In-Service Support of Surface Navy Combat Systems Safety, Effectiveness, and Affordability Reviews The Systems Engineering Process at NSWC PHD

CDR Stephen Meade Air Dominance Department Officer NSWC Port Hueneme Division Contributing Authors: Kris Hatakeyama Juan Camacho Karen Brower Dave Scheid

NPS Acquisition Research Symposium 10-12 May 2011

Distribution Statement A: Approved for public release; distribution is unlimited.

- SEAR Process Overview
- SEAR Elements
- Lessons Learned
- Benefits and Impact on Industry
- Way Ahead Recommendations
- Conclusion

Safety, Effectiveness, Affordability Review (SEAR) Process Overview

- A systems engineering process used by the In-Service Engineering Agent (ISEA) to effectively execute its mission
- Allows ISE to make informed recommendations with respect to readiness, life cycle maintenance and modernization
- Promotes the sharing of best practices and lessons learned
- Key to knowledge management

Improves Fleet Readiness from a safety, capability, maintainability and availability aspect.

Distribution Statement A: Approved for public release; distribution is unlimited.

Closed Loop Engineering Process

SEAR Process for Affordable Operational Effectiveness

Effectiveness consists of:

- Capability Perform specific mission
- Availability Operational availability
- Personnel Documentation, Training, HSI

$E = f \{ P_C, A_0, P_P \}$

 P_{c} = Probability of Capability P_{p} = Probability of Personnel

Expressed as a function of Capability, Availability and Personnel

Effectiveness: Availability Sample RMS Metrics

Five 1 year periods each ending JUL31

Affordability Example

Distribution Statement A: Approved for public release; distribution is unlimited.

SEAR: Interoperability

	Air & ASCM Defense	SUW	USW	MIW	EW	STRK	AMB
	PCD	PCD	PCD	PCD	PCD	PCD	PCD
Surveillance Track Reporting							N/A
Identification				N/A	N/A	N/A	N/A
Mutual Tracking			N/A	N/A	N/A	N/A	N/A
Positively ID Friendly Forces			N/A	N/A	N/A	N/A	N/A
Engagement & Force Status			N/A	N/A			N/A
Air Control Support				N/A	N/A		N/A

Lessons Learned/Recommendations: Poor Reliability

DATA / INFO

Graphics Processor exceeds predicted Failure Rate

ISEA ANALYSIS

Various component failures and workmanship issues

RESULTS

OEM implementing workmanship and process control improvements through out manufacturing process.

Lessons Learned/Recommendations: High Fleet Repair Cost

DATA / INFO OPTAR costs for DD SWT is high

ISEA ANALYSIS DD SWTs are within predicted failure rate. DD SWTs are reaching end of life

RESULTS

PORT HUENEME

ISEA and OEM identified a more robust filament wire thereby doubling the MTBF.

Future State

Future State

DoDAF / SEAR

All View Information pertinent to the entire architecture

•The condition of being safe from undergoing or causing hurt, injury, or loss

Operational View

 Tasks or activities performed, and the information that must be exchanged to accomplish DoD missions

System View

 System, service, and interconnection functionality providing for, or supporting, operational activities

Technical View

 Minimal set of rules governing the arrangement, interaction, and interdependence of system parts or elements

Operational Availability (Ao)

Capability of Performance (Pc) Capability to perform a given mission

 Likelihood that, when required, a system is operating at a pre-defined performance level and for a sufficient duration of time to accomplish its mission

People Factor (Pp)

 Probability of humans performing all of the necessary steps on time to properly set up and operate one or more systems and complete the mission

Affordability

Relationship of safe and effective metrics to cost

Benefits & Industry Impact

<u>Benefits</u>

- Systems Approach
- Addresses Fleet Support Concerns
- Readiness Improvement Recommendations
- Risk Mitigation
- Cost / Decision Tradeoffs
- Knowledge Management
- Facilitates Reduced Life Cycle Cost

Industry Impact

- Feedback through PEO
- Collaboration via IPTs & WGs
- Life cycle lessons rolled back into Design
 - New System, capability & baseline development
- **ID** improvements in:
 - Design
 - Reliability
 - Life Cycle Cost reductions
 - HSI
 - Manufacturing QA process
 - Tools & training

Way Ahead Recommendations

- Expand this process across the ISEAs to allow for all elements and systems to be rolled up into the platform level SEARs
- Predict potential failures of a critical parts and recommend replacement to prevent a system casualty while underway.
- Provide recommendations with clear impacts to a warfare area requirement, major combat operation requirement, or a specific mission thread requirement
- Data Analysis and recommendations should be provided to technical and acquisition community, including industry partners

Conclusion

- SEAR process is fundamental to the ISEA's system engineering process.
- Closed loop and disciplined process that is applied to the examination and internal sharing of data and information
 - Equipment, Combat System, Ship Class, and Strike Group
- Facilitates integration of by requiring the sharing of information between the levels and by promoting best practices across organizational boundaries.
- The SEAR process enables the ISEA to arrive at informed decisions, anticipate Fleet and program sponsor issues
- SEAR process provides technical and acquisition community with recommendations that will improve fleet readiness and future designs.

Safe, Effective and Affordable Combat Systems