Georgia Research Tech ∦Institute Advantages of Using Complex Decision Support Tools in Planning Multi-modal Test Programs

9 May 2024

Milo Taylor, GTRI Craig Arndt, GTRI David Zurn, GTRI

Research Question

We seek to highlight some challenges and approaches for developing alternate test modalities for complex systems. We devise a Multi-modal decision support tool for understanding the usage of these testbeds and evaluate tradeoffs between them.

A specific example is explored for a Space Electronic Warfare test use case.

BLUF

Testing Complexity

- Highly multidimensional problem
- Testing a system is dependent on intended use cases
- Cost, schedule, and performance issues
- Different potential modalities

Value Proposition

- Decision support tools enable traceability
- Multi-modal test tool provides means to evaluate alternatives
- Such tools provide understanding of risks and rewards

Test Modalities

Over the Air (OTA)

Traditional testing mode in which system is placed in a real-world environment

Hardware in the Loop (HITL)

Testing mode that provides a blend of real-world and digital simulation facilities

Digital Modeling & Simulation (M&S)

Built on digital models of the system, environment, and processes

CubeSat FlatSat (Courtesy: European Space Agency)

Test Objectives

Quality: composed of fidelity, repeatability, and reliability/confidence

Coverage: the part or percentage of the system performance envelope that the test verifies

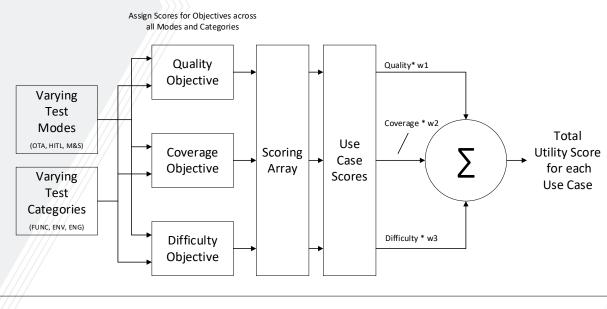
Difficulty: composed of cost, schedule, and risk

	Quality	Coverage	Difficulty
ΟΤΑ	High	Low	High
HITL	Moderate	Moderate	Moderate
M&S	Low	High	Low

General trade-offs between the 3 test modes (OTA, HITL, M&S) in terms of the 3 basic test objectives (quality, coverage, difficulty). Rankings are notional.

UNCLASSIFIED

Georgia | F


Tech M Instit

A Starting Framework: Multi-Modal Test Tool

Define Test Categories (the test's functional, environmental, and engagement components)

Define Test Modes (OTA, HITL, M&S)

Define Test Objective (quality, coverage, difficulty)

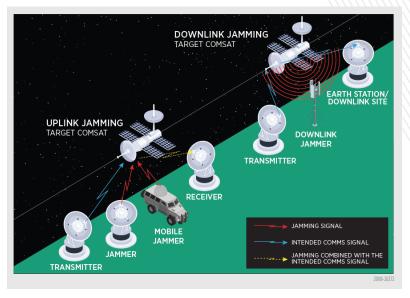
Georgia Research

Test Case: Uplink Survivability (ULS)

Value:

Dependence of terrestrial missions on reliable SATCOM (downlink effects)

Prototype for DoD space EW T&E


Difficulties:

Connecting test environment to actual orbital conditions

Mission orbit access throughout lifecycle

EMCON issues with EW

How to test for system of system resilience?

Source: "Challenges to Security in Space." *Defense Intelligence Agency*, www.dia.mil/Military-Power-Publications/.

Description: satellite under test experiences interference of data or TT&C on the uplink from the ground segment which denies or degrades

> Georgia Research Tech Institute

Tool Applied to the ULS Test

A ULS use case is composed of the possible categories:

Function: data link or telemetry, tracking and control (TT&C)

Interference Type: basic, advanced

Environment: clear, obscured

Engagement: 1v1, MvN

Example use case: {datalink, basic interference, clear environment, 1v1 engagement}

											Use	Case	Cate	gory										
	Link				Interference					Environment						Engagement								
		Data			Contro	ol		Basic	:	A	dvanc	ed		Clea	r	0	bscur	ed		1v1			MvN	
Objective	0	H	м	0	н	м	0	H	м	0	Н	м	0	H	м	0	н	М	0	н	м	0	H	м
Quality	9	5	3	9	5	3	9	5	3	9	7	3	7	5	3	3	7	3	7	5	3	1	5	5
Coverage	3	5	7	3	5	7	3	5	7	3	5	7	3	5	7	3	5	7	3	5	7	1	1	9
Difficulty	1	5	7	1	5	7	3	7	5	1	7	5	1	5	7	1	5	7	3	5	7	1	1	9
Scoring:	Rate	7,5,3	with	7 = be	est; al	low e	xtrem	nes fo	r edge	e case	es (9,1	L)												

Quality score = 9 + 9 + 7 + 7 = 32

Example notional scoring array for different use cases. Entries should be informed by test designers familiar with the modes and domain.

Results

		Use Case						Interm	ediate	Scores	5			То	tal Uti	lity
Use Case					Quality			С	overa	ge	D) ifficul ⁻	ty	Scores		
Use Case #	Function	Interference	Environment	Engagement	ΟΤΑ	HITL	M&S	ΟΤΑ	HITL	M&S	ΟΤΑ	HITL	M&S	ΟΤΑ	HITL	M&S
1	Data Link	Basic	Clear	1v1	32	20	12	12	20	28	8	22	26	260	310	330
2	Data Link	Advanced	Clear	1v1	32	22	12	12	20	28	6	22	26	250	320	330
3	Control Link	Basic	Clear	1v1	32	20	12	12	20	28	8	22	26	260	310	330
4	Control Link	Advanced	Clear	1v1	32	22	12	12	20	28	6	22	26	250	320	330
5	Data Link	Basic	Obscured	1v1	28	22	12	12	20	28	8	22	26	240	320	330
6	Data Link	Advanced	Obscured	1v1	28	24	12	12	20	28	6	22	26	230	330	330
7	Control Link	Basic	Obscured	1v1	28	22	12	12	20	28	8	22	26	240	320	330
8	Control Link	Advanced	Obscured	1v1	28	24	12	12	20	28	6	22	26	230	330	330
9	Data Link	Basic	Clear	MvN	26	20	14	10	16	30	6	18	28	210	270	360
10	Data Link	Advanced	Clear	MvN	26	22	14	10	16	30	4	18	28	200	280	360
11	Control Link	Basic	Clear	MvN	26	20	14	10	16	30	6	18	28	210	270	360
12	Control Link	Advanced	Clear	MvN	26	22	14	10	16	30	4	18	28	200	280	360
13	Data Link	Basic	Obscured	MvN	22	22	14	10	16	30	6	18	28	190	280	360
14	Data Link	Advanced	Obscured	MvN	22	24	14	10	16	30	4	18	28	180	290	360
15	Control Link	Basic	Obscured	MvN	22	22	14	10	16	30	6	18	28	190	280	360
16	Control Link	Advanced	Obscured	MvN	22	24	14	10	16	30	4	18	28	180	290	360

Test Objective	Weight
Quality	5
Coverage	5
Difficulty	5

Quality *w1 + Coverage*w2 + Difficulty*w3 = 32*5 + 12*5 + 8*5 = 260

Challenges

Weights

- Must be devised by a test planners and resource gatherers
- Scoring is sensitive to weight scheme

Test Modes

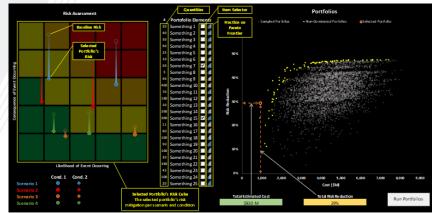
- Continuum of test modes
- Bias to existing infrastructure and historical methods

Lifecycle

Growing popularity of digital twins necessitates consistent testing in different contexts

Case			Weight		# Modes w/Highest Utility Score						
		Quality	Coverage	Difficulty	ΟΤΑ	HITL	M&S				
1	Evenly weighted	5	5	5	0	2	16				
2	Quality weighted	8	2	2	8	8	0				
3	Coverage weighted	2	8	2	0	0	16				
4	Difficulty weighted	2	2	8	0	0	16				
5	Operational Test	8	2	3	4	10	2				
6	Developmental Test	7	4	3	2	6	8				

ULS Test Case sensitivity analysis


Further Work

Leverage existing decision support tools

Tie in to multidimensional decision frontiers to provide insight into contextually-relevant studies

Address challenges

Working with test resource planners and designers for informed inputs for tool development and scoring

Example Decision Support Tool including multidimensional decision frontier. (Source: Patterson, Fullmer, Browne, & Balestrini-Robinson, 2023)

References

"Challenges to Security in Space." *Defense Intelligence Agency*, <u>www.dia.mil/Military-Power-Publications/</u>.

Image, https://www.esa.int/ESA_Multimedia/Images/2021/10/CubeSat_FlatSat

Patterson, F., Fullmer, D., Browne, D., & Balestrini-Robinson, S. (2023). Chapter 36 Portfolio Management and Optimization for System of Systems. In D. C. Verma, Systems Engineering for the Digital Age.

