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Abstract 
The way routine maintenance is conducted is not an optimal way to handle maintenance 
in extreme battlefield conditions. This is a common maintenance problem across various 
domains, such as repairing battle damage to aircraft or ships without access to a port or 
depot. The extreme conditions context can also include repairing the Alaska pipeline in 
the extreme cold, or handling repairs during COVID-19. The researcher examined how 
modern technology can optimize productivity and reduce the cycle time of the extreme 
maintenance process. The results of this research found that three emerging 
technologies: additive manufacturing, cloud in a box, and machine learning (ML), could 
improve process value, save labor costs, and reduce cycle time. ML had the most 
significant impact on improving productivity and cycle time. When all technologies were 
utilized together, productivity and cycle time improvement were more significant and 
consistent. The research accounted for the riskiness of these technologies, which is 
necessary to accurately forecast the value added for this extreme maintenance process 
context. This research is vital because getting correct valued repairs done quickly for the 
Department of Defense can make the difference between winning and losing a conflict. 

Introduction 
Parts of this introduction were previously published by Springer Nature in HCI for 

Cybersecurity, Privacy, and Trust (Miller & Mun, 2023). Extreme maintenance 
conditions, such as during combat operations or personnel shortages as during the 
COVID pandemic, create many unique repair and maintenance challenges. These 
challenges include the battle front line availability of technical data or specifications to 
make the repairs, the lack of parts, and decision support aids to assist with transforming 
repair data into information and knowledge that lead to making timely decisions. The 
lack of timely maintenance information leads to uninformed and suboptimal maintenance 
decisions, especially when edge networks are data-limited, that increases the risk to a 
given complex repair and the employees making the repairs. For example, the naval 
enterprise system architecture (ground and aviation) has limited technical data in these 
edge networks. The communication limitations of the edge networks have led to 
interaction-based failures, resulting in inefficient information exchanges among 
maintenance-related systems and repair personnel. 

Innovative maintenance approaches with modern IT, can potentially overcome 
these extreme maintenance case problems. Information systems are needed to provide 
mechanisms that will enable leadership to make data-driven resource decisions at all 
levels of the maintenance process by using locally available data derived by leveraging 
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this new IT. With access to the required technical information, and without having to do 
all the current manual workarounds to get the data needed to make precise repair 
decisions, the repair team can actually do the repairs in a timely and efficient manner. 
The problems arise when the maintenance technicians are forced to do workarounds 
because they do not have the required technical information available locally.  

This extreme maintenance problem requires innovative use of U.S. Naval IT 
resources to foster the potential of increased process productivity as well as reductions 
in process cycle times for repair. The three IT artifacts examined in this study (additive 
manufacturing [AM], machine learning [ML], and cloud in a box [CIB]) should provide the 
kinds of mechanisms that will enable leadership to make more well-informed IT 
investment decisions resulting from the innovative leveraging of these new IT 
technologies.  

When deploying new IT solutions in organizations, it is hard for information 
scientists to gather the required data on IT decisions to determine the impact on 
employees (Leonard-Barton & Kraus, 2014). If the local maintenance personnel deliver 
innovative repair ideas, aided by modern IT artifacts that help improve process 
productivity, these ideas can be embedded in ML, potentially resulting in more optimized 
processes that add value to their organization. Currently, routine aviation maintenance 
knowledge (e.g., at the depot level) used to optimize processes is not readily available 
for potential use in extreme maintenance conditions, and the results of that routine 
maintenance knowledge are not passed from one generation of maintainers to the next.   
Purpose Statement 

The purpose of this research is to test the value added of three modern 
information technology artifacts (i.e., AM, ML, and CIB) to optimize process productivity 
and cycle time for extreme maintenance conditions. The current research study extends 
the use of process optimization theory (Castillo, 2011) to include the effect of modern 
information technology on extreme maintenance process productivity and cycle time. 
This research is essential because there is a gap in the process optimization literature 
with regard to optimizing maintenance processes with modern information technology in 
the context of extreme maintenance. The current research is important because failure 
to make correct repairs to battle-damaged equipment can make the difference between 
winning and losing a conflict. 
Research Goals 

One of the research goals is to make a theoretical contribution to the economics 
of information technology (EOIT) domain by testing the effects of three new IT artifacts 
(AM, CIB, and ML) to provide process optimization options that would potentially 
increase process productivity (i.e., return on investment [ROI]) and reduce process cycle 
time for extreme maintenance processes. The results of this research should provide 
greater confidence in decision-makers’ IT investment predictions based on information 
from process optimization model forecasts. The Department of the Navy (DoN) must 
improve its extreme maintenance processes to maintain readiness in battle conditions. 
Business process reengineering (BPR) techniques can be used to model the effects of 
AM, CIB, and ML on productivity and cycle time (Miller & Mun, 2023).  

Thus, I propose an information sciences-based investigation of how using 
modern information technology in extreme maintenance conditions can extend the 
existing EOIT optimization-focused theories by testing new IT artifacts (AM, CIB, and 
ML) in a new but pervasive context. For example, AM can provide maintenance 
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technicians with part-generation options that should accelerate the repair cycle. The CIB 
can house technical information that would feed ML technology and can work in a 
network disconnected environment (e.g., extreme maintenance at the battle front). The 
ML IT option under review in this study involves three dimensions: algorithms, systems, 
and people (Stoica et al., 2017). In this context, ML focuses on accessing technical data 
(e.g., using the CIB technology), and the ML algorithm learns based on performance 
feedback from the maintenance personnel.  

The types of ML algorithms proposed in the current research are commonly 
utilized in bioinformatics (Frazier, 2022). These kinds of ML algorithms are used to 
improve the predictions of the effects of various variables that “repair” biological 
systems. The results from this domain of research on the use of ML will form the basis 
for the parameter expectations of the performance of ML to aid repair and maintenance 
decision-making. This kind of ML should provide extreme maintenance technicians with 
information to adapt and improve their repair decisions, which include, in particular for 
the current study, repair evaluation, and parts ordering decisions.  

The current research utilizes integrated risk management (IRM) to forecast the 
effects of using the three IT artifacts to optimize extreme maintenance subprocesses 
that have been optimized using BPR techniques. By doing so, the current study will 
expand the scope of EOIT optimization theories through the use of robust forecasting 
techniques in the context of extreme maintenance decision-making.  

Literature Review 
This study uses naval aircraft maintenance in particular due to the complexity of 

the problem. The aircraft battle damage repair (BDR) requires specialized repair and 
damage analysis, skills, and tools from depot-level maintenance organizations in order 
to perform complex equipment structure modifications or to perform routine or urgent 
equipment and system repairs. The baseline model in the current study is derived from 
the existing depot-level maintenance processes as verified by subject matter experts 
(SMEs) who perform those depot and extreme maintenance functions during wartime 
operations. The Forward Deployed Combat Repair (FDCR) teams must be highly mobile 
and able to operate with very limited communication reach back to the depot resources 
and repair information. The logistical and maintenance constraints in extreme 
maintenance conditions (e.g., wartime field theater) will require the U.S. Navy to deploy 
civilian technicians forward to use new, more timely, and efficient processes by 
leveraging emerging technologies. This kind of maintenance research has a very high 
priority, as witnessed by the current efforts that are underway with Navy research teams 
who are studying the battlefield tactics of the Ukrainian military, including maintaining 
equipment in extreme battlefield conditions (NPS Information Sciences PhD Seminar 
Series, Oct 2023).   

Baseline process models for extreme maintenance have not been documented 
previously. BPR optimization techniques require a baseline process model to inform and 
compare As-Is baseline process performance to To-Be forecasts regarding decisions 
about how to best utilize IT to optimize core processes (Hammer, 1990; Hammer & 
Champy, 1993; Housel & Bell 2001). Without such BPR models it is very difficult to 
justify investment in modern IT options that are designed to optimize processes, 
especially for extreme maintenance process optimizations that are urgently needed in 
the U.S. military. For example, if we want to test the potential use of AM, CIB, and ML to 
optimize the extreme maintenance repair process, we must have an As-Is baseline 
model to compare to To-Be forecasted improvements. The quantitative methods and 
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models presented in this research will contribute to predicting the impact of modern IT 
artifacts used as process optimization options in the context of extreme maintenance 
processes. If the FDCR teams have these three technologies in place, and the IT 
technologies perform as expected, then the extreme maintenance process cycle time 
and process productivity performance should show improved optimization. 

The current research makes theoretical contributions to information sciences 
through EOIT by gauging the ability of new IT technology to impact productivity and 
cycle time in extreme maintenance conditions. The economic theories of EOIT consider 
the effects of introducing IT on corporate productivity (Goldfarb & Tucker, 2019; Shapiro 
& Varian, 1999). Further, in EOIT theory, researchers have hypothesized about the 
effects of these IT inputs at the process level (summarized in chapter three of Housel 
and Bell [2001]) on a firm’s productivity. The theories ultimately rely on organizational 
accounting data to test their assertions empirically (Brynjolfsson & MacAffe, 2014; Elliot, 
1992; Pavlou et al., 2005). Hitt et al. (1994) framed their research using EOIT and 
concluded that information technology positively affects an organization’s productivity.  

This research also seeks to extend process optimization theory (Castillo, 2011) 
to extreme maintenance processes. In process optimization, value added can be 
calculated at the subprocess level (Housel & Kanevsky, 1995). In extreme maintenance, 
the overall core repair process can be decomposed into its subprocesses. Although the 
outputs of the subprocesses are different, they can be compared by converting them to 
common units using the knowledge value added (KVA) theory.  

These new IT aided models can potentially assist decision-makers by speeding 
up the data-to-decision (D2D) times and reducing risk (e.g., aircraft downtime). The 
current research results should be useful in extending EOIT theory by demonstrating 
how these IT artifacts can potentially be used to speed up the D2D times for repair 
decisions and how it might lead to overall increases in extreme maintenance process 
productivity. The results of the current study should help address theoretical gaps in the 
EOIT research on process optimization by the potential application of process modeling 
techniques that focus on the use of modern IT artifacts in the context of extreme 
maintenance requirements.  

When applied early in the redesign of processes by modeling the impact of 
modern IT on process productivity and cycle time, the current study methods can lead to 
increased IT investment portfolio optimization decision-making within the context of real 
operations. The IT investment portfolio optimization techniques used in the current study 
provide a way to generate hypotheses similar to those of a study. Albert and Hayes 
(2002) found that hypothesis generation efforts should be incorporated early in the 
acquisition process and tested further with field experiments. Extending prior maritime 
research by Mun and Housel (2010), the current study will use Monte Carlo simulation 
with real options. This research addresses the gap in assessing the value of these new 
IT technologies in process optimization for extreme maintenance conditions.  

Analysis 
The current study explores several extreme maintenance use cases via modeling 

and simulation techniques (i.e., the current As-Is approach with the forecasted To-Be 
approach using new IT). This research is run from the perspective of a Leibnizian 
(Analytical-Deductive) inquiring system in which the guarantor of the knowledge claims 
is the self-evidence of the inputs and the deductive soundness of the operations. The 
validity of this research was established through a clear explanation of the input 
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selection reasoning, a detailed explication of all derived analytical expressions, and a 
comparison between simulation results and the theoretical predictions of the derived 
analytical expressions. Complex data analytics packages were used to analyze the data 
for statistical insight and to process thousands of trial runs on the data and the emerging 
technologies to provide a complete view of the problem.  

A comprehensive view of the problem within extreme maintenance is lacking in 
that the emerging technology is examined individually and not holistically. There is an 
absolute necessity to use emerging technology (AM, CIB, and ML) more efficiently within 
naval aviation maintenance-based decisions. That is why the final model engages all the 
technologies together (AM + CIB + ML) in the appropriate subprocess. The technical 
data sets can be challenging to acquire and comprehend. The magnitude of these 
specialized data sets offers analysis complexities within an extreme maintenance realm 
that is large, distributed, and varies from mission to mission. 
Data Overview 

The data analytics were based on current input from SMEs in extreme 
maintenance conditions. The analysis was conducted using the data from the surveys 
discussed in the previous chapter. Field experiments informed the surveys and cost data 
of the labor by the technicians performing the repairs and managers of those 
technicians. The surveys were completed by individuals familiar with the current As-Is 
extreme maintenance process on land and in maritime situations. In either case, the 
extreme maintenance constraints were applied to the current As-Is process, and 
forecasts were built into the models. Further, the To-Be models for AM, CIB, and ML 
were informed by experts in those technologies and the extreme maintenance process. 
The consistency of different sets of observations that measure the same factors was 
tested using statistical methods during the data exploration. Further, the correlation 
between variables of a survey with a pairwise comparison between two variables can be 
linear or nonlinear and either positive or negative. These linear coefficients are often 
insufficient and require other tests that check the data points across both the columns 
and rows for data consistency and reliability (e.g., the intraclass correlation coefficient 
[ICC] test).  

The forecasted events for these models are targeted at three years. Using the 
technology to forecast further is possible, but future events behaving or occurring in the 
way expected may have greater volatility. The models can be extended past three years 
of the study but may require updating of the process maps and data parameters to 
maintain accuracy and precision. The reliability of the models refers to the repeatability 
of findings. If the study were repeated, would it yield the same results? If the 
measurement results are consistent and if the experiment is valid, then the data is 
considered to be reliable. This section explains the data analysis so another researcher 
can produce the same stable and consistent results as this study. While the validity of 
the models refers to how well a test measures what it is purported to measure, validity is 
more related to how strong the hypothesis outcomes are. It answers the question, are 
we right? Internal and external validity are tested with multivariate models such as 
regression and econometrics.   

One assumption in this study is the limited data over an extended period. The 
extreme maintenance conditions for aviation in the modern era are quite new, especially 
when considering modern weapon systems (fifth-generation aircraft and unmanned 
aircraft). The processes and technologies in this research are mature but under-
documented and mainly untested on a large scale. The data gathered was based on a 
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year of field experiments with an organization that often conducts sea and land repairs. 
This assumption may affect the generalizability, as not all organizations perform extreme 
maritime maintenance. Also, the data is collected from military and civilian employees; 
not all organizations have this blend of employees. Additionally, the U.S. Navy is a 
private, not-for-profit organization that, of course, may differ slightly from a for-profit 
public company, yet productivity and cycle time are still driving factors in both non-profit 
and for-profit organizations. Lastly, it should be noted that more data collected over a 
more significant period would increase the accuracy and precision of the models. 
Exploratory Data Analysis 

This subsection provides an exploratory data analysis of the data collected to 
include statistical tests described in the Analysis section. The variables are reviewed, 
and insights that will later be used in simulations are generated as parameters and 
settings for those models. The first variable explored is the subprocess complexity. As 
discussed earlier, KVA is based on complexity theory and information theory, which is 
essential to understanding which subprocesses engage a more significant part of the 
workforce’s time. Further, the learning time for a subprocess is correlated with the 
complexity of that subprocess. The longer it takes to learn a subprocess, the more 
complex that subprocess. Table 1 displays the rank order of complexity for the 
maintenance subprocesses. It shows that the repair subprocess requires the highest 
learning time and is the most complex sub-process in extreme maintenance and that for 
most subprocesses, learning time is not as substantial as it is for the repair process. The 
second most complex subprocess is the depot repair decision, or whether the repair can 
be completed on-site or needs to be conducted in a higher echelon of maintenance with 
more access to tools, labor, and infrastructure. Rank Order is a more accurate measure 
of complexity with a ratio scale than adjusted Rank Order with an ordinal scale. 

Table 1. Extreme Maintenance Subprocess Complexity and Learning Time 

Sub-
Process # Sub-Process 

Rank Order 
(in 

complexity) 

Rank 
Order 

Adjusted 

Learning 
Time 

(hours) 

1 Maintenance Request 2.91 1 5.74 

2 Depot Repair Decision 4.45 6 21.35 

3 Maintenance Induction 3.73 4 6.34 

4 Part Inventory 3.36 2 5.84 

5 Repair  5.55 7 41.10 

6 Inspection 4.18 5 13.48 

7 End Item Delivery 3.45 3 6.14 
   Total LT 99.98 

   
Correl 

(RO & LT) 0.95 

 
Learning time is the time someone needs to learn how to perform a particular set 

of tasks but not the amount of time to actually perform those tasks. The descriptive 
statistics for the learning time based on the surveys are compiled across the seven 
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subprocesses. The range of learning time is approximately 35 hours, with a mean across 
the subprocesses of 14 hours. The minimum learning time is around 6 hours, with the 
maximum learning time being 41 hours. This data review provides parameters for the 
To-Be models and the four moments. We can also set up a basic statistical test based 
on the information listed in Table 2 for standard deviation and mean. Data skewness is 
greater than one, resulting in a positive skew of the distribution. Lastly, the learning time 
fourth moment or a Kurtosis of 2.9 means that the distribution is more peaked and has 
fatter tails than normal.  

Table 2. Learning Time Descriptive Statistics 

Learning Time 
Descriptive Statistics 
Summary Statistics 

                                                                            
Sub-Processes 7 
Arithmetic Mean 14.28429 
Geometric Mean 10.63972 
Trimmed Mean 14.28429 

SE Arithmetic Mean 4.98427 
Lower CI Mean 4.31574 
Upper CI Mean 24.25283 

Median 6.34 
Minimum 5.74 
Maximum 41.1 

Range 35.36 
Stdev (Sample) 13.18715 

Stdev (Population) 12.20893 
Lower CI Stdev 9.10304 
Upper CI Stdev 25.25902 

Variance (Sample) 173.90093 
Variance (Population) 149.05794 

Coef of Variability 0.92319 
First Quartile (Q1) 5.99 
Third Quartile (Q3) 17.415 

Inter-Quartile Range 11.425 
Skewness 1.7671 
Kurtosis 2.90775 

 
The descriptive statistics just described are visualized with the Box and Whisker 

Plot shown in Figure 1 to give a spatial visual of the descriptive data. The figure further 
shows the positive skew of the learning time and average time to complete per 
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subprocess. The learning time and average time to complete is skewed based on the 
repair and repair decision subprocesses. The X-axis in this chart has no meaning. 

 
Figure 1. Learning Time and AVG Time to Complete by Sub-Process 

The As-Is Expected Project Schedule shown in Figure 2 further shows what 
subprocesses impact the extreme maintenance most. Furthermore, the Tornado 
Analysis shows that Repairs, Field Repair Evaluation, and Inspection are the 
subprocesses that should be targeted for new technologies and process optimization. 
The repair process and the field evaluation process have the most impact on the overall 
extreme maintenance process. The delivery of the repaired aircraft and maintenance 
request subprocesses have the most negligible impact on productivity and cycle time. As 
with most project management, spending effort on the bottleneck subprocess offers the 
most room for productivity and cycle time improvement. If time permits, a focus on 
inspection of the aircraft post repair, maintenance induction, and part inventory 
subprocesses will be of value because the impact on cycle time and productivity may be 
minimal in terms of the days it takes to return the item to service.    

 
Figure 2. The As Is Project Schedule for Subprocesses 
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The investment portfolio for the five models (As-Is, AM, CIB, ML, and AM + CIB + 
ML) is displayed in Figure 3 as a new technology portfolio. This data forecasts the 
baseline As Is process with the new To-Be processes (i.e., AM, CIB, ML, and AM + CIB 
+ ML). The investment portfolio demonstrates that the new technology reduces cost and 
schedule, which is vital in project management. The technology that offers the most 
benefit to the organization is ML. The Y Axis is the number of days expected for the 
repair, while the X-axis is the cost of the repairs. So, the technology on the lower left 
corner of the diagram is beneficial to the organization. For example, ML is completed a 
day and a half faster and about $8,000 cheaper over two weeks. In contrast, CIB, 
followed by AM, also offers gains over the As-Is extreme maintenance process but not to 
the degree that ML does.  

 
Figure 3. New Technology Investment Portfolio 

Based on Monte Carlo simulation, Figure 4 shows the emerging technology’s 
probability density function (PDFs) and the As-Is process with the expected cost. PDFs 
are a statistical measure used to gauge the likelihood that an investment will have 
returns that fall within a range of values and indicate the risks involved. The PDFs in 
Figure 4 are plotted on a graph that resembles a bell curve, with the data lying below the 
curve. Also, the skewed angle at either end indicates greater/lesser risk or reward. The 
wider the curve, the greater the range of possible values. The As-Is process and CIB 
offer the greatest range and higher risk. In contrast, ML and all the technologies 
combined represent less variance, less risk, and a higher reward. 
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Figure 4. Predicted Schedule Saving of the Emerging Technology 

a. HYPOTHESES TESTS 
The hypotheses test evaluates the use of new technology against the As-Is case. 

The eight hypotheses are as follows: 
 

• Hypothesis 1: ML-informed repair decisions will lead to improved extreme 
maintenance process cycle time compared to current extreme 
maintenance repair prediction decision methods.   

• Hypothesis 2: ML effects the extreme maintenance process productivity 
to improve.  

• Hypothesis 3: Using AM improves extreme maintenance process cycle 
time compared to traditional supply chain parts acquisition methods.  

• Hypothesis 4: AM improves extreme maintenance process productivity 
compared to traditional supply chain parts acquisition methods.  

• Hypothesis 5: CIB technology improves extreme maintenance process 
cycle time compared to traditional reach-back methods.  

• Hypothesis 6: CIB technology improves extreme maintenance process 
productivity compared to traditional reach-back methods.  

• Hypothesis 7: AM + CIB + ML technology improves extreme maintenance 
process cycle time compared to traditional methods.  

• Hypothesis 8: AM + CIB + ML improves extreme maintenance process 
productivity compared to traditional methods.  
 

The As-Is, AM, CIB, ML, and AM + CIB + ML cases provide three-point estimates 
for the minimum, the most likely, and maximum estimates for cycle time. As shown in 
Figure 4, these point estimates follow a triangular distribution. The cycle time in days is 
the X-axis, while the rate of change is the Y-axis in Figure 5. 
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Figure 5. Cycle Time Triangle Distribution 

The parameters are then inputted into the Risk Simulator software to generate 
data based on the As-Is and four To-Be process models and are fully simulated. As the 
analysis section discusses, these parameters reflect current survey data and SME 
forecasting input. The hypotheses test data are outputs of simulations run with a 
thousand data points for each of the five models using the risk simulator. The data 
described are shown for the To-Be AM+CIB+ML model in Figure 6, and the simulation 
results obtained are utilized in the hypotheses tests.  

 
Figure 6. Hypothesis Distribution Simulation Data 

The hypotheses tests are parametric two-variable t-tests independent with equal 
variance. They are not dependent; for example, if the technician fixes an aircraft, runs 
the test, and then fixes the same aircraft again, that does not fit the conduct of this study. 
In this study, the technician could be fixing different types, models, or series of aircraft. 
Since the technicians are repairing different aircraft, the overall aircraft repair process 
has similar situations. So, similar situations have equal variance, which means the class 
of aircraft is being repaired by similarly trained individuals. Therefore, the hypotheses 
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test utilizes equal variance. Furthermore, this study is not testing between aircraft, 
surface vessels, votes, and submarines. This is why we use a parametric two-variable t-
test independent with equal variance. 

The hypotheses for cycle time are directional hypotheses. Hypothesis one states 
that ML improves cycle time compared to traditional prediction methods; hypothesis 
three states AM increases cycle time compared to traditional supply chain parts 
acquisition methods; and hypothesis five states CIB technology improves cycle time 
compared to traditional reach-back methods; hypothesis seven states AM + CIB + ML 
technology improves extreme maintenance process cycle time compared to traditional 
methods. Table 3 shows a directional main effects hypothesis. The CIB, hypothesis five, 
is that p-values are less definitive but can still reject the null hypotheses. Finally, 
hypothesis seven is that AM + CIB + ML technology improves cycle time compared to 
traditional reach-back methods, which is statistically significant. 

The hypotheses tests conducted are multiple T-tests with the As-Is model 
compared to the To-Be Model and ANOVAs. The simulation data is broken up into 
groups of hundreds of data points for the AM, ML, CIB, and the three technologies 
combined. The simulation data was generated with a random seed of one and was 
analyzed with a pairwise T-test. The data generator allows the simulation of all four To-
Be processes. Table 3 shows that AM, ML, and AM+ML+CIB all have an effect on cycle 
time, while CIB effects are enough to reject the null hypotheses 50% of the time based 
on the significance level of 0.05. Using AM technology, the null hypothesis can be 
rejected 70% of the time at the significant level of 0.05. Once ML technology is added, it 
is 100% of the time at the significant level of 0.05 and 0.01. 

Table 3. Cycle Time Hypotheses Tests One Tail 

Hypotheses T-Test (Right Tailed, One-Tail)                                      
Results (P-Values) 

Sample AM CIB ML AM+CIB+ML 
1–100 0.202949 0.035302 0.000001 0.001389 

101–200 0.003927 0.088065 0.000000 0.000096 
201–300 0.017506 0.034693 0.000000 0.002298 
301–400 0.002766 0.329675 0.000007 0.000085 
401–500 0.276834 0.398832 0.000003 0.007049 
501–600 0.003153 0.139105 0.000000 0.000107 
601–700 0.007370 0.029176 0.000000 0.000009 
701–800 0.031494 0.425067 0.000051 0.002155 
801–900 0.145179 0.006349 0.000001 0.000153 

901–1000 0.004225 0.007521 0.000007 0.000089 
Significant 
(α=.05) 70% 50% 100% 100% 

Significant 
(α=.01) 50% 20% 100% 100% 
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An ANOVA was conducted to look across all the independent variables at the 
same time. A single-factor, multiple-treatment ANOVA was chosen because each factor 
is applied to the same extreme maintenance repair process. Table 4 demonstrates that 
one or more technologies have a statistically significant effect at Alpha 1% on at least 
one of the levels. 

Table 4. Cycle Time ANOVA Single Factor Multiple Treatment 

Hypotheses Test with ANOVA                                      
Results (P-Values) 

Sample As-Is, AM, 
CIB 

As-Is, AM, CIB, ML, 
AM+CIB+ML 

1–100 0.1770 0.0000 
101–200 0.0252 0.0000 
201–300 0.0752 0.0000 
301–400 0.0172 0.0000 
401–500 0.8502 0.0000 
501–600 0.0221 0.0000 
601–700 0.0396 0.0000 
701–800 0.1148 0.0000 
801–900 0.0271 0.0000 

901–1000 0.0116 0.0000 
Significant 
(α=.05) 60% 100% 

Significant 
(α=.01) 0% 100% 

 
The power analysis for these tests is post hoc, with two variables, with 10 

samples of 100, for the T-test (Figure 7). The Sigma of group one is 16.5346, and the 
Sigma of group two is 1.634913 with a hundred sample size with two tails and an alpha 
of 0.05 with minor effects, so the power is only about 12%. Having 1,000 data points 
does bring the power up to about 74.94%. 
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Figure 7. Power Analysis for Hypotheses Tests 

At the corporate level, ROI and ROK are productivity ratios in accounting, as 
seen in Table 5. ROI is based on revenue in the extreme maintenance case for a non-
profit organization, like the military, in which there is no revenue. The fact that there is no 
revenue is not an issue for ROI, as market comparables can substitute for revenue. 

Table 5. Productivity As-Is and To-Be ROI 

Sub-Process # Sub-Process As-Is 
ROK 

As-Is 
ROI 

To-Be 
ROI AM 

To-Be ROI 
CIB 

To-Be ROI 
ML 

To-Be ROI 
AM, CIB & 

ML 

1 Maintenance Request 77.23% 10.72% 10.72% 10.72% 11.00% 11.00% 

2 Depot Repair Decision 95.27% 41.99% 41.99% 41.99% 42.50% 44.00% 

3 Maintenance Induction 66.39% -3.82% -3.82% -1.00% 0.00% 1.00% 

4 Part Inventory 70.93% 3.75% 5.00% 4.00% 4.00% 4.50% 

5 Repair  62.82% -5.95% -2.00% -2.00% 1.50% 3.50% 

6 Inspection 100.41% 49.80% 49.80% 50.50% 51.00% 50.50% 

7 End Item Delivery 88.57% 29.54% 29.54% 31.00% 30.00% 30.50% 

 ROI Totals     126.03% 131.23% 135.21% 140.00% 145.00% 

Table 6 shows the results of the productivity hypotheses. Hypothesis 2: ML 
effects process productivity to improve, and hypothesis 4: AM increases productivity 
compared to traditional supply chain parts acquisition methods. Additionally, hypothesis 
6 states that CIB improves productivity compared to traditional reach-back methods. 
Finally, hypothesis 8 states that AM + CIB + ML improves productivity compared to 
traditional reach-back methods. 
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Table 6. Productivity Hypothesis Testing 

Hypotheses T-Test (Left Tailed, One-Tail)                                      
Results (P-Values) 

Sample AM CIB ML AM+CIB+ML 
1–100 0.000100 0.197900 0.002107 0.000778 

101–200 0.033700 0.014390 0.000686 0.001050 
201–300 0.004625 0.145225 0.000147 0.000008 
301–400 0.014260 0.004070 0.000010 0.001569 
401–500 0.000110 0.009500 0.000564 0.000191 
501–600 0.056720 0.032137 0.001158 0.006239 
601–700 0.011170 0.235800 0.000693 0.056232 
701–800 0.004590 0.002750 0.000337 0.002207 
801–900 0.000062 0.472000 0.000653 0.021535 

901–1000 0.016810 0.387479 0.000003 0.012274 
Significant 
(α=.05) 90% 50% 100% 90% 

Significant 
(α=.01) 50% 30% 100% 70% 

The productivity hypotheses are evaluated using the same methodology as the 
cycle time hypotheses. The forecasting parameter estimates are derived from the 
literature review and SME input. The ANOVA results are shown in Table 7. 

Table 7.  Productivity ANOVA Results 

Hypotheses Test with ANOVA                                      
Results (P-Values) 

Sample As-Is, AM, 
CIB 

As-Is, AM, CIB, ML, 
ALL 

1–100 0.0047 0.0069 
101–200 0.1032 0.0046 
201–300 0.0854 0.0001 
301–400 0.0128 0.0003 
401–500 0.0035 0.0015 
501–600 0.1365 0.0125 
601–700 0.1709 0.0204 
701–800 0.0071 0.0037 
801–900 0.0013 0.0161 

901–1000 0.1637 0.0005 
Significant 
(α=.05) 50% 100% 

Significant 
(α=.01) 40% 70% 
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Conclusion 
In various extreme conditions such as aircraft or ship battle damage repair, 

extreme cold Alaska pipeline repair, and COVID-19 repair processes, the use of modern 
information technologies such as ML, AM, and CIB are not being leveraged to optimize 
productivity and reduce cycle time in these critical maintenance processes. The literature 
on process optimization does not address the use of modern technology for optimization 
in extreme maintenance conditions. Therefore, the purpose of this research was to 
estimate the value added by information technology to optimize process productivity and 
reduce cycle time for extreme maintenance processes. This research aimed to extend 
process optimization theory to include the effect of modern information technology in 
extreme maintenance conditions. It is critical in the DoD context because failure to repair 
battle-damaged equipment remotely (without access to the depot), correctly, efficiently, 
and quickly can make the difference between winning and losing a conflict. 

Furthermore, extreme maintenance reach-back to the depot for resources or data 
is problematic, using existing repair processes and systems as the technician must 
assume they must operate independently. The current research demonstrated that the 
three technologies (AM, CIB, and ML) technologies potentially offer ways to significantly 
improve the ROI of the extreme maintenance process and reduce the cycle time of the 
process. AM alone will potentially decrease cycle time and increase productivity 
compared to traditional supply-chain parts-acquisition methods. CIB technology will 
potentially improve cycle time and productivity compared to traditional reach-back 
methods, in spite of its newness and potential performance volatility. The research 
clearly demonstrated that ML technology can also be used to improve cycle time and 
productivity compared to traditional extreme maintenance decision-making prediction 
methods. The extreme maintenance research findings are summarized in Table 8.    

Table 8. Extreme Maintenance Findings Summary 

Extreme Maintenance Finding Summary  

Technologies 
Cycle Time 

(Schedule/Cost savings 
[Labor]) 

Productivity (Value) Comments 

AM Moderate improvement Significant improvement 
Technology gains offer an 
immediate impact with little 
fielding challenges. 

CIB Slight improvement  Slight improvement  New technology, high volatility, 
enabler for AM & ML. 

ML Significant improvement Significant improvement 

Highest improvement of all 
technologies. Implementation 
might be a challenge due to data 
availability and extreme 
maintenance hosting 
environment. 

AM + CIB + ML Significant improvement Significant improvement 

Recommended option due to 
improvements in Cycle Time/ 
Productivity, and 
complementary technologies 
that reduce risk to increase 
upside. 

 



Acquisition Research Program 
department of Defense Management - 61 - 
Naval Postgraduate School 

The results of this research clearly demonstrated that the three IT technologies 
have the potential to significantly improve the productivity and cycle time of an extreme 
maintenance process. As such, this research extends the current EOIT and process 
optimization research areas to include this critical context. Further, this research 
extension can cover the extreme maintenance domain in for-profit (e.g., North Slope Oil 
extraction operations) and non-profit organizations (e.g., battlefronts without convenient 
reach back to a maintenance depot).  
Research Limitations 

One of the issues is that the potential emerging technologies (AM, CIB, ML) have 
not been tested in extreme maintenance conditions. This study does not test them, and 
the potential for these emerging technologies is being modeled economically. The 
dissertation proposes that investment decisions are based on modeling and simulating 
their value in extreme maintenance. The ML techniques are often subject to the inability 
to identify flaws and errors, and there are difficulty in identifying scope and reliability 
models.  
Future Work 

The real problem facing the U.S. Naval Mission is automating the fleet to include 
autonomous vessels. By 2045, the U.S. Navy is estimated to have 500 vessels, with at 
least 150 being autonomous (Tangredi & Goldorski, 2021). If we extrapolate to the 
aviation fleet, we can expect at least a third to be unmanned. These unmanned aerial 
systems (UASs) will need maintenance. This is a paradigm shift for extreme 
maintenance because repairs will not focus on human safety. Maintenance in the future 
will have more significant gains with new technological improvements, such as AM, ML, 
and CIB. New technologies that scale will be critical, that is, the AI/ML architecture 
explored within future Joint Task Force (JTF) extreme maintenance operations. The 
commanders can shape the battlespace by maintaining combat power and utilizing 
these system capabilities.  

Additional analysis of the warfighting staff and AM, CIB, and ML can transform 
process optimization and ultimately enable decision-makers to manage extreme 
maintenance risk based on the data. Also, future work is needed to explore any 
weaknesses with CIB and address AM cyber vulnerabilities (i.e., data poisoning) in the 
extreme maintenance use case. 

UAS assets’ acceptable repair thresholds can change the level of acceptability 
for parts and repairs in general. As long as a UAS can accomplish its mission, a 
triumphant return of the asset to friendly territory might not be necessary. The secondary 
contribution of this research is the use of the methodologies of evaluating emerging 
EOIT and contextualizing extreme maintenance processes to refracture the existing RO 
approach to unmanned systems. Future research will take this research and continue to 
test and refine the model and conduct field experiments where possible. As discussed 
earlier—the more accurate the data, the better the forecast for the models.    
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