

Critical Technologies

NPS 21ST ANNUAL ACQUISITION RESEARCH SYMPOSIUM

Mr. Maynard Holliday PTDO Assistant Secretary of Defense for Critical Technologies Office of the Assistant Secretary of Defense for Critical Technologies (OASD(CT)) May 2024

DISTRIBUTION A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

OUSD(R&E) STRATEGIC VISION

RESEARCH

UNDER SECRETARY OF DEFENSE 3030 DEFENSE PENTAGON WASHINGTON, DC 20301-3030

February 1, 2022

SUBJECT: USD(R&E) Technology Vision for an Era of Competition

The Office of the Under Secretary of Defense for Research and Engineering (OUSD(R&E) will spearhead a National Defense Science and Technology strategy for the Department of Defense (DoD), informed by the 2022 National Defense Strategy (NDS) and structured around three strategic pillars: mission focus, foundation building, and succeeding through teamwork. This technology strategy will chart a course for the United States' military to strengthen its technological superiority amidst a global race for technological advantage.

To maintain the United States military's technological advantage, the Department will champion research, science, technology, engineering, and innovation. From the earliest days of this country the role of technology in shaping military concepts and providing for the defense of the nation has been essential. The demands of the present era call for new operational concepts, increasingly joint operations, and quickly fielding emerging science and technology opportunities.

Strategic competitors to the United States have greater access to commercial state-of-theart technologies than ever before and can wield these technologies to be disruptive to America's interests and its national security. The challenges facing our country are both diverse and complex, ranging from sophisticated cyber-attacks to supply chain risks, and from defending Succeed through Teamwork: Maximize our asymmetric advantages by partnering with the larger innovation ecosystem, from industry to universities and to laboratories, allies and partners.

The Department must expand its relationships with the entire technology ecosystem across America and its allies and partners. Innovation has always been a strength of the United States, and the Department will harness that innovation. The Department must focus its developmental resources on unique capabilities needed by the military and quickly adopt the best commercial dual-use technologies. In the era ahead, the Department will diversity partnerships to bring in creative new entrants. Allies and partner nations are an asymmetrical advantage for the United States, and the Department will partner with nations that are aligned with the principles of the United States to jointly develop and deploy technology.

C. Critical Technology Areas

The OUSD(R&E) works closely with the Military Services, Combatant Commands, industry, academia, and other stakeholders to ensure that the Department's science and technology strategy addresses the key national security challenges—from rising seas to a rising China—that the United States faces today and will face in the future.

Three categories of technology areas recognize the more varied and complex environment for investment, development, and application of technology that characterizes the early 21st century. There are 14 critical technology areas vital to maintaining the United States' national security grouped into three categories. While many technologies may cross between these categories, these groupings represent the broad and different approaches that are required to advance technologies crucial to the Department. By focusing efforts and investments into these 14 critical technology areas, the Department will accelerate transitioning key capabilities to

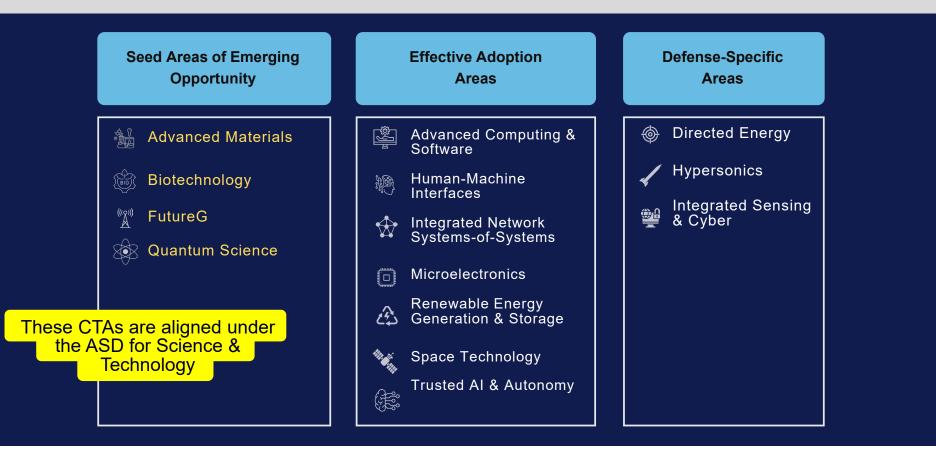
nands. As the Department's technology strategy tment will updrep its critical technology priorities.

TECHNOLOGY VISION FOR AN ERA OF COMPETITION

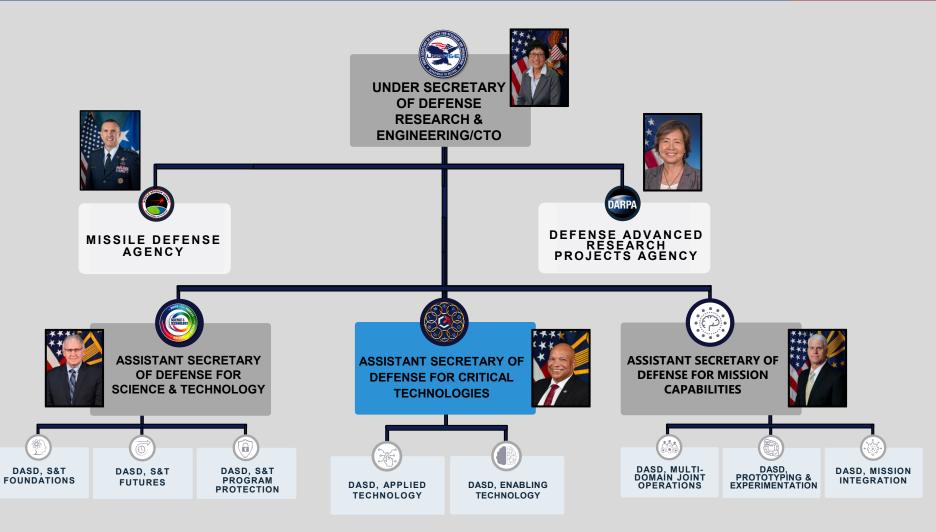
breakthroughs to prevent technological surprise. The Department must harness the incredible innovation ecosystem both domestically and globally in order to stay ahead of our competitors. Biotechnology Biotechnology is an emerging e

Three categories of technology areas recognize the more varied and complex environment for investment, development, and application of technology that characterizes the early 21st century. There are 14 critical technology areas vital to maintaining the United States' national security grouped into three categories. While many technologies may cross between these categories, these groupings represent the broad and different approaches that are required to advance technologies crucial to the Department. By focusing efforts and investments into these 14 critical technology areas, the Department will accelerate transitioning key capabilities to the Military Services and Combatant Commands. As the Department's technology strategy evolves and technologies change, the Department will update its critical technology priorities. incert discipline that uses living systems to produce or utiles. From fighting global pandemics and as and sustainment costs and increasing energy unge the way the Department conducts missions, avironments, and adapts to major global changes.

physical properties at small, even atomic, scales. mic clocks, quantum sensors, quantum computing, and mcc promises to enable leap-ahead capabilities. unprecedented computational speeds and help solve the problems. Quantum sensors promise the ability to in position, navigation, and timing. From more accurate


3

CRITICAL TECHNOLOGY AREAS



The creation of the Office of the Assistant Secretary of Defense for Critical Technologies was informed by the 2022 and 2019 National Defense Strategies, which initially established the previous modernization priority areas. Expanding on the original priorities, there are now 14 critical technology areas that are vital to maintaining the United States' national security, grouped into three categories.

OUSD(R&E) ORGANIZATIONAL STRUCTURE

ASD(CT) LEADERSHIP

DISTRIBUTION A.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

OUR MISSION

To drive the critical technological vision for the DoD, to accelerate the transition of key capabilities, and to maximize our technological advantage for the future fight.

"We cannot expect success fighting tomorrow's conflicts with yesterday's weapons or equipment."

- 2018 National Defense Strategy

CRITICAL TECHNOLOGY AREAS & TRANSITIONS

Defense-Specific

Areas

@@

Integrated Sensing & Cyber

Hypersonics

Directed Energy

Effective Adoption Areas

310+ transitions tracked in last 3 years

60% already delivered to COCOM & Components direct from innovation unit or as commercial-off-the-shelf (COTS)

40% baselined in acquisition programs for future delivery to COCOMs & Components

20% to multiple COCOMs

15% COCOM unique

65% to IC and whole-of-US government support to COCOMs & Components

DISTRIBUTION A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

TRUSTED AI & AUTONOMY (TAI&A)

83+ successful transitions. Machines with logic, rules, knowledge bases and/or learning algorithms to assist human decision-making or performing autonomously. Focus on trusted AI and autonomous systems.

Already delivered to COCOMs directly from innovation unit or as commercial purchase:

Automatically detect, attribute, and characterize falsified media disinformation attacks via DARPA Semantic Forensics (SemiFor)

Low-cost kinetic strike capability from UAV swarms launched from long-endurance UUVs via ONR's LOCUST launcher tube

Persistent maritime surveillance from wind-powered Sail Drones via the DIU Persistent Maritime ISR project

Networked manned-unmanned aircraft and munitions via AFRL's Skyborg and Golden Horde

Baselined in acquisition programs for future delivery as/or part of weapon system:

Accelerated kill chain for mine countermeasures when DIU/NAVSEA AI-enabled automated target recognition delivered via Navy LIONFISH small class UUV in FY24

DIRECTED ENERGY

9+ successful transitions. Rapid responses and engagement at the speed of light to counter wide variety of current and emerging threats. Focus on high-power lasers and high-power microwave technologies.

Already delivered to COCOMs directly from innovation unit or as commercial purchase:

Protect munitions from Directed Energy countermeasures and weapons using AFRL's Directed Energy Survivable Standoff Munitions (DESSM) JCTD

Real-time alerts to prevent fratricide and avoid collateral damage from R&E's predictive Deconfliction Safety Software (DSS) available in industry

Defeat UAVs by pairing surface-to-air missiles with 10 kW High Energy Laser (HEL) delivered by Air Force HEL Weapon System (HELWS)

Characterize laser lethality effects on targets using Laser Vulnerability Models developed by multiple services and R&E

Baselined in acquisition programs for future delivery as/or part of weapon system:

Offense and defense capability from 300 kW HEL with R&E High Energy Laser Scaling Initiative (HELSI) lasers delivered by Army, Navy and Air Force Programs beginning FY24

DEFENSE CAPABILITY AREAS

Defeat time critical and heavily defended land and sea targets from survivable standoff range

Defeat adversary hypersonic threats

Notional aircraft image is UNCLASSIFIED

HYPERSONICS

22+ successful transitions. Overmatch against strategic competitors pursuing and rapidly fielding advanced hypersonic missiles. Focus on leap-ahead cost-effective technologies for air, land, and sea operational forces.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Baselined in acquisitions programs as/or part of weapon system

Land-launched intermediate range hypersonic strike when OSD's Common Hypersonic Glide Body (CHGB) delivered via the Army Long-Range Hypersonic Weapon (LRHW)

Air-launched medium-range hypersonic strike when the DARPA/AFRL's Tactical Boost Glide (TBG) delivered via the Air Force AGM-183 Air Launched Rapid Response Weapon (ARRW) Program

Sea-launched intermediate range hypersonic strike when OSD's Common Hypersonic Glide Body (CHGB) delivered via Navy Conventional Prompt Strike (CPS) weapon

Air-launched medium-range stand-off strike hypersonic capability when DARPA/AFRL's Hypersonic Air-Breathing Weapons Concept (HAWC) delivered via Air Force Hypersonic Attack Cruise Missile (HACM) Program

SPACE TECHNOLOGY

34+ successful transitions. Robust, proliferated architectures for resilient cross-domain operations. Focus on
 adaptive/reconfigurable space situational awareness/control, communications, on-orbit processing and autonomous capabilities.

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

Already delivered to COCOMs directly from innovation unit or as commercial purchase:

Automated real-time alerts from space assets via AFRL's Space Domain Characterization and Control System (SDCCS) Low cost, high cadence commercial launch capabilities provided by DIU Small Responsive Launch program Day/night, all-weather commercial SAR imaging from DIU's Peacetime Indications & Warnings.

Baselined in acquisition programs for future delivery as/or part of weapon system:

Better detection & warning of ballistic missile events when AFRL's large format focal plane array of 4 million pixels is launched by Space Force Next-Gen Overhead Persistent Infrared Program in FY25

More affordable, secure, higher bandwidth communication from SDA & DARPA's Optical Intersatellite Link & processor when launched in FY26

MICROELECTRONICS A "MUST-WIN" TECHNOLOGY FOR DOD

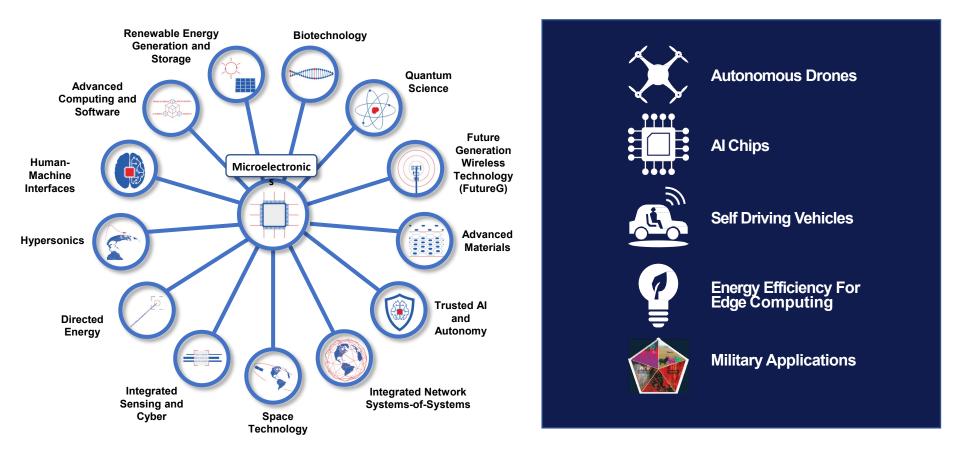
BUILDING RESILIENT SUPPLY CHAINS, REVITALIZING AMERICAN MANUFACTURING, AND FOSTERING BROAD-BASED GROWTH

100-Day Reviews unde Executive Order 14017

June 2021

NATIONAL DEFENSE Science & Technology Strategy 2023 **Semiconductors are essential to national security** as they are fundamental to the operation of virtually every military system, including communications and navigations systems and complex weapons systems such as those found in the F-35 Joint Strike Fighter.

DoD will accelerate the process of turning ideas into capabilities by creating new pathways to rapidly experiment with asymmetric capabilities and deliver new technologies at scale. Doing so requires bridging the valley of death between prototypes and full-scale production.



The NSTC will be able to support technologies emerging from the Commons and will collaborate closely with DOD to ensure program coordination and sharing of resources as part of the broader whole-of-government approach in alignment with the national strategy.

CRITICAL TECHNOLOGY SYNERGIES: MICROELECTRONICS

MICROELECTRONICS

43+ successful transitions. Secure microelectronic sources for defense needs that leverage state-of-the-art (SOTA) commercial development and production. Focus on restoring diminished manufacturing in the U.S. and supply chain.

Already delivered to U.S. Industrial Base ensuring secure DoD and commercial supply chains for all COCOMs:

Defense primes Boeing and Northrop-Grumman Corps. leading physical design testing of Intel's 18A chip via R&E's Rapid Assured Microelectronics Prototypes – Commercial (RAMP-C)

Advanced communications, EW, and other applications from ONR's domestic large diameter Radio Frequency (RF) Gallium Nitride (GaN) semiconductors and DARPA's millimeter-wave GaN fabrication process

Security enhancements via AFRL and Intel's FPGA Security Enhancements effort to develop new cryptographic logic features for improved symmetric key encryption and asymmetric key authentication

Enhanced sensor capabilities via NRL & DoD Manufacturing Innovation Institute (MII) Ultra-Low Loss Silicon Nitride Photonics Platform

RECENT SPACE TECHNOLOGY HIGHLIGHTS

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

- 105 2023 launches, likely 150+ for 2024
- 7th X-37B Space Plane launch 1st on Falcon Heavy
- Successful 1st Flight Vulcan rocket
- Starship/Super Heavy Launch vehicle tests
- VICTUS NOX (USSF/Firefly/Millennium) in 27 hours
- Amazon Kuiper and SpaceX both demonstrated Optical Inter-Satellite Links (OISLs) on orbit
- AUKUS: Deep Space Advanced Radar Capability
- SDA Tranche 0 Launches, Link-16 test from LEO
- Direct-to-Device Cell Phone (4G, 5G) Tests (e.g. AST SpaceMobile, Lynk Global)
- India 4th to land on moon (Chandrayaan-3)

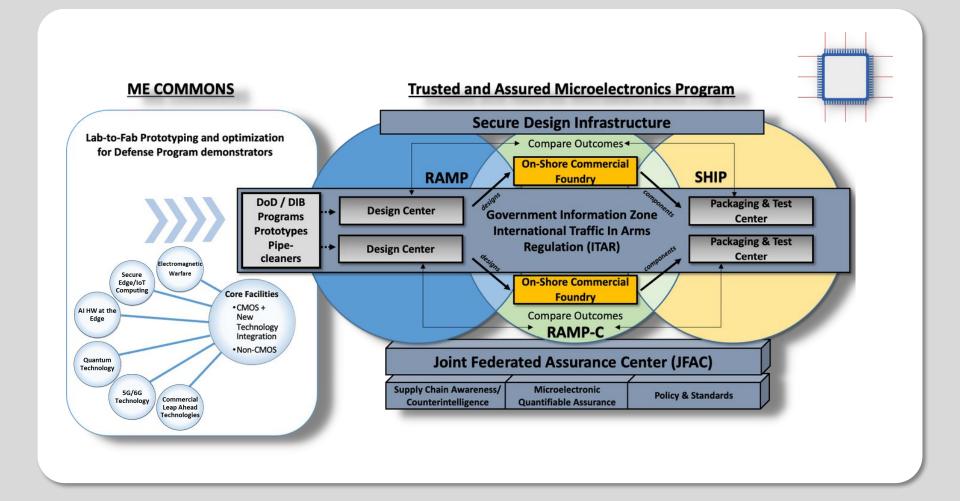
R&E SPACE ROADMAP

R&E Space Technology MISSION

Leverage commercial, foreign, and USG investments, and transition to (1) acquisition programs of record, (2) operators, and 3) commercial products and services

VISION :

- Empower National S&T Strategies
- Optimize DoD R&E investment
- Champion Service and OUSD(R&E) space priorities
- Perform independent assessments
- Push for revolutionary capability
- Pursue asymmetric projects


Backup

DISTRIBUTION A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

T&AM PROGRAM ENABLING ACCESS TO STATE OF THE ART (SOTA)

SUMMARY OF CTAs

A	dvanced Computing & Software	Includes supercomputing, cloud computing, data storage, computing architectures, and data processing. The speed at which software develops outpaces DoD's ability to stay up to date. We must rapidly modernize legacy software systems with resilient, affordable, and assured new software that has been designed, developed, and tested using processes that establish confidence in its performance.
Ó	Directed Energy	Directed energy systems will allow us to counter a wide variety of current and emerging threats with rapid responses & engagement at the speed of light. High-power lasers and high-power microwave technologies both offer new ways to counter diverse sets of threats.
Control of the second s	Human-Machine Interfaces	Rapid advancements in this technology will have a multitude of benefits for our service members. Highly immersive realistic training environments provide real-time feedback to enhance warfighter performance. Intuitive interactive human-machine interfaces enable rapid mission planning and mission command by providing a common operational picture to geographically distributed operations.
	Hypersonics	While strategic competitors are pursuing and rapidly fielding advanced hypersonic missiles, the DoD will develop leap-ahead and cost-effective technologies for our air, land, and sea operational forces.
÷	Integrated Network Systems-of-Systems	An interoperable network that leverages emerging capabilities across the electromagnetic spectrum such as 5G, software defined networking and radios, and modern information exchange techniques will allow us to better integrate many diverse mission systems and provide fully networked command, control, and communication that is capable, resilient, and secure.
	Integrated Sensing & Cyber	To provide advantage for the joint force in highly contested environments, we must develop wideband sensors to operate at the intersection of cyberspace, electronic warfare, radar, and communications. Sensors must be able to counter advanced threats and can no longer be stove-piped and single function.
	Microelectronics	Diminishing microelectronics manufacturing in the U.S. and supply chain concerns have highlighted national economic and security risks. Working closely with industry, academia, and across the Government, we are addressing the need for secure microelectronics sources and will leverage state-of-the-art commercial development and production for defense microelectronic solutions.
Ê	Renewable Energy Generation & Storage	Renewable energy generation and storage promises to decrease warfighter vulnerability and deliver new operational capabilities for the Department From more efficient batteries to diversifying energy sources and reduced fuel transportation risks, renewable energy generation and storage will add resilience and flexibility in a contested logistics environment.
	Space Technology	Our space strategy must shift away from exquisite satellites to a more robust and proliferated architecture. Novel space technologies are necessary to enable resilient cross-domain operations. The space strategy must incorporate technologies that enhance our adaptive and reconfigurable capabilities in space situational awareness, space control, comms path diversity, on-orbit processing, and autonomy.
	Trusted AI & Autonomy	Machine learning is an engineering subfield of AI that trains software models using example data, simulations, or real-world experiences rather than by direct programming or coding. Autonomy is the engineering discipline that expands robots' abilities to perform tasks while limiting the need for human interaction. Trusted AI with trusted autonomous systems are imperative to dominate future conflicts.

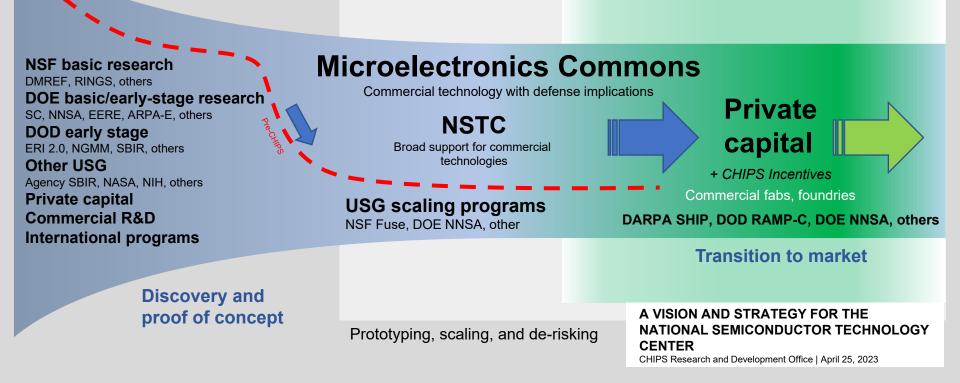
Hypersonics

Dr. James W. Weber Principal Director, Hypersonics Office of the Assistant Secretary of Defense for Critical Technologies (OASD(CT))

DISTRIBUTION A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

STRATEGIC APPROACH

- Hypersonics is one of 14 Critical Technology Areas (CTAs) for the Department of Defense.
- The Department's Hypersonics approach accelerates development and transition of transformational warfighting capability based on hypersonic systems to our Armed Forces and into the hands of the warfighter.
- The Department's development of hypersonic technology will deliver additional cuttingedge capabilities and strategic options to our Armed Forces, supplementing our existing unparalleled capabilities.
- Developing and delivering hypersonic capabilities, along with other advanced technologies and new operating concepts, will ensure the Department maintains the ability to deter potential adversaries and to defeat aggression, if necessary.


DoD has an integrated strategy to accelerate development and delivery of hypersonic systems to the warfighter.

CHIPS OFFERS A WHOLE OF GOVERNMENT APPROACH

The NSTC and Microelectronics Commons will expand the number of concepts and ideas that can transition from proof-of-concept to the market.

MICROELECTRONCS COMMONS ACCOMPLISHMENTS microelectronicscommons.org

Establishment of Microelectronics Commons Program

The Microelectronics Commons is Now a Reality

(U) Microelectronics Commons Request for Solution (RFS)

- The Microelectronics Commons RFS was released on November 30, 2022. Solutions were received and the RFS was closed on February 28, 2023
- Source Selection Determination Completed

(U) Microelectronics Commons Call for Projects (CFP)

• The Microelectronics Commons CFP was released and the Hub responses with proposals are due by 28 February 2024

(U) The Microelectronic Commons Leadership Performed on-site Hub visits to each of the 8 Hubs during late January and early February 2024

(U) Industry Days and Inaugural Microelectronics Commons Meeting

- Industry Days were successfully conducted on December 7 8, 2022. The event saw both senior leadership and significant interagency participation. There were more than 900 participants in attendance at this hybrid event held at the Ronald Reagan Building and International Trade Center in Washington, D.C.
- The Inaugural Microelectronics Commons Meeting was held on 17-18
 October 2023 in Washington, DC

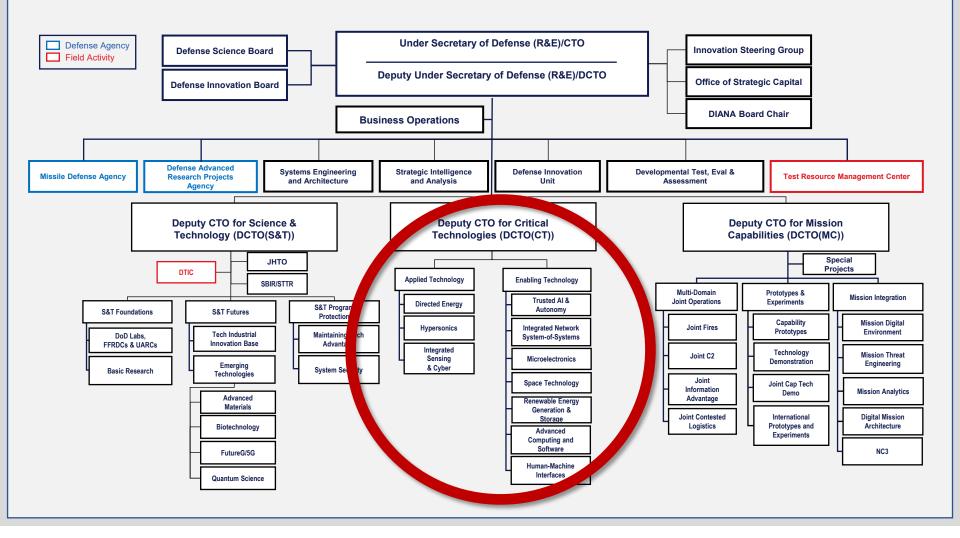
(U) The Deputy Secretary of Defense announced 8 Hub Award Winners on 20 September 2023

- Arizona State University led Southwest Advanced Prototyping or SWAP Hub – \$39.8 million
- Midwest Microelectronics Consortium (MMEC) Hub \$24.3 million
- North Carolina State University led Commercial Leap Ahead for Wide Bandgap Semiconductors (CLAWS) Hub – \$39.4 million
- The Applied Research Institute led Silicon Crossroads Microelectronics Commons Hub – \$32.9 million
- Stanford University led California-Pacific-Northwest AI Hardware or Northwest AI Hub – \$15.3 million
- The Massachusetts Technology Collaborative led Northeast Microelectronics Coalition Hub – \$19.7 million
- The State University of New York led Northeast Regional Defense Technology or NORDTECH Hub – \$40 million
- The University of Southern California led California Defense Ready Electronics and Microdevices Superhub (DREAMS) Hub – \$26.9 million

MICROELECTRONICS ROADMAP OBJECTIVES

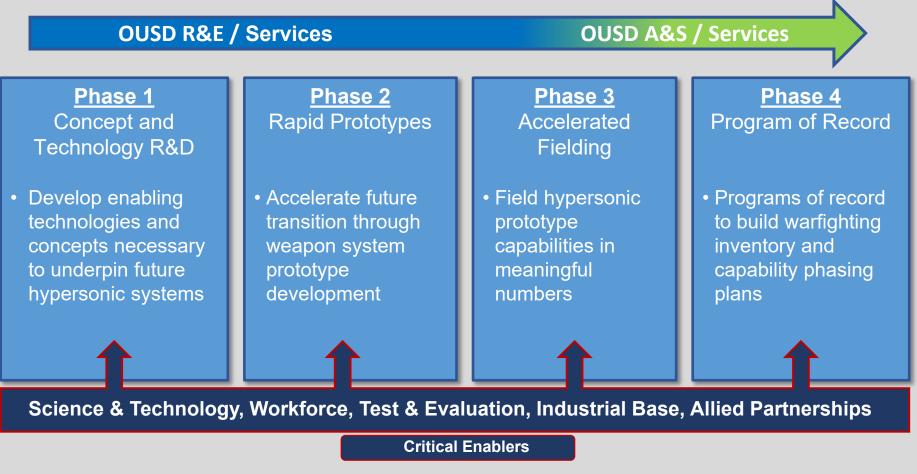
Access State of the Art (SOTA) Microelectronics	GOAL: Enable access to the best commercial technologies for military applications while implementing evidence-based assurance practices.
Access to Advanced Packaging and Test	GOAL: Enable military system modernization by providing sustained access to state-of-the-art (SOTA) customized advanced packaged microelectronics.
Access to Radiation Hardened (RadHard) Microelectronics	GOAL: Provide critical radiation-hardened technologies to DoD programs in four areas: Radiation Hardened (RH) by Process (RHBP), Radiation Hardened By Design (RHBD), Radiation Hardened Stand Alone Components, and Radiation Hardened Laboratory Modernization.
Microelectronics Assurance (MEA)	GOAL: Provide capabilities (tools, technologies, and techniques) to conduct verifications and validations to ensure the confidentiality and integrity of microelectronic components from an untrusted/commercial global supply chain.
Access RF-OE SOTA Microelectronics	GOAL: Develop domestic access to mature SOTA RF/OE materials, foundries, and packaging, which enables next generation sensors and communications; demonstrate ecosystem alignment via SOTA RF/OE devices and subsystems which transition USG S&T to the Defense Industrial Base and Programs of Record.
Education & Workforce Development	GOAL: Attract, develop, and maintain a skilled, clearable technical workforce to support design, development, fabrication, verification, validation, security, and modernization of microelectronics.
Microelectronics Commons	GOAL: Enable lab-to-fab prototyping – evolving microelectronics laboratory prototyping to foundry/fab prototyping – in domestic facilities, and fosters a pipeline of semiconductor talent.

DOD RESEARCH AND ENGINEERING ENTERPRISE

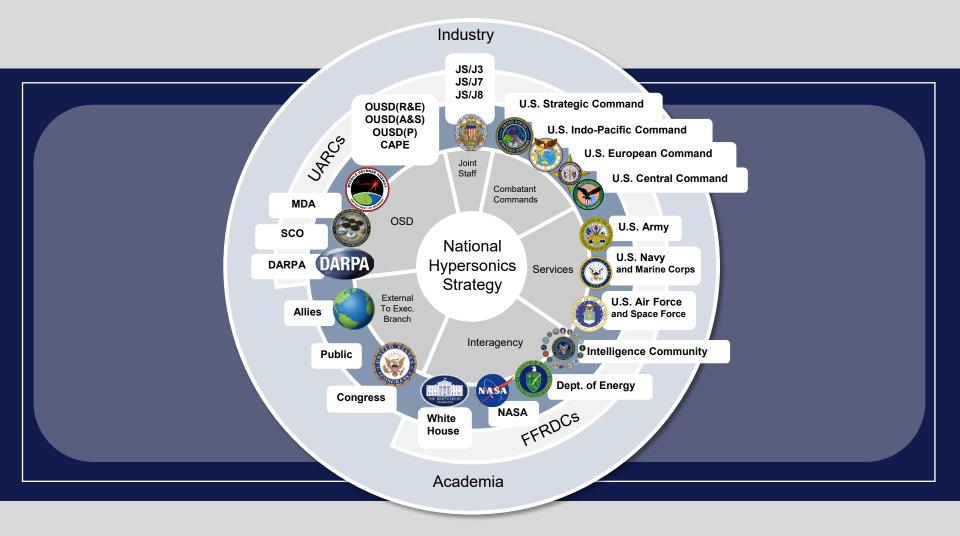

CREATING THE TECHNOLOGIES OF THE FUTURE FIGHT

DISTRIBUTION A. APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED

OUSD (R&E) ORG CHART


DISTRIBUTION A.

ACCELERATED DELIVERY


 Accelerated development and transition of transformational warfighting capability based on hypersonic systems

STAKEHOLDERS AND PARTNERS

