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Abstract 
The AEGIS combat system is a system of systems (SoS) in which the systems and tactics for 
their use continually evolve. The Combat System Test Bed (CSTB) is a federation of computer 
simulation models (SMs) that represents the performance of the AEGIS SoS. Physical test events 
are conducted to assess how well the CSTB represents the performance of the evolving AEGIS 
SoS. Test event data, including time series, are compared to SMs’ output. In this paper, 
simulation is used to study the efficacy of statistical procedures, including one currently in use, to 
obtain statistical evidence that a model’s multimodal distribution does not include that of a time 
series observation. 

Introduction 
The AEGIS combat system is a system of systems (SoS) in which the systems and 

tactics for their use continually evolve. The Combat System Test Bed (CSTB) is a federation of 
computer simulation models (SMs) that represent the performance of the AEGIS SoS. Physical 
test events are conducted to assess how well the CSTB represents the performance of the 
evolving AEGIS SoS. Measurements from the test events are compared to CSTB output. 
Statistical evidence that the CSTB does not well summarize the test event’s measurements can 
lead to CSTB modification or enhancement.  

Su et al. (2022) present results comparing four statistical procedures, including one 
currently used, for computer model validation in the case that the test event measurement is a 
single time series. In this working paper, we consider additional statistical procedures to validate 
a computer model in the case the test event measurement is a single time series and the model 
output is multimodal. The validation of a computer model for test events resulting in a time 
series has been of interest in several areas, including meteorology (cf. Gneiting et al., 2008) and 
economics (cf. Diebold et al., 1998, 1999).  

The next section, Procedures to Assess How Well a Multimodal Model Distribution 
Summarizes One Observed Time Series, presents three procedures to assess how well a 
computer model with multimodal output summarizes one observation time series. The 
procedures summarize the model replications at each time and compare the observation time 
series to the summaries to obtain statistical evidence that the model’s multimodal distribution 
does not include that of the observation. One procedure considered is the currently used two-
sided hypothesis procedure described in Su et al. (2022) that uses the sample mean and 
sample variance of the model replications at each time to create 2-sided confidence intervals; 
we call this procedure the 2.5-sigma procedure. The second procedure uses a 2-sided 99% 
percentile confidence interval of the model replications at each time. The third type of procedure 
uses a kernel density estimate (KDE) of the model’s density function at each time and the value 
of the model’s KDE of the observation at that time. The third section, Simulation Study, presents 
the results of a simulation study of the efficacy of the procedures when the model has a 
multimodal mixture distribution.  
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The simulation results suggest that the 2.5-sigma procedure is among the least likely to 
result in a false positive; a false positive occurs when the procedure results in statistical 
evidence that the multimodal model mixture distribution does not include the distribution of the 
observation when the model’s distribution includes that of the observation. However, the 2.5-
sigma procedure is among the least likely of the procedures considered to result in correct 
statistical evidence that the model’s distribution does not include that of the observation. The 
percentile confidence procedure is the most likely to result in a false positive; it is more likely 
than the 2.5-sigma procedure to result in correct statistical evidence that multimodal model 
distribution does not include that of the observation. The KDE procedure is better at balancing 
incorrect and correct statistical evidence that the model distribution does not include that of the 
observation.  

Procedures to Assess How Well a Multimodal Model Distribution Summarizes 
One Observed Time Series  

Let ( )kX t be the value of the test event’s observed time series at time , 1,...,k Tt k n= . 

Let ( )i kY t  be the value of the ith model replication at time kt for 1,..., Mi n=  where Mn  is the 
number of model replications. 
The 2.5-Sigma Procedure and Percentile Interval Procedure  

The two-sided hypothesis procedure of Su et al. (2022) is as follows: for each time kt , 
the sample mean and sample standard deviation of the Mn model replications 

( ){ }; 1,....,i k MY t i n= are computed. The 2.5-sigma confidence interval has lower bound equal to 
the sample mean minus 2.5 times the sample standard deviation and upper bound equal to the 
sample mean plus 2.5 times the sample standard deviation. There is said to be statistical 
evidence that the model’s multimodal distribution does not contain that of the observation if the 
fraction of times the observed time series is outside of the confidence intervals is greater than 
0.1. We call this two-sided hypothesis procedure the 2.5-sigma procedure. If 

( ){ }; 1,...,i k MY t i n=  are independent and identically distributed having a Gaussian distribution, 
then the 2.5-sigma confidence interval is an approximate 99% prediction interval. This 
procedure is an approved simulation validation method at the Johns Hopkins University Applied 
Physics Laboratory (APL; cf. Su et al., 2022).  

For each time kt , let ( )L kq t  (respectively ( )H kq t ) be the 0.005 quantile (respectively 

0.995 quantile) of the Mn model replications at time kt , ( ){ }; 1,...,i k MY t i n= . The 99% percentile 

interval is ( ) ( ),L k H kq t q t   . There is said to be statistical evidence that the model’s multimodal 
distribution does not contain that of the observation if the fraction of times the observed time 
series is outside of the confidence intervals is greater than 0.1.  
Gaussian Kernel Density Estimation (KDE) Procedure 
Introduction 

Let ( ) ( ) ( ){ } ( ) ( )  for -
y

Y t Y tF y P Y t y f z dz y
−∞

= ≤ = ∞ < < ∞∫  be the model’s probability 

cumulative distribution function for time t ; ( ) ( )Y tf •  is the probability density function of the 
model at time t. A Gaussian kernel density smoothing of the model replications at time t , 
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( ) ( )Y tκ • , is an estimate of ( ) ( )Y tf •  (cf. Silverman, 1986). Let ( ) ( )( )Y t X tκ  be the value of the 
model’s kernel density estimate (KDE) evaluated at the value of the observed time series at 
time t . For small positive h, ( ) ( )( )Y t X t hκ  is an estimate of 

( ) ( ) ( )( ) ( ) ( ) ( )( )/ 2 / 2Y t Y tF X t h F X t h+ − − ; the model’s probability that the value of the 

observed time series at time t  occurs in the interval ( ) ( ) ( ) ( )/ 2 , / 2X t h X t h− +   . There is 
statistical evidence that the distribution of the observed time series is not included in that of the 
model if the model’s KDE for the observation at time kt , ( ) ( )( )

k kY t X tκ , is too small for too many 

times , 1,...,k Tt k n= .  

A Kernel Density Estimate (KDE) Procedure 
For the ith model replication at time kt , ( )i kY t , let ( ); ,M ki tκ  be the Gaussian kernel 

density estimate (KDE) obtained using model replications at time kt  without the ith  model 

replication, ( ) { }{ }; 1,..., 1, 1,...,j k MY t j i i n∈ − + . Let ( )( ); ,M i k kY t i tκ  be the value of the KDE for 

time kt  at ( )i kY t . Let ( );M kq t α be the α −quantile of ( )( ){ }; , ; 1,...,M i k k MY t i t i nκ = , the KDEs 

of the Mn  model replication values at time kt . Let ( ) ( )( ) ( )( )
1

; ; , ;
Tn

M M i k k M k
k

Q i I Y t i t q tα κ α
=

= <∑ , 

the number of times the value of the KDEs for the ith model replication are less than the model 
values’ KDE α −quantiles; ( )I A  equals 1 if event A occurs and 0 otherwise.  

For each time kt , let ( );A ktκ   be the KDE obtained using all the model replications at 

time kt , ( ){ }; 1,...,i k MY t i n= . Let ( ) ( )( );O k A k kt X t tκ κ= , the value of the KDE, ( );A ktκ  , at 

( )kX t , the value of the observed time series at time kt . Let ( ) ( ) ( )( )
1

;
Tn

O O k M k
k

Q I t q tα κ α
=

= <∑ , 

the number of times the observed time series KDEs are less than the model values’ KDE 
α −quantiles. ( )OQ α is compared to a lower bound obtained from the model replications. The 

most conservative lower bound considered is ( ) ( )( )
1,...,

;1 max ;
M

M Mi n
B Q iα α

=
= , the maximum 

number of times a model’s replication value KDEs are less than the model values’ KDE 
α −quantiles. Other considered lower bounds are ( );MB nα = the nth largest number of times a 
model’s replication value KDEs are less than the model values’ KDE α −quantiles for n=2, 3, 4.  

For a chosen lower bound, there is statistical evidence that the multimodal distribution of 
the model does not include that of the observation if the number of times the observed time 
series KDEs are less than the model values’ KDE α −quantiles, ( )OQ α , is greater than the 
chosen lower bound. 

Simulation Study  
There are 500 simulation replications. Each simulation replication generates 300 model 

replications. The model replications have a mixture distribution. Nine observation time series 
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each having different parameter values are also generated. All the considered model validation 
procedures compare each of the 9 observed time series to the same model replications.  
Simulated Model and Observation  
The ith replication of the simulation model satisfies 

 ( ) ( ) ( )1 exp ;  for 1,...,100
100i k i i

kt M k M k = − − × + = 
 
θ εY     (1)   

where ( ){ }; 1,...,i MM i n=θ  are independent identically distributed random variables having a 

mixture distribution; with probability 0.5, ( )i Mθ has a gamma distribution with shape parameter 

( ) 50i Mβ =  and mean ( ) ( )/ 2i iM Mβ α = ; with probability 0.5, ( )i Mθ has a gamma 

distribution with shape parameter ( ) 50i Mβ = and mean ( ) ( )/ 6i iM Mβ α = ; 

( ){ }; ; 1,...,100i k M k =ε  are independent identically distributed random variables having a 

normal distribution with mean 0Mµ =  and standard deviation 0.02Mσ = .  
The observed time series satisfies  

( ) ( ) ( )1 exp ;  for 1,...,100
100k

kt O k O k = − − × + = 
 
θ εX       (2)  

where ( )Oθ is a random variable having a gamma distribution with shape parameter 

( ) 50Oβ =  and mean 
( )
( )
O
O

β
α

; ( ){ }; ; 1,...,100k O k =ε are independent identically distributed 

random variables having a normal distribution with mean 0Oµ =  and variance 2
Oσ . The values 

of the parameters, 
( )
( )

, O

O
O

β
σ

α
 
 
 

, considered are (1, 0.02), (2, 0.02), (2, 0.1), (3, 0.02), (4, 0.02),          

(5, 0.02), (6, 0.02), (6, 0.1) and (10, 0.02); the bold values correspond to parameters included in 
the model mixture distribution.  
Kernel Density Estimation  

The software R function called density with Gaussian kernel and bandwidth ucv 
(unbiased cross validation) is used to obtain the kernel density estimates (cf. R Core Team, 
2021).  

Figure 1 displays fifty model replications as a function of time. Figure 2 displays a 
histogram of 300 model replications at time 0.5. Figure 3 displays the kernel density estimate 
using the model replications at time 0.5. The three Figures suggest that the model replications 
have 2 modes. Figure 4 displays the number of times the model replications value KDEs, 

( )( ){ }; , ; 1,...,100M i k kY t i t kκ = , are less than the model replication values’ KDE 0.001 quantiles, 

( ){ };0.001 ; 1,...100M kq t k = ;  

( ) ( )( ) ( )( )
1

;0.001 ; , ;0.001
Tn

M M i k k M k
k

Q i I Y t i t q tκ
=

= <∑  for 1,...,300i =     (3) 
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Figure 1. 50 Model Replications 

 

 
Figure 2. Model Replications at Time 0.5 
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Figure 3. Model Replications at Time 0.5 Gaussian Kernel Density With Bandwidth=ucv (Unbiased Cross 

Validation) 
 

  
Figure 4. Number of Times Model Replication’s Value Kernel Density Estimates (KDEs) Are Less Than the 

Model Values KDE 0.001 Quantiles 
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Simulation Results  
The 2.5-sigma, 99% percentile confidence interval, and kernel density estimate (KDE) 

procedures are used to obtain statistical evidence that the multimodal mixture model distribution 
does not include that of the observation. Several values for the KDE procedure quantile and 
lower bound are considered; the quantile values are { }0.01,0.005,0.001,0.0005α ∈ ; the lower 
bounds are the maximum number of times a model replication value KDEs are less than the 
model values’ KDE α −quantile, ( );1MB α ; the second largest number of times, ( );2MB α ; the 

third largest number of times, ( );3MB α ; and the fourth largest number of times, ( );4MB α . 
There is statistical evidence that the mixture model distribution does not include that of the 
observation if the number of times the observation’s KDEs are less than the model values’ KDE 
quantiles is greater than the lower bound.  

Table 1 displays the fraction of the 1,000 cases that result in a false positive (incorrect 
statistical evidence that the observation distribution is not included in that of the model when the 
model distribution includes that of the observation). Each of the 500 simulation replications has 
2 cases in which the model distribution includes that of the observation; 

( )
( ) ( ) ( ){ }, 2,0.02 , 6,0.02O

O
O

α
σ

β
 

∈ 
 

.  

Table 1. Fraction of Cases With Incorrect Statistical Evidence That the Multimodal Mixture Model Distribution 
Does NOT Include That of the Observation When the Model Distribution Does Include That of the Observation 

Procedure  Fraction of 
Cases 

 Fraction of 
Cases 

 Fraction of 
Cases 

 Fraction of 
Cases 

2.5-sigma  0.001       
99% 
Percentile 
Confidence 
Interval 

 0.040       

KDE   
 KDE 

Quantile 
α  

Observation 
Number 
Greater 
Than 
Maximum 
Model 
Number, 

( );1MB α  

 Observation 
Number 
Greater 
Than 2nd 
Largest 
Model 
Number, 

( );2MB α  

 Observation 
Number 
Greater 
Than 3rd 
Largest 
Model 
Number, 

( );3MB α  

 Observation 
Number 
Greater 
Than 4th 
Largest 
Model 
Number, 

( );4MB α  
         
 0.01 0.002  0.006  0.010  0.013 
 0.005 0.001  0.003  0.003  0.004 
 0.001 0.002  0.005  0.007  0.014 
 0.0005 0.002  0.005  0.007  0.010 

Table 2 displays the fraction of the 3,500 cases that result in correct statistical evidence 
that the observation’s distribution is not included in that of the model; there are 7 such cases in 
each simulation replication.  
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Table 2. Fraction of Cases With Correct Statistical Evidence That the Multimodal Mixture Model Distribution 
Does NOT Include That of the Observation When the Model Distribution Does NOT Include That of the 

Observation 

Procedure  Fraction of 
Cases 

 Fraction of 
Cases 

 Fraction of 
Cases 

 Fraction of 
Cases 

2.5-sigma  0.173       
99% 
Percentile 
Confidence 
Interval 

 0.526       

KDE         
 KDE 

Quantile, 
α  

Observation 
Number 
Greater 
Than 
Maximum 
Model 
Number, 

( );1MB α  

 Observation 
Number 
Greater 
Than 2nd 
Largest 
Model 
Number, 

( );2MB α  

 Observation 
Number 
Greater 
Than 3rd 
Largest 
Model 
Number, 

( );3MB α  

 Observation 
Number 
Greater 
Than 4th 
Largest 
Model 
Number, 

( );4MB α  
         
 0.01 0.222  0.368  0.513  0.616 
 0.005 0.174  0.300  0.438  0.544 
 0.001 0.285  0.519  0.641  0.698 
 0.0005 0.269  0.497  0.624  0.681 
 

The results displayed in Tables 1 and 2 suggest the following concerning the ability of 
the considered statistical procedures to result in correct statistical evidence that the model 
distribution does not include that of the observation.  
False Positive: Incorrect Statistical Evidence That the Mixture Model Distribution Does 
Not Include That of the Observation When the Model Distribution Does Include That of 
the Observation  

The 2.5-sigma procedure and the KDE procedure with lower bound the maximum 
number of times a model replication’s value KDEs are less than the model’s value KDE 0.005-
quantiles, ( )0.005;1MB , result in 1 false positive in the 500 simulation replications. The KDE 
procedure with 0.001- quantile and lower bound the maximum number of times a model 
replication’s value KDEs are less than the model values’ KDE quantiles, ( )0.001;1MB , results in 

2 false positives. The KDE procedure with lower bounds ( )0.005;2MB  and ( )0.005;3MB  result 
in 3 false positives. The percentile confidence interval procedure results in the most false 
positives.  
True Positive: Correct Statistical Evidence the Observation Distribution Is Not Included in 
That of the Model   

The 2.5-sigma procedure and the KDE procedure with lower bound the maximum 
number of times a model replication’s value KDEs are less than the model KDE values’ 0.005-
quantiles, ( )0.005;1MB , result in correct statistical evidence the model distribution does not 
include that of the observation in less than 18% of the cases. The KDE procedure with lower 
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bound ( )0.001,1MB  results in one more false positive than the 2.5-sigma procedure and results 
in correct statistical evidence that the model distribution does not include that of the observation 
in slightly over 28% of the cases. The KDE procedure with lower bound ( )0.005,3MB  results in 
2 more false positives than the 2.5-sigma procedure but results in correct statistical evidence 
that the model distribution does not include that of the observation in slightly over 40% of the 
cases. The KDE procedure with lower bound ( )0.001;4MB , the fourth largest number of times a 
model replication value KDEs are less than the model values’ KDE 0.001-quantiles, results in 
the most cases with correct statistical evidence the model distribution does not include that of 
the observation; however, it also results in the highest number of false positives. 

Tables 3 and 4 display the fraction of the 500 simulation replications that result in 
statistical evidence that the observation distribution is not included in that of the model. Table 3 
(respectively 4) displays the results using the 0.005 (respectively 0.001) model values’ KDE 
quantile for the KDE procedure. The bold entries correspond to results in the case that the 
observation distribution is included in that of the mixture model. 

Table 3. Fraction of Simulation Replications Resulting in Statistical Evidence That the Model Mixture 
Distribution Does Not Include That of the Observation 

Model Values’ KDE quantile 0.005α =  
Bold Entries: Observation Distribution is included in the Model Mixture 

Distribution  
Observation  
parameters 

Procedure 

Gamma 
mean 
 

( )
50

Oα
 

 

Normal 
standard 
deviation

Oσ   

2.5-
Sigma  

Percen
-tile 
 

KDE 
Obser-
vation 
number
> 
model’s 
max

( );1MB α  

KDE 
Obser-
vation 
number 
> 
model’s 
2nd max 

( );2MB α

 

KDE 
Obser-
vation 
number 
> 
model’s 
3rd max 

( );3MB α

 

KDE 
Obser- 
vation 
number 
> 
model’s 
4th max 

( );4MB α
 

1 0.02 0.974 0.998 0.874 0.942 0.978 0.986 
2 0.02 0.002 0.042 0.002 0.006 0.006 0.008 
2 0.1 0.082 0.736 0.020 0.100 0.232 0.422 
3 0.02 0 0 0.130 0.280 0.376 0.472 
4 0.02 0 0 0.092 0.206 0.302 0.382 
5 0.02 0 0.002 0.010 0.018 0.034 0.050 
6 0.02 0 0.038 0 0 0 0 
6 0.1 0.002 0.988 0.046 0.260 0.608 0.830 
10 0.02 0.154 0.958 0.050 0.292 0.534 0.666 
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Table 4. Fraction of Simulation Replications Resulting in Statistical Evidence That the Model Mixture 
Distribution Does Not Include That of the Observation 

Model Values’ KDE quantile 0.001α =  
Bold Entries: Observation Distribution is included in the Model Mixture 

Distribution 
Observation  
parameters 

Procedure 

Gamma 
mean 
 

( )
50

Oα
 

 

Normal 
standard 
deviation

Oσ   

2.5-
Sigma  

Percen
-tile 
 

Obser-
vation 
number
> 
model’s 
max 

( );1MB α  
 

Obser-
vation 
number 
> 
model’s 
2nd max 

( );2MB α

 

Obser-
vation 
number 
> 
model’s 
3rd max 

( );3MB α

 

Obser- 
vation 
number 
> 
model’s 
4th max 

( );4MB α
 

1 0.02 0.974 0.998 0.920 0.986 0.990 0.996 
2 0.02 0.002 0.042 0.004 0.008 0.010 0.020 
2 0.1 0.082 0.736 0.106 0.402 0.708 0.878 
3 0.02 0 0 0.242 0.450 0.554 0.608 
4 0.02 0 0 0.182 0.374 0.464 0.532 
5 0.02 0 0.002 0.018 0.048 0.060 0.064 
6 0.02 0 0.038 0 0.002 0.004 0.008 
6 0.1 0.002 0.988 0.264 0.744 0.956 0.994 
10 0.02 0.154 0.958 0.266 0.626 0.758 0.814 
 
The results displayed in Tables 3 and 4 suggest that the KDE procedure with lower 

bound the maximum number of times a model replication’s value KDEs are less than that of the 
model values’ KDE 0.001-quantiles, ( )0.001;1MB , is the best at balancing incorrect and correct 
statistical evidence the model distribution does not include that of the observation; it results in 
one more false positive than the 2.5-sigma procedure; it results in correct statistical evidence 
that the mixed model distribution does not include that of the observation in slightly more than 
28% of the cases compared to the 2.5-sigma procedure’s less than 18%. However, if one can 
tolerate 2 more false positives than the 2.5-sigma procedure, than the lower bound 

( )0.005;3MB  results in correct statistical evidence that the model distribution does not include 
that of the observation in slightly over 40% of the cases.  

The percentile confidence interval procedure is the most likely to result in correct 
statistical evidence that the observation distribution is not included in that of the model mixture 
distribution if the observed time series values tend to always lie above or always lie below the 
model replications. The 2.5-sigma procedure tends to result in correct statistical evidence that 
the observation distribution is not included in that of the model mixture distribution when the 
observed time series tends to lie above the model replications. The 2.5-sigma procedure and 
percentile confidence interval tend not to result in correct statistical evidence that the model 
mixture distribution does not include that of the observation when the observed time series 
tends to lie between the two model distribution modes. The KDE procedure can result in correct 
statistical evidence that the model distribution does not include that of the observation when the 
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observed time series tends to lie between the two model distribution modes and when the 
observed time series tends to always lie above or to always lie below the model replications.  

Conclusions 
The simulation results reported here, and the results of Su et al. (2002) suggest that the 

currently used 2.5-sigma procedure is unlikely to result in a false positive (incorrect statistical 
evidence that the mixture model distribution does not include that of the observation when the 
observation distribution is included in that of the model). However, it is also among the least 
likely of the procedures considered here to result in correct statistical evidence that the model 
distribution does not include that of the observation. The efficacy of the KDE procedure depends 
on the quantile and lower bound chosen. Increased ability to result in correct statistical evidence 
that the model distribution does not include that of the observation can be associated with an 
increased chance of incorrect statistical evidence that the model distribution does not include 
that of the observation when the model mixture distribution does include that of the observation. 
The simulation results presented here suggest that the KDE procedure with lower bound, 

( )0.001;1MB , the maximum number of times a model replication’s value KDEs are less than the 

model replication values’ 0.001-quantile or lower bound ( )0.005;3MB are also unlikely to result 
in a false positive but are more likely than the 2.5-sigma procedure to result in correct statistical 
evidence that the mixture model distribution does not include that of the observation.  
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