Dynamic Cost-Contingency Management
A Method for Reducing Project Cost While Increasing Probability of Success

Ed Kujawski, Ph.D.
Associate Professor
Systems Engineering Department
Naval Postgraduate School
Cost-overrun problem: Déjà-vu

“*Their judgment was based more on wishful thinking than on sound calculations of probabilities.*”

Thucydides, 431 B.C.E.

- Thucydides’ observation is very insightful and still appropriate today

- Projects that come-in under cost do not necessarily deserve kudos
 - They may have carried excessively safe budgets!
Cost overrun causes “Top 10” list

Common threads among “top 10” lists

- **Institutional and organizational culture**
 - Procurement process, management pressure, poor project definition...

- **Real Vs. idealized human behavior**
 - Psychology is relevant to economics, decision-making, management,...
 - The “100% rational” person is a theoretical model that differs from reality

- **Inadequate analysis - Today’s typical Probabilistic Cost Analysis**
 - Ad-hoc data elicitation, improper distributions, omitted and/or limited dependencies, omitted high-risk events & decision points
 - Shift from deterministic to probabilistic approach is NOT silver bullet
 - Monte Carlo simulation is only a mathematical tool: GIGO

- **Poor management practices**
 - Lack of appreciation of probabilistic concepts and psychological influences in budget allocation and control of management reserve
Current project reality leads to cost overruns

Win project

- Management pressure for low estimates
 - Optimism about technology
 - Conflict
 - Some leads want safe estimates
 - Today's typical PCA
 - Achieve technical performance
 - Conflict

Low project cost estimates

- Conflict

Project cost overruns

- Inadequate project management
 - Management wants to meet schedule
 - Conflict

Legend

- Practices
- Human behavior
- Organization/Politics

Addressed in other presentations
Psychology can teach us much about cost overruns

- **Overconfidence**
 - R&D folks are intrinsically optimistic about new technologies
 - "For heaven's sake, spread those fractiles! Be honest with yourselves! Admit what you don’t know!" [Alpert and Raiffa, 1982]

- **Negative human behavior - MAIMS Principle**
 - Task underruns are rarely available to protect against tasks overruns. Task overruns are passed on to the total project.

- **Mistakes of reason**
 - "Too many details tend to cloud the big picture."
 - Total project cost is not simply the sum of cost elements. Project risks are likely to affect multiple elements.
 - "Implicitly trusting the most readily available information or anchoring too much on convenient facts." [Russo and Schoemaker, 1990]

Realistic cost analysis requires a systems perspective
Integrate psychological influences, valid mathematical models, and sound management techniques
MAIMS significantly impacts project cost

Properties of MAIMS - Modified probability distributions
- Minimum value: allocated budget, x^*
- Spike (Dirac delta function) at x^*
- Identical to original cost element for values > x^*

MAIMS impact increases with increased budget allocation
Budget allocation impacts project cost and probability of success

Mythical Project
- “100% Rational” team
- Each cost manager spends only as necessary to satisfy requirements
- Actual cost may be less than budgeted costs

Real Project
- Human & organizational influences
- MAIMS principle: No cost manager spends less than his/her budget
- Actual cost increases with higher allocated budget
It’s NOT your textbook contingency anymore!

- Cost contingency depends on desired probability of success and cost management strategy
 \[MCC(PoS, PBC_1, \ldots, PBC_n) = TEC(PoS, PBC_1, \ldots, PBC_n) - PBC \]
 - MCC: Management Cost Contingency
 - TEC: Total Estimated Cost
 - PoS: Probability of Success
 - PBC_i: Baseline Budget for Cost element C_i
 - PBC: sum over all cost elements

- Major differences with both deterministic practice and today’s typical PCA
 - MCC is not a fixed percentage of PBC
 - MCC incorporates depends on the management strategy
 - MCC is an interactive and iterative process
 - Analysts, engineers, managers
Contingency, cost, & success are NOT directly related

- High cost NEED NOT provide (1) high PoS or CL and/or (2) high contingency
- Low contingency DOES NOT necessarily equate to low cost
- High contingency DOES NOT necessarily equate to high cost and/or padding

Realistic budget allocation, adequate contingency, and dynamic allocation are critical to optimal cost and probability of success.
Fable of a project cost overrun

- Agency X issues a RFP
 - Requests cost at 50% CL
- Contractor A prepares bid
 - Possesses limited sophistication; not cognizant of MAIMS principle
 - Performs today’s typical PCA
 - P50: 7,348 K$
 - Min: 5,633 K$
- Cont. A submits bid of 7,348 K$
 - Confident of success. Thinks cost estimate has a 30% margin.
- Contractor A is winner
- Project starts & budgets allocated
 - Cost element baseline at mean: 7,665 K$

- Much time is spent reallocating and prorating budgets
 - Budget cost elements at 50% CL
 - Baseline cost: 7,002 K$
 - Management reserve: ~ 5%

The outcome

Everybody works very hard. But the project runs out of budget and is cancelled

- Epilogue
 - Another project has succumbed to the MAIMS principle
 - Today’s typical PCA models a mythical project
 - Contracting agencies & contractors use proposed approach
High technical risks require individual risk mitigation plans

- Technical risks often associated with high-consequence events
 - Detailed engineering analysis more suitable than statistical analysis
 - Identify possible Risk Response Actions (RRA)
 - Accept risk as is, Immediately implement RRA, Obtain addition information
 - Develop risk-specific RRAs including critical decision points
 - Scenarios and Decision Trees (DT)
 - Assess risk reduction profile
 - Technical performance parameters, Cost and Schedule earned-value system

Basic RRA DT

Specific RRA DT

Decisions made – 6/06
- Pursue both

Decisions to be made / Drop-dead dates
- Select technology & design: 6/07
- Select manufacturing option: 7/07
The efficient management of technical risks requires a portfolio approach

- Proposed approach based on Markowitz’s efficient portfolio selection principle

- The PMO manages high technical risks as a whole rather than focus on the individual risks per se
 - Systematic development and implementation of Efficient RRA Set
 - Lowest total project cost for a given probability of success
 - System-level oversight
 - Dynamic allocation of contingencies for RRAs

- Contingencies held and managed at the project-wide level
 - Protection against MAIMS principle

Example of an Efficient Contingency Frontier
Risk monitoring & reserve analysis avert surprises

- Risk exposure metric
 - Baseline risk (unmitigated)
 - Residual risk over time (mitigated)
 - Cost of mitigation over time
 - Clearly reveals progress and value of RM effort

- Risk metrics track RM effectiveness and value throughout LC
 - Risk exposure metric - one of many useful quantitative risk metrics
 - Technical Performance Measurements (TPM) for KPPs

- Risk monitoring and metrics should be produced continually
 - Integrated with other PM activities and databases

- Reserve analysis compares contingency reserves to residual risk
 - Assures adequate contingency reserves for remaining risks
Implementation is the challenge!

- Efficient project cost management requires a rigorous framework supported by probabilistic risk analysis and decision-making under uncertainty.

- Some R&D is required
 - Integrated analysis of performance, cost, and schedule
 - Tool for dynamic budget allocation.

- The greatest challenge is the implementation of systems thinking at the personnel, organizational, and institutional levels.

Dynamic cost-contingency management is well worth the additional effort.
The benefits are likely to be significant.