 

optimal value of one hyperparameter, Mtry, because of the computing limitations of the 

HPC and software packages used. More advanced k-fold cross validation or grid search 

methods find the optimal values for all algorithm parameters. The multinomial logistic 

regression models are also employed on training data that is highly imbalanced. The 

SMOTE technique is not employed on the training data for the multinomial logistic 

regression models. 

General computing power provided by the HPC represents another limitation. The 

memory required to load and clean entire datasets, preprocess data, and run models, 

overwhelmed the HPC. Because of this, I was limited in the size and scope of the modeling 

and data used. 

The inability to exactly replicate the M&RA Base NEAS attrition numbers is 

another limitation. This limitation is not of material concern to the results of this thesis as 

I am able to overcome it by employing an identical process on the training data. 

Data collection, storage, and retrieval remains a constant theme through the related 

USMC manpower literature (Orrick, 2008). The data I obtained from TFDW is incomplete. 

Numerous additional data tables that were requested were not able to be found. 
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Additionally, certain data tables were incomplete and had to be discarded. The USMC 

manpower data systems and infrastructure did not provide smooth facilitation of the ML 

modeling techniques that I employ. 
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V. CONCLUSION AND RECOMMENDATIONS 

Current Base NEAS modeling uses aggregate data and trailing averages to predict 

attrition. This approach is simple, efficient, and generally accurate. However, it fails to 

account for various shocks to the system and relies on constant composition and disposition 

of the force. My modeling approach seeks to classify Base NEAS attrition at both the 

individual and aggregate level using modern ML techniques. This approach is significantly 

more compute intensive but can result in a more accurate prediction of Base NEAS 

attrition. 

A. SUMMARY  

1. Primary Research Questions 

a. Can a manpower model be developed using ML that predicts monthly 
Base NEAS attrition using individual Marine data contained in existing 
USMC personnel databases? 

b. Are ML modeling approaches using individual data better at predicting 
aggregate Base NEAS attrition compared to current models? 

Manpower data and attrition classification lends itself to ML, specifically Random 

Forest and logistic regression models. I find that the Radom Forest classifier series of 

models outperforms all other models that I employ and that are currently used by USMC 

End Strength Planners. The construction of an ML model that predicts Base NEAS attrition 

using existing data is possible. The results of these ML models, specifically the Random 

Forest classifier, are generally better at predicting Base NEAS Attrition than current 

processes. The ability of the ML algorithms to identify individual attributes at the Marine 

level give them the ability to more accurately account for the various shocks to the 

manpower system. 
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2. Secondary Research Questions 

a. Does using disaggregated data and an ML model better account for 
various shocks to the USMC manpower system? 

The use of individual data and ML techniques does help to ensure accurate 

predictions when dealing with various shocks to the USMC enlisted end strength model. 

The results of the Random Forest Classifier models from February through July indicate 

this. Consistent with prior literature, disaggregated data and individual attributes can be 

used as predictors to improve model accuracy.   

b. Is the predictive ML model developed feasible for Marine planners to 
implement given their current systems, software, and programs? 

The feasibility of implementing ML models for USMC End Strength Planners is 

not able to be deduced from this research. The opportunity costs associated with the 

development and implementation of ML modeling may or may not be feasible given the 

time, financial, and data systems constraints currently placed on Marine planners. 

Additionally, the structure of the current databases and data systems do not facilitate easy 

employment of the techniques employed in this thesis. 

B. RECOMMENDATIONS 

The results of this thesis serve as a proof of concept and indicate that using ML to 

modernize manpower models can yield better predictive results. Additionally, even though 

the individual correct classification of Base NEAS hovered around 45%, value can be 

obtained from identifying even half of these Marines at the individual level. The institution 

should focus on three areas. First, it should optimize its data systems and data infrastructure 

to better facilitate the use of ML. Second, it should continue to look for opportunities to 

employ ML in areas that currently use legacy systems or techniques. It should also explore 

using ML techniques in conjunction with legacy modeling in a hybrid fashion. Finally, the 

institution should continue to strive to collect better data that can help build more accurate 

future ML models. 
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C. FUTURE RESEARCH 

Areas for future research include the following: 

1. Employment of larger, aggregated training dataset and alternate methods 

to define the response variable. 

2. Employment of alternate ML classification techniques. 

3. Development of additional in-service data to be collected to better 

facilitate attrition at the individual Marine level.  

4. Interpretation of the marginal effects associated with significant predictors 

found within this thesis to help inform policy affecting attrition. 

5. Explore opportunities to employ ML and legacy systems and techniques in 

a hybrid fashion that meets managerial relevance. 
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APPENDIX 

A. SUMMARY STATISTICS OCTOBER MODEL TRAINING DATA 

 

 Name: oct_model     
 Number of Rows rows 424886   
 Number of Columns columns 472   
 _______________________     
 Type frequency:    
 Date 1    
 factor 68    
 numeric 403    
 _______________________     
 Group Variables None    
      
 Variable type: Date   
 skim_variable n_missing min max  
1 filedate 0 10/31/2016 10/31/2018  
  n_unique    
  3    
      
 Variable type:  Factor   
 skim_variable n_missing ordered n_unique  
1 ecc_eas_flag 0 FALSE 7  
2 reserve_reporting_unit_code 0 FALSE 155  
3 career_status_bonus_elect_cd 0 FALSE 2  
4 component_code_v2 0 FALSE 4  
5 res_component_code_v2 0 FALSE 7  
6 res_record_status_code_v2 0 FALSE 3  
7 civ_educ_graduation_cd_v2 0 FALSE 3  
8 civ_ed_major_subject_cd_v2 0 FALSE 252  
9 relm_recom_code_v2 0 FALSE 2  
10 dod_trn_cat_pay_group_v2 0 FALSE 12  
11 grade_select_v2 0 FALSE 14  
12 religion_v2 0 FALSE 271  
13 home_of_rec_st_cntry_v2 0 FALSE 87  
14 comd_mon_com_code_v2 0 FALSE 298  
15 service_spouse_code_v2 0 FALSE 2  
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16 bonus_prgm_enl_for_cd_v2 0 FALSE 2  
17 res_mon_command_code_v2 0 FALSE 175  
18 mobilization_status_v2 0 FALSE 5  
19 crisis_remark_uniq_id_v2 0 FALSE 4  
20 crisis_remk_code_desc_tx_v2 0 FALSE 4  
21 duty_status_code_v2 0 FALSE 31  
22 program_element_number_v2 0 FALSE 241  
23 contract_legal_agrment_v2 0 FALSE 1  
24 pland_reenl_ext_ret_flag_v2 0 FALSE 15  
25 addl_first_mos_code 0 FALSE 2  
26 addl_second_mos_code 0 FALSE 2  
27 addl_temp_reporting_unit_code 0 FALSE 190  
28 temporary_add_duty_excess_flag 0 FALSE 6  
29 fap_reporting_unit_code 0 FALSE 2  
30 operation_reporting_unit_code 0 FALSE 65  
31 prom_restricted_status_cd 0 FALSE 7  
32 plead_city_cd 0 FALSE 10  
33 plead_county_cd 0 FALSE 10  
34 plead_state_country_cd 0 FALSE 10  
35 plead_zip_cd 0 FALSE 11  
36 reenlistment_bonus_type_v2 0 FALSE 3  
37 custody_status_code_v2 0 FALSE 5  
38 separation_incentive_code_v2 0 FALSE 3  
39 mobiliz_mont_cmd_cd_v2 0 FALSE 42  
40 officer_candidate_cd_v2 0 FALSE 2  
41 rank 0 FALSE 10  
42 pres_grade_spec_rank_code_v2 0 FALSE 9  
43 additional_temporary_mcc_v2 0 FALSE 200  
44 citzen_cntry_orig_geo_code_v2 0 FALSE 244  
45 place_of_birth_v2 0 FALSE 247  
46 separation_document_type_v2 0 FALSE 10  
47 fap_monitored_com_cd_v2 0 FALSE 2  
48 company_code_v2 0 FALSE 36  
49 cohesion_future_mc_code_v2 0 FALSE 63  
50 magtf_designator_v2 0 FALSE 77  
51 fap_company_code_v2 0 FALSE 24  
52 fap_platoon_code_v2 0 FALSE 229  
53 operation_identifier_v2 0 FALSE 48  
54 operation_montd_cmd_code_v2 0 FALSE 69  
55 tad_company_code_v2 0 FALSE 36  
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56 education_tier_at_contract 0 FALSE 4  
57 mos_cat_v2 0 FALSE 46  
58 activity_description_ 0 FALSE 7  
59 asvab_version_ 0 FALSE 92  
60 citizenship_desc_ 0 FALSE 2  
61 college_major_ 0 FALSE 219  
62 current_state_code_ 0 FALSE 81  
63 district_ 0 FALSE 7  
64 education_code_at_contract_ 0 FALSE 81  
65 hor_state_code_ 0 FALSE 81  
66 medical_disposition_ 0 FALSE 3  
67 source_code_ 0 FALSE 22  
68 outcome 0 FALSE 3  
      
── Variable type: Numeric   
 skim_variable n_missing mean sd hist 
1 education 0 1.21E+01 1.24 ▁▁▁▇▁ 
2 age 0 2.43E+01 5.76 ▇▂▁▁▁ 
3 months_active_duty 0 5.93E+01 63.2 ▇▁▁▁▁ 
4 current_enlistment_length 0 4.20E+00 0.559 ▁▁▇▂▁ 
5 first_extension_length 0 1.53E+00 5.35 ▇▁▁▁▁ 
6 current_extension_number 0 1.31E-01 0.389 ▇▁▁▁▁ 
7 current_extension_length 0 1.55E+00 5.35 ▇▁▁▁▁ 
8 home_of_record_county 0 9.41E+01 114 ▇▁▁▁▁ 
9 number_of_dependents 0 7.57E-01 1.21 ▇▁▁▁▁ 
10 years_of_service 0 4.60E+00 5.36 ▇▁▁▁▁ 
11 total_satisfactory_year 0 1.05E-01 0.896 ▇▁▁▁▁ 
12 maternity_leave_bal_qy 0 1.70E-03 0.0412 ▇▁▁▁▁ 
13 billet_mos_v2 0 2.58E+02 220 ▇▅▂▂▂ 
14 self_education_bonus_points 0 1.45E+01 32.7 ▇▁▁▁▁ 
15 cmd_recruiter_bonus_points 0 2.64E-02 1.05 ▇▁▁▁▁ 
16 not_recommended_for_promotion 0 4.43E-02 0.206 ▇▁▁▁▁ 
17 conduct_average_grade 0 2.19E+00 2.17 ▇▁▁▁▇ 
18 proficiency_average_grade 0 2.20E+00 2.17 ▇▁▁▁▇ 
19 conduct_average_service 0 4.26E+00 0.675 ▁▁▁▁▇ 
20 proficiency_average_service 0 4.27E+00 0.675 ▁▁▁▁▇ 
21 special_duty_bonus_points_qy 0 6.66E-01 8.13 ▇▁▁▁▁ 
22 retired_category_code 0 1.20E-04 0.019 ▇▁▁▁▁ 
23 active_service_length 0 1.51E+01 22.7 ▇▁▃▁▁ 
24 total_length_all_extensions 0 1.69E+00 5.83 ▇▁▁▁▁ 

Acquisition Research Program 
Department of Defense Management 
Naval Postgraduate School 

59



25 total_number_of_extensions 0 1.32E-01 0.39 ▇▁▁▁▁ 
26 responsibility_center_number 0 0 0 ▁▁▇▁▁ 
27 composite_score 0 4.11E+02 693 ▇▁▁▃▁ 
28 first_depl_ttl_day_waiver_qy 0 3.92E+01 66.8 ▇▁▁▁▁ 
29 prospectiv_off_srce_cd_v2 0 3.39E-04 0.0184 ▇▁▁▁▁ 
30 selective_relm_bonus_zone_v2 0 4.95E-01 1.08 ▇▁▁▁▁ 
31 selres_trans_prgm_code_v2 0 8.47E-05 0.0159 ▇▁▁▁▁ 
32 career_status_flag_v2 0 6.28E-01 0.93 ▇▁▁▃▁ 
33 cohesion_number_id_v2 0 2.12E-05 0.00797 ▇▁▁▁▁ 
34 flight_status_identifier_v2 0 1.30E-02 0.113 ▇▁▁▁▁ 
35 incurred_obligd_service_cd_v2 0 0 0 ▁▁▇▁▁ 
36 natl_call_srv_waiver_code_v2 0 1.41E-05 0.00651 ▇▁▁▁▁ 
37 home_of_selection_flg_v2 0 2.38E-03 0.0487 ▇▁▁▁▁ 
38 final_payment_flg_v2 0 0 0 ▁▁▇▁▁ 
39 mplp_caregiver_cd_v2 0 0 0 ▁▁▇▁▁ 
40 apc_date 0 -4.25E+01 108 ▁▇▁▁▁ 
41 received_date 0 -3.88E+01 104 ▁▇▁▁▁ 
42 from_date 0 5.41E+01 112 ▇▁▁▁▁ 
43 to_date 0 -2.47E+01 91.2 ▁▇▁▁▁ 
44 avg_this_rpt 0 1.21E+00 1.76 ▇▁▁▁▁ 
45 relval_at_proc 0 1.09E+04 31091 ▇▁▁▁▁ 
46 relval_cum 0 7.95E+03 27013 ▇▁▁▁▁ 
47 uppercategory 0 1.10E+01 18.8 ▇▂▁▁▁ 
48 withcategory 0 9.38E+00 14 ▇▃▁▁▁ 
49 belowcategory 0 1.27E+01 20.6 ▇▂▁▁▁ 
50 num_fitrep 0 3.74E+00 6.3 ▇▁▁▁▁ 
51 months_fitrep 0 2.59E+00 4.15 ▇▂▁▁▁ 
52 adverse_fitrep 0 9.99E-03 0.0995 ▇▁▁▁▁ 
53 commendatory_fitrep 0 1.16E-01 0.321 ▇▁▁▁▁ 
54 rec_4_promote 0 2.68E-01 0.443 ▇▁▁▁▃ 
55 sat_score 0 5.31E+00 78.1 ▇▁▁▁▁ 
56 act_score 0 2.45E-01 2.4 ▇▁▁▁▁ 
57 afqt_score 0 5.92E+01 21.3 ▁▃▇▇▅ 
58 dlab_score 0 2.03E+02 128867 ▇▁▁▁▁ 
59 el 0 1.04E+02 24.6 ▁▁▇▁▁ 
60 gt 0 1.03E+02 24.5 ▁▇▁▁▁ 
61 ist_pull_ups 0 1.05E+01 7.64 ▇▁▁▁▁ 
62 term_of_enlistment 0 4.17E+00 1.01 ▁▁▁▇▃ 
63 qsn_bonus_amount 0 1.18E+04 2471 ▁▁▁▇▁ 
64 phys_fit_score_qy 0 2.26E+02 77.7 ▁▁▁▃▇ 
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65 phys_fit_pull_up_scr_qy 0 1.66E+01 10.8 ▇▅▁▁▁ 
66 phys_fit_crunch_scr_qy 0 9.76E+01 28.9 ▁▁▇▁▁ 
67 phys_fit_run_scr_tm 0 2.12E+03 662 ▁▁▇▃▁ 
68 phys_fit_push_up_scr_qy 0 1.26E+00 8.25 ▇▁▁▁▁ 
69 phys_fit_rowing_scr_tm 0 3.29E+00 85.5 ▇▁▁▁▁ 
70 pft_third_class 0 7.91E-02 0.27 ▇▁▁▁▁ 
71 pft_second_class 0 2.14E-01 0.41 ▇▁▁▁▂ 
72 pft_first_class 0 6.63E-01 0.473 ▅▁▁▁▇ 
73 award_unit 0 3.68E-02 0.19 ▇▁▁▁▁ 
74 award_service 0 9.03E-01 0.401 ▇▁▁▁▁ 
75 award_personal 0 7.03E-02 0.257 ▇▁▁▁▁ 
76 legal_act_gcm 0 9.77E-04 0.0312 ▇▁▁▁▁ 
77 legal_act_njp 0 6.14E-02 0.24 ▇▁▁▁▁ 
78 legal_act_scm 0 8.00E-04 0.0283 ▇▁▁▁▁ 
79 legal_act_spcm 0 4.78E-04 0.0219 ▇▁▁▁▁ 
80 mcmap_instructor 0 3.47E-02 0.183 ▇▁▁▁▁ 
81 mcmap_above_blackbelt 0 1.08E-03 0.0328 ▇▁▁▁▁ 
82 mcmap_blackbelt 0 1.03E-01 0.304 ▇▁▁▁▁ 
83 mcmap_brownbelt 0 1.04E-01 0.306 ▇▁▁▁▁ 
84 mcmap_greenbelt 0 1.96E-01 0.397 ▇▁▁▁▂ 
85 mcmap_graybelt 0 1.93E-01 0.394 ▇▁▁▁▂ 
86 mcmap_tanbelt 0 2.92E-01 0.455 ▇▁▁▁▃ 
87 mcmap_no_belt 0 7.96E-03 0.0888 ▇▁▁▁▁ 
88 mcmap_revoke 0 2.74E-03 0.0523 ▇▁▁▁▁ 
89 present_grade_effective_date_ 0 4.62E+02 497 ▇▁▁▁▁ 
90 pay_entry_base_date_ 0 1.84E+03 1954 ▇▁▁▁▁ 
91 extension_enlist_effect_date_ 0 5.18E+02 1750 ▇▁▁▁▁ 
92 armed_forces_act_du_base_date_ 0 1.82E+03 1924 ▇▁▁▁▁ 
93 retirement_date_ 0 1.81E-01 30.1 ▇▁▁▁▁ 
94 initial_active_duty_date_ 0 6.04E+01 555 ▇▁▁▁▁ 
95 date_joined_smcr_ 0 4.31E+01 478 ▇▁▁▁▁ 
96 date_enlistment_or_acceptance_ 0 8.19E+02 479 ▇▁▁▁▁ 
97 date_of_birth_ 0 9.05E+03 2102 ▇▂▁▁▁ 
98 prior_contract_exp_date_ 0 8.29E+00 61.4 ▁▇▁▁▁ 
99 accession_date_ 0 1.33E+03 1309 ▇▁▁▁▁ 
100 current_tour_begin_date_ 0 5.81E+02 551 ▇▁▁▁▁ 
101 present_rank_date_ 0 4.63E+02 498 ▇▁▁▁▁ 
102 planned_reenl_ext_retire_date_ 0 -1.86E+00 41.1 ▇▁▁▁▁ 
103 dep_location_begin_date_ 0 2.85E+02 597 ▇▁▁▁▁ 
104 present_unit_joined_date_ 0 4.96E+02 444 ▇▁▁▁▁ 
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105 strength_cat_effective_date_ 0 2.82E+02 284 ▇▁▁▁▁ 
106 date_initial_entry_reserve_ 0 7.62E+01 633 ▇▁▁▁▁ 
107 service_spouse_effective_date_ 0 7.84E+01 424 ▇▁▁▁▁ 
108 selected_grade_date_ 0 -1.09E-02 3.56 ▇▁▁▁▁ 
109 special_duty_bonus_date_ 0 -3.93E+00 53.2 ▁▁▁▁▇ 
110 intended_transfer_date_ 0 -3.32E+01 154 ▁▁▇▁▁ 
111 drop_discharge_unit_date_ 0 5.98E+01 545 ▇▁▁▁▁ 
112 anniversary_date_ 0 4.96E+01 478 ▇▁▁▁▁ 
113 officer_candidate_eff_dt_ 0 4.16E-01 48.3 ▇▁▁▁▁ 
114 prior_enl_acceptance_date_ 0 7.09E+02 1109 ▇▂▁▁▁ 
115 permanent_rank_date_ 0 4.63E+02 498 ▇▁▁▁▁ 
116 good_conduct_medal_date_ 0 5.01E+02 313 ▇▁▁▁▁ 
117 deployed_calculation_date_ 0 3.98E+00 2.83 ▇▁▁▁▁ 
118 flight_status_date_ 0 2.63E+01 274 ▇▁▁▁▁ 
119 natl_call_service_waiver_date_ 0 2.17E-02 10 ▇▁▁▁▁ 
120 operation_effective_date_ 0 7.71E+00 50.2 ▇▁▁▁▁ 
121 asvab_date_ 0 2.09E+03 1913 ▇▃▁▁▁ 
122 civ_educ_left_school_dt_1_ 0 2.15E+03 1762 ▇▆▁▁▁ 
123 crisis_participation_begin_dt_ 0 3.41E+00 22.2 ▇▁▁▁▁ 
124 primary_mos_assignment_dt_ 0 1.19E+03 1322 ▇▂▁▁▁ 
125 geographic_location_began_dt_ 0 6.12E+02 577 ▇▁▁▁▁ 
126 career_status_bonus_elect_dt_ 0 1.19E+02 539 ▇▁▁▁▁ 
127 maternity_leave_elig_dt_ 0 2.88E-01 8.17 ▇▁▁▁▁ 
128 addl_first_mos_assignment_dt_ 0 5.67E+02 1274 ▇▁▁▁▁ 
129 addl_second_mos_assignment_dt_ 0 2.37E+02 851 ▇▁▁▁▁ 
130 cohesion_proj_train_compl_dt_ 0 7.66E+02 1355 ▇▁▁▁▁ 
131 comp_score_computation_dt_ 0 8.13E+02 1613 ▇▁▁▁▁ 
132 prom_restricted_term_dt_ 0 1.16E+02 609 ▇▁▁▁▁ 
133 law_enforce_ci_id_dt_ 0 1.15E+01 129 ▇▁▁▁▁ 
134 final_payment_flg_dt_ 0 0 0 ▁▁▇▁▁ 
135 mplp_leave_elig_dt_ 0 0 0 ▁▁▇▁▁ 
136 exp_of_current_contract_ 0 -7.48E+02 440 ▇▂▁▁▁ 
137 expiration_of_active_service_ 0 -7.76E+02 430 ▇▂▁▁▁ 
138 reserve_exp_current_contract_ 0 7.07E-01 176 ▁▇▁▁▁ 
139 expiration_obligated_service_ 0 -8.91E+02 1951 ▇▁▁▁▁ 
140 sda1 0 9.00E-02 0.286 ▇▁▁▁▁ 
141 sda2 0 2.72E-02 0.163 ▇▁▁▁▁ 
142 sda_all 0 1.15E-01 0.319 ▇▁▁▁▁ 
143 DI_1 0 1.31E-02 0.114 ▇▁▁▁▁ 
144 DI_2 0 6.03E-03 0.0774 ▇▁▁▁▁ 
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145 drill_instructor_sda 0 1.91E-02 0.137 ▇▁▁▁▁ 
146 combatIns1 0 6.96E-03 0.0832 ▇▁▁▁▁ 
147 combatIns2 0 4.28E-03 0.0653 ▇▁▁▁▁ 
148 combat_instructor_sda 0 1.12E-02 0.105 ▇▁▁▁▁ 
149 recruiter1 0 3.84E-02 0.192 ▇▁▁▁▁ 
150 recruiter2 0 1.21E-02 0.109 ▇▁▁▁▁ 
151 recruiter_sda 0 5.05E-02 0.219 ▇▁▁▁▁ 
152 MSG1 0 1.45E-02 0.119 ▇▁▁▁▁ 
153 MSG2 0 3.32E-03 0.0576 ▇▁▁▁▁ 
154 msg_sda 0 1.78E-02 0.132 ▇▁▁▁▁ 
155 security1 0 1.71E-02 0.13 ▇▁▁▁▁ 
156 security2 0 1.48E-03 0.0384 ▇▁▁▁▁ 
157 security_forces_sda 0 1.79E-02 0.133 ▇▁▁▁▁ 
158 demoted 0 2.75E-03 0.0523 ▇▁▁▁▁ 
159 time_in_grade 0 1.54E+01 16.6 ▇▁▁▁▁ 
160 promo_competitive 0 4.63E-02 0.21 ▇▁▁▁▁ 
161 pro_con_grade 0 2.20E+00 2.17 ▇▁▁▁▇ 
162 pro_con_service 0 4.27E+00 0.674 ▁▁▁▁▇ 
163 timetoeas 0 2.59E+01 14.3 ▇▇▇▁▁ 
164 miss_timetoeas 0 1.57E-03 0.0396 ▇▁▁▁▁ 
165 agesq 0 6.23E+02 337 ▇▁▁▁▁ 
166 female 0 8.37E-02 0.277 ▇▁▁▁▁ 
167 male 0 9.16E-01 0.277 ▁▁▁▁▇ 
168 married 0 4.01E-01 0.49 ▇▁▁▁▆ 
169 divorced 0 2.98E-02 0.17 ▇▁▁▁▁ 
170 single 0 5.67E-01 0.495 ▆▁▁▁▇ 
171 leg_separated 0 1.06E-03 0.0325 ▇▁▁▁▁ 
172 race_white 0 5.66E-01 0.496 ▆▁▁▁▇ 
173 race_black 0 9.52E-02 0.293 ▇▁▁▁▁ 
174 race_hisp 0 4.30E-02 0.203 ▇▁▁▁▁ 
175 race_mex 0 1.30E-01 0.336 ▇▁▁▁▁ 
176 race_latin 0 3.18E-02 0.175 ▇▁▁▁▁ 
177 race_declined 0 5.32E-02 0.224 ▇▁▁▁▁ 
178 race_other 0 8.11E-02 0.273 ▇▁▁▁▁ 
179 dep_change 0 1.37E-02 0.116 ▇▁▁▁▁ 
180 dep_loss 0 2.41E-03 0.049 ▇▁▁▁▁ 
181 dep_gain 0 1.13E-02 0.105 ▇▁▁▁▁ 
182 marital_change 0 8.56E-03 0.0921 ▇▁▁▁▁ 
183 citiz_change 0 6.52E-04 0.0255 ▇▁▁▁▁ 
184 conus 0 9.24E-01 0.266 ▁▁▁▁▇ 
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185 crisis_experience 0 3.57E-02 0.186 ▇▁▁▁▁ 
186 combat_service 0 1.90E-01 0.392 ▇▁▁▁▂ 
187 hor_county_ 0 9.24E+02 560 ▇▇▇▇▆ 
188 med_exam_meps_ 0 3.71E+01 22.3 ▇▆▇▇▇ 
189 mental_group_ 0 6.52E+00 1.65 ▁▆▇▁▁ 
190 parental_consent_ 0 1.17E+00 0.559 ▁▁▇▁▃ 
191 pay_grade_at_contract_ 0 4.77E-01 1.07 ▇▂▁▁▁ 
192 race_desc_ 0 1.76E+01 5.45 ▁▁▁▁▇ 
193 recruiter_rank_ 0 2.25E+01 6.02 ▁▁▁▁▇ 
194 rs_long_name_ 0 2.83E+01 16 ▆▇▇▇▇ 
195 ship_to_ 0 3.31E+00 0.865 ▁▁▁▇▇ 
196 educ_ 0 3.61E+00 2.01 ▁▇▁▁▁ 
197 i_addl_first_mos_assignment_dt_ 0 2.88E-01 0.453 ▇▁▁▁▃ 
198 i_addl_second_mos_assignment_dt

_ 
0 1.23E-01 0.328 ▇▁▁▁▁ 

199 i_anniversary_date_ 0 1.80E-02 0.133 ▇▁▁▁▁ 
200 i_apc_date 0 3.41E-01 0.474 ▇▁▁▁▅ 
201 i_career_status_bonus_elect_dt_ 0 7.51E-02 0.264 ▇▁▁▁▁ 
202 i_civ_educ_left_school_dt_1_ 0 9.83E-01 0.128 ▁▁▁▁▇ 
203 i_cohesion_proj_train_compl_dt_ 0 4.89E-01 0.5 ▇▁▁▁▇ 
204 i_comp_score_computation_dt_ 0 7.06E-01 0.456 ▃▁▁▁▇ 
205 i_crisis_participation_begin_dt_ 0 3.57E-02 0.186 ▇▁▁▁▁ 
206 i_current_tour_begin_date_ 0 1.00E+00 0.0169 ▁▁▁▁▇ 
207 i_date_initial_entry_reserve_ 0 1.76E-02 0.131 ▇▁▁▁▁ 
208 i_date_joined_smcr_ 0 1.09E-02 0.104 ▇▁▁▁▁ 
209 i_dep_location_begin_date_ 0 3.86E-01 0.487 ▇▁▁▁▅ 
210 i_drop_discharge_unit_date_ 0 1.81E-02 0.133 ▇▁▁▁▁ 
211 i_expiration_obligated_service_ 0 1.00E+00 0.00485 ▁▁▁▁▇ 
212 i_expiration_of_active_service_ 0 9.98E-01 0.0432 ▁▁▁▁▇ 
213 i_exp_of_current_contract_ 0 1.00E+00 0.00153 ▁▁▁▁▇ 
214 i_extension_enlist_effect_date_ 0 1.13E-01 0.316 ▇▁▁▁▁ 
215 i_final_payment_flg_dt_ 0 0 0 ▁▁▇▁▁ 
216 i_flight_status_date_ 0 1.30E-02 0.113 ▇▁▁▁▁ 
217 i_from_date 0 3.41E-01 0.474 ▇▁▁▁▅ 
218 i_geographic_location_began_dt_ 0 9.81E-01 0.135 ▁▁▁▁▇ 
219 i_good_conduct_medal_date_ 0 9.95E-01 0.0719 ▁▁▁▁▇ 
220 i_initial_active_duty_date_ 0 1.78E-02 0.132 ▇▁▁▁▁ 
221 i_intended_transfer_date_ 0 5.83E-02 0.234 ▇▁▁▁▁ 
222 i_law_enforce_ci_id_dt_ 0 1.27E-02 0.112 ▇▁▁▁▁ 
223 i_maternity_leave_elig_dt_ 0 1.98E-03 0.0444 ▇▁▁▁▁ 
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224 i_mplp_leave_elig_dt_ 0 0 0 ▁▁▇▁▁ 
225 i_natl_call_service_waiver_date_ 0 4.71E-06 0.00217 ▇▁▁▁▁ 
226 i_officer_candidate_eff_dt_ 0 1.22E-04 0.0111 ▇▁▁▁▁ 
227 i_operation_effective_date_ 0 2.49E-02 0.156 ▇▁▁▁▁ 
228 i_permanent_rank_date_ 0 1.00E+00 0.00307 ▁▁▁▁▇ 
229 i_planned_reenl_ext_retire_date_ 0 1.28E-02 0.112 ▇▁▁▁▁ 
230 i_primary_mos_assignment_dt_ 0 1.00E+00 0.00376 ▁▁▁▁▇ 
231 i_prior_contract_exp_date_ 0 3.46E-02 0.183 ▇▁▁▁▁ 
232 i_prior_enl_acceptance_date_ 0 3.13E-01 0.464 ▇▁▁▁▃ 
233 i_prom_restricted_term_dt_ 0 9.65E-02 0.295 ▇▁▁▁▁ 
234 i_received_date 0 3.41E-01 0.474 ▇▁▁▁▅ 
235 i_reserve_exp_current_contract_ 0 6.48E-03 0.0803 ▇▁▁▁▁ 
236 i_retirement_date_ 0 4.00E-05 0.00633 ▇▁▁▁▁ 
237 i_selected_grade_date_ 0 4.57E-02 0.209 ▇▁▁▁▁ 
238 i_service_spouse_effective_date_ 0 7.13E-02 0.257 ▇▁▁▁▁ 
239 i_special_duty_bonus_date_ 0 6.66E-03 0.0813 ▇▁▁▁▁ 
240 i_strength_cat_effective_date_ 0 1.00E+00 0.0161 ▁▁▁▁▇ 
241 i_to_date 0 3.41E-01 0.474 ▇▁▁▁▅ 
242 i_accession_date_ 0 9.28E-01 0.259 ▁▁▁▁▇ 
243 i_activity_description_ 0 9.58E-01 0.2 ▁▁▁▁▇ 
244 i_additional_temporary_mcc_v2 0 1.83E-02 0.134 ▇▁▁▁▁ 
245 i_addl_first_mos_code 0 2.90E-01 0.454 ▇▁▁▁▃ 
246 i_addl_second_mos_code 0 1.26E-01 0.332 ▇▁▁▁▁ 
247 i_addl_temp_reporting_unit_code 0 9.81E-01 0.135 ▁▁▁▁▇ 
248 i_adverse_fitrep 0 3.41E-01 0.474 ▇▁▁▁▅ 
249 i_afqt_score 0 9.58E-01 0.2 ▁▁▁▁▇ 
250 i_asvab_version_ 0 9.58E-01 0.2 ▁▁▁▁▇ 
251 i_avg_this_rpt 0 3.31E-01 0.47 ▇▁▁▁▃ 
252 i_belowcategory 0 3.34E-01 0.472 ▇▁▁▁▅ 
253 i_billet_mos_v2 0 9.89E-01 0.104 ▁▁▁▁▇ 
254 i_bonus_prgm_enl_for_cd_v2 0 5.43E-01 0.498 ▇▁▁▁▇ 
255 i_career_status_bonus_elect_cd 0 7.51E-02 0.264 ▇▁▁▁▁ 
256 i_career_status_flag_v2 0 3.13E-01 0.464 ▇▁▁▁▃ 
257 i_citizenship_desc_ 0 9.57E-01 0.204 ▁▁▁▁▇ 
258 i_citzen_cntry_orig_geo_code_v2 0 9.99E-01 0.0381 ▁▁▁▁▇ 
259 i_civ_ed_major_subject_cd_v2 0 9.98E-01 0.0422 ▁▁▁▁▇ 
260 i_civ_educ_graduation_cd_v2 0 9.84E-01 0.127 ▁▁▁▁▇ 
261 i_cohesion_future_mc_code_v2 0 2.74E-03 0.0522 ▇▁▁▁▁ 
262 i_cohesion_number_id_v2 0 7.06E-06 0.00266 ▇▁▁▁▁ 
263 i_college_major_ 0 1.08E-01 0.31 ▇▁▁▁▁ 
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264 i_comd_mon_com_code_v2 0 9.88E-01 0.108 ▁▁▁▁▇ 
265 i_cmd_recruiter_bonus_points 0 1.00E+00 1 ▁▁▇▁▁ 
266 i_commendatory_fitrep 0 3.41E-01 0.474 ▇▁▁▁▅ 
267 i_company_code_v2 0 9.88E-01 0.11 ▁▁▁▁▇ 
268 i_contract_legal_agrment_v2 0 1.00E+00 0.0202 ▁▁▁▁▇ 
269 i_crisis_remark_uniq_id_v2 0 2.38E-02 0.153 ▇▁▁▁▁ 
270 i_crisis_remk_code_desc_tx_v2 0 2.38E-02 0.153 ▇▁▁▁▁ 
271 i_current_county_ 0 9.44E-01 0.231 ▁▁▁▁▇ 
272 i_current_state_code_ 0 9.49E-01 0.22 ▁▁▁▁▇ 
273 i_current_zipcode_ 0 9.51E-01 0.215 ▁▁▁▁▇ 
274 i_custody_status_code_v2 0 7.48E-01 0.434 ▃▁▁▁▇ 
275 i_depend_geo_location_code_v2 0 7.62E-01 0.426 ▂▁▁▁▇ 
276 i_district_ 0 9.58E-01 0.201 ▁▁▁▁▇ 
277 i_dlab_score 0 5.79E-02 0.234 ▇▁▁▁▁ 
278 i_dod_trn_cat_pay_group_v2 0 1.76E-02 0.131 ▇▁▁▁▁ 
279 i_duty_status_code_v2 0 1.00E+00 0.00153 ▁▁▁▁▇ 
280 i_education_code_at_contract_ 0 9.57E-01 0.202 ▁▁▁▁▇ 
281 i_education_tier_at_contract 0 9.57E-01 0.202 ▁▁▁▁▇ 
282 i_el 0 9.58E-01 0.2 ▁▁▁▁▇ 
283 i_fap_company_code_v2 0 1.62E-02 0.126 ▇▁▁▁▁ 
284 i_fap_monitored_com_cd_v2 0 1.65E-02 0.127 ▇▁▁▁▁ 
285 i_fap_platoon_code_v2 0 1.62E-02 0.126 ▇▁▁▁▁ 
286 i_fap_reporting_unit_code 0 9.81E-01 0.135 ▁▁▁▁▇ 
287 i_final_payment_flg_v2 0 0 0 ▁▁▇▁▁ 
288 i_flight_status_identifier_v2 0 1.30E-02 0.113 ▇▁▁▁▁ 
289 i_grade_select_v2 0 5.93E-02 0.236 ▇▁▁▁▁ 
290 i_gt 0 9.58E-01 0.2 ▁▁▁▁▇ 
291 i_home_of_rec_st_cntry_v2 0 9.97E-01 0.0534 ▁▁▁▁▇ 
292 i_home_of_record_county 0 9.97E-01 0.0501 ▁▁▁▁▇ 
293 i_home_of_selection_flg_v2 0 2.38E-03 0.0487 ▇▁▁▁▁ 
294 i_hor_area_code_ 0 4.60E-01 0.498 ▇▁▁▁▇ 
295 i_hor_county_ 0 9.38E-01 0.241 ▁▁▁▁▇ 
296 i_hor_state_code_ 0 9.43E-01 0.232 ▁▁▁▁▇ 
297 i_hor_zipcode_ 0 9.45E-01 0.228 ▁▁▁▁▇ 
298 i_incurred_obligd_service_cd_v2 0 0 0 ▁▁▇▁▁ 
299 i_indiv_loc_county_code_v2 0 1.00E+00 0.00614 ▁▁▁▁▇ 
300 i_individual_loc_city_code 0 1.00E+00 0.00614 ▁▁▁▁▇ 
301 i_ist_pull_ups 0 9.06E-01 0.291 ▁▁▁▁▇ 
302 i_legal_act_gcm 0 6.37E-02 0.244 ▇▁▁▁▁ 
303 i_legal_act_njp 0 6.37E-02 0.244 ▇▁▁▁▁ 
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304 i_legal_act_scm 0 6.37E-02 0.244 ▇▁▁▁▁ 
305 i_legal_act_spcm 0 6.37E-02 0.244 ▇▁▁▁▁ 
306 i_magtf_designator_v2 0 8.92E-01 0.311 ▁▁▁▁▇ 
307 i_maternity_leave_bal_qy 0 1.00E+00 1 ▁▁▇▁▁ 
308 i_mcmap_above_blackbelt 0 9.17E-01 0.276 ▁▁▁▁▇ 
309 i_mcmap_blackbelt 0 9.17E-01 0.276 ▁▁▁▁▇ 
310 i_mcmap_brownbelt 0 9.17E-01 0.276 ▁▁▁▁▇ 
311 i_mcmap_graybelt 0 9.17E-01 0.276 ▁▁▁▁▇ 
312 i_mcmap_greenbelt 0 9.17E-01 0.276 ▁▁▁▁▇ 
313 i_mcmap_instructor 0 9.17E-01 0.276 ▁▁▁▁▇ 
314 i_mcmap_no_belt 0 9.17E-01 0.276 ▁▁▁▁▇ 
315 i_mcmap_revoke 0 9.17E-01 0.276 ▁▁▁▁▇ 
316 i_mcmap_tanbelt 0 9.17E-01 0.276 ▁▁▁▁▇ 
317 i_med_exam_meps_ 0 9.58E-01 0.201 ▁▁▁▁▇ 
318 i_medical_disposition_ 0 9.56E-01 0.205 ▁▁▁▁▇ 
319 i_mental_group_ 0 9.58E-01 0.2 ▁▁▁▁▇ 
320 i_mobiliz_mont_cmd_cd_v2 0 1.30E-03 0.036 ▇▁▁▁▁ 
321 i_mobilization_status_v2 0 3.17E-03 0.0563 ▇▁▁▁▁ 
322 i_months_fitrep 0 3.41E-01 0.474 ▇▁▁▁▅ 
323 i_mplp_caregiver_cd_v2 0 0 0 ▁▁▇▁▁ 
324 i_natl_call_srv_waiver_code_v2 0 4.71E-06 0.00217 ▇▁▁▁▁ 
325 i_not_recommended_for_promotion 0 4.43E-02 0.206 ▇▁▁▁▁ 
326 i_num_fitrep 0 3.41E-01 0.474 ▇▁▁▁▅ 
327 i_officer_candidate_cd_v2 0 1.13E-04 0.0106 ▇▁▁▁▁ 
328 i_operation_identifier_v2 0 2.49E-02 0.156 ▇▁▁▁▁ 
329 i_operation_montd_cmd_code_v2 0 2.49E-02 0.156 ▇▁▁▁▁ 
330 i_operation_reporting_unit_code 0 2.49E-02 0.156 ▇▁▁▁▁ 
331 i_parental_consent_ 0 9.15E-01 0.279 ▁▁▁▁▇ 
332 i_pay_grade_at_contract_ 0 1.93E-01 0.395 ▇▁▁▁▂ 
333 i_pft_first_class 0 9.51E-01 0.215 ▁▁▁▁▇ 
334 i_pft_second_class 0 9.51E-01 0.215 ▁▁▁▁▇ 
335 i_pft_third_class 0 9.51E-01 0.215 ▁▁▁▁▇ 
336 i_phys_fit_crunch_scr_qy 0 9.51E-01 0.217 ▁▁▁▁▇ 
337 i_phys_fit_pull_up_scr_qy 0 9.45E-01 0.228 ▁▁▁▁▇ 
338 i_phys_fit_push_up_scr_qy 0 2.54E-02 0.157 ▇▁▁▁▁ 
339 i_phys_fit_rowing_scr_tm 0 1.49E-03 0.0386 ▇▁▁▁▁ 
340 i_phys_fit_run_scr_tm 0 9.51E-01 0.217 ▁▁▁▁▇ 
341 i_phys_fit_score_qy 0 9.51E-01 0.215 ▁▁▁▁▇ 
342 i_place_of_birth_v2 0 9.85E-01 0.123 ▁▁▁▁▇ 
343 i_pland_reenl_ext_ret_flag_v2 0 3.07E-02 0.172 ▇▁▁▁▁ 
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344 i_plead_city_cd 0 3.36E-01 0.472 ▇▁▁▁▅ 
345 i_plead_county_cd 0 3.36E-01 0.472 ▇▁▁▁▅ 
346 i_plead_state_country_cd 0 2.35E-05 0.00485 ▇▁▁▁▁ 
347 i_plead_zip_cd 0 2.35E-05 0.00485 ▇▁▁▁▁ 
348 i_pres_grade_spec_rank_code_v2 0 9.39E-01 0.24 ▁▁▁▁▇ 
349 i_program_element_number_v2 0 9.24E-01 0.265 ▁▁▁▁▇ 
350 i_prom_restricted_status_cd 0 1.00E+00 1 ▁▁▇▁▁ 
351 i_prospectiv_off_srce_cd_v2 0 3.39E-04 0.0184 ▇▁▁▁▁ 
352 i_qsn_bonus_amount 0 9.58E-01 0.2 ▁▁▁▁▇ 
353 i_race_desc_ 0 9.58E-01 0.2 ▁▁▁▁▇ 
354 i_rank 0 1.00E+00 0.00307 ▁▁▁▁▇ 
355 i_rec_4_promote 0 3.41E-01 0.474 ▇▁▁▁▅ 
356 i_recruiter_rank_ 0 9.58E-01 0.201 ▁▁▁▁▇ 
357 i_reenlistment_bonus_type_v2 0 1.90E-01 0.393 ▇▁▁▁▂ 
358 i_religion_v2 0 9.99E-01 0.0253 ▁▁▁▁▇ 
359 i_relm_recom_code_v2 0 3.17E-01 0.465 ▇▁▁▁▃ 
360 i_relval_at_proc 0 3.41E-01 0.474 ▇▁▁▁▅ 
361 i_relval_cum 0 3.41E-01 0.474 ▇▁▁▁▅ 
362 i_res_mon_command_code_v2 0 4.80E-03 0.0691 ▇▁▁▁▁ 
363 i_res_record_status_code_v2 0 5.27E-03 0.0724 ▇▁▁▁▁ 
364 i_reserve_reporting_unit_code 0 1.31E-02 0.114 ▇▁▁▁▁ 
365 i_responsibility_center_number 0 0 0 ▁▁▇▁▁ 
366 i_rs_long_name_ 0 9.58E-01 0.201 ▁▁▁▁▇ 
367 i_sat_score 0 4.90E-03 0.0699 ▇▁▁▁▁ 
368 i_selective_relm_bonus_zone_v2 0 1.89E-01 0.391 ▇▁▁▁▂ 
369 i_selres_trans_prgm_code_v2 0 2.82E-05 0.00531 ▇▁▁▁▁ 
370 i_separation_document_type_v2 0 1.95E-02 0.138 ▇▁▁▁▁ 
371 i_separation_incentive_code_v2 0 2.19E-04 0.0148 ▇▁▁▁▁ 
372 i_service_spouse_code_v2 0 8.74E-02 0.282 ▇▁▁▁▁ 
373 i_ship_to_ 0 9.58E-01 0.201 ▁▁▁▁▇ 
374 i_source_code_ 0 9.58E-01 0.2 ▁▁▁▁▇ 
375 i_special_duty_bonus_points_qy 0 1.00E+00 1 ▁▁▇▁▁ 
376 i_tad_company_code_v2 0 1.04E-01 0.305 ▇▁▁▁▁ 
377 i_tad_platoon_code_v2 0 1.04E-01 0.305 ▇▁▁▁▁ 
378 i_temporary_add_duty_excess_flag 0 1.42E-01 0.349 ▇▁▁▁▁ 
379 i_temporary_mcc_v2 0 1.25E-01 0.331 ▇▁▁▁▁ 
380 i_temporary_reporting_unit_code 0 9.81E-01 0.135 ▁▁▁▁▇ 
381 i_term_of_enlistment 0 9.58E-01 0.2 ▁▁▁▁▇ 
382 i_unit_id_cd_v2 0 0 0 ▁▁▇▁▁ 
383 i_uppercategory 0 3.34E-01 0.472 ▇▁▁▁▅ 

Acquisition Research Program 
Department of Defense Management 
Naval Postgraduate School 

68



384 i_withcategory 0 3.34E-01 0.472 ▇▁▁▁▅ 
385 i_educ_ 0 9.97E-01 0.0557 ▁▁▁▁▇ 
386 i_sda1 0 9.00E-02 0.286 ▇▁▁▁▁ 
387 i_sda2 0 2.72E-02 0.163 ▇▁▁▁▁ 
388 i_DI_1 0 1.31E-02 0.114 ▇▁▁▁▁ 
389 i_DI_2 0 6.03E-03 0.0774 ▇▁▁▁▁ 
390 i_combatIns1 0 6.96E-03 0.0832 ▇▁▁▁▁ 
391 i_combatIns2 0 4.28E-03 0.0653 ▇▁▁▁▁ 
392 i_recruiter1 0 3.84E-02 0.192 ▇▁▁▁▁ 
393 i_recruiter2 0 1.21E-02 0.109 ▇▁▁▁▁ 
394 i_MSG1 0 1.45E-02 0.119 ▇▁▁▁▁ 
395 i_MSG2 0 3.32E-03 0.0576 ▇▁▁▁▁ 
396 i_security1 0 1.71E-02 0.13 ▇▁▁▁▁ 
397 i_security2 0 1.48E-03 0.0384 ▇▁▁▁▁ 
398 i_timetoeas 0 9.98E-01 0.0432 ▁▁▁▁▇ 
399 i_award_unit 0 9.61E-01 0.194 ▁▁▁▁▇ 
400 i_award_service 0 9.61E-01 0.194 ▁▁▁▁▇ 
401 i_award_personal 0 9.61E-01 0.194 ▁▁▁▁▇ 
402 i_crisis_experience 0 1.00E+00 1 ▁▁▇▁▁ 
403 i_combat_service 0 1.00E+00 0.00266 ▁▁▁▁▇ 
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B. RANDOM FOREST CLASSIFIER CONFUSION MATRICES 

1. November Model 
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2. December Model 
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3. January Model 
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4. February Model 
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5. March Model 
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6. April Model 
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7. May Model 
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8. June Model 
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9. July Model 
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10. August Model 
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11. September Model 
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