P24-112: INTRODUCING SYSENGBENCH: A NOVEL BENCHMARK FOR ASSESSING LARGE LANGUAGE MODELS IN SYSTEMS ENGINEERING RYAN BELL

RYAN LONGSHORE RAYMOND MADACHY, PHD NAVAL POSTGRADUATE SCHOOL ACQUISITION RESEARCH SYMPOSIUM 9 MAY 2024

NAVAL POSTGRADUATE SCHOOL

Agenda

- Research Question
- Research Issue
- Research Methodology
- Results
- Recommendations and Future Work

Research Question

How do we assess, compare, and leverage the performance of Large Language Models (LLMs) in the field of Systems Engineering?

Research Issue

- Large Language Models (LLMs) such as GPT-4 have revolutionized the field of natural language processing (NLP) by demonstrating an impressive ability to understand and generate text and
 - Applications: Writing assistance, chat bots, code generation, summarization
 - Types: Open source and proprietary
 - Training Sources: public (GitHub, Wikis), private (textbooks, journals)
 - Varying levels of fidelity: Quantization and model parameter sizes
- How do we currently evaluate LLM proficiency?
 - Benchmarking
 - Early benchmarks focusing on foundational tasks such as work relationships and their semantic similarities to more recent, increasing complexity benchmarks such as College Medicine, Physics, Biology, Comp Sci, Math, Electrical Engineering, among others
 - We can see this progression with increased complexity and domain specific nature of the benchmarks over time
- Benchmarks for domain specific topics are sparse
 - Current benchmarks do not include system engineering specific
 - A domain specific benchmark is needed
- SysEngBench, a Systems Engineering LLM benchmark
 - Encompasses a comprehensive set of tasks derived from core systems engineering processes, including requirements analysis, system architecture design, risk management, and stakeholder communication
 - When complete, will leverage a diverse array of real-world and synthetically generated scenarios in addition to conceptual questions

Benchmark Name	Торіс	Released	Type of Benchmark
WordNet	Word relationships and meanings, foundational dataset	1985	Natural Langu
wordiver		1982	° °
MNIST	for semantic similarity and language understanding Handwritten digit recognition, foundational for image	1998	Processing
IVINIS I		1998	Image Proces
DIEL	processing and computer vision	2002	Networklasse
BLEU	Language translation quality metric, foundational for	2002	Natural Langu
-	evaluating machine translation systems	2004	Processing
Enron	Recognizing names, entities, and information extraction	2004	Natural Langu
Emails	from natural email datasets		Processing
ImageNet	Large-scale image recognition and classification, pivotal	2009	Image Proces
	in advancing deep learning in computer vision		
LAMBADA	Understanding context and reasoning in text, focusing	2016	Natural Langu
	on predicting sentence endings (Paperno et al., 2016)		Processing
SWAG	Common sense reasoning and predicting plausible	2018	Natural Langu
	sentence endings in a given context (Zellers et al., 2018)		Processing
GLUE	A collection of diverse NLU tasks like question answering	2018	Natural Langu
	and sentiment analysis to advance language		Processing
	understanding across various contexts.		
SuperGLUE	A successor to GLUE with more challenging tasks,	2019	Natural Langu
	pushing the limits of NLU models with advanced		Processing
	reasoning and co-reference resolution.		
HellaSWAG	An extension of SWAG for more challenging common	2019	Natural Lang
	sense reasoning scenarios (Zellers et al., 2019)		Processing
ARC	"ARC evaluates an AI's ability to tackle each task from	2019	Natural Langu
	scratch, using only the kind of prior knowledge about		Processing
	the world that humans naturally possess, known as core		
	knowledge." (Clark et al., 2018; Lab42, 2024)		
DROP	Reasoning over paragraphs, requires numerical	2019	Natural Langu
51101	reasoning and understanding of natural language (Dua	2015	Processing
	et al., 2019)		1 roccosing
Winogrand	A large-scale dataset of winograd schemas designed to	2019	Natural Lang
A	improve commonsense reasoning in AI systems.	2019	Processing
XTREME	Cross-lingual understanding and translation across	2020	Natural Lang
VI VEIVIE	5	2020	° °
MMLU	multiple languages, tests multilingual capabilities Measures professional and academic knowledge across	2021	Processing
IVIIVILU		2021	Natural Lange
	various fields including College Medicine, Physics,		Processing
	Biology, Comp Sci, Math, Electrical Engineering,		
	Professional Accounting, Psychology and worldly		
	knowledge about Foreign Policy and Religions, among		
	others (Hendrycks et al., 2021)		
TruthfulQA	A question-answering dataset designed to evaluate a	2021	Natural Lange
	model's ability to produce truthful and factual answers.		Processing
GSM8K	Grade School Math 8K (GSM8K), a collection of math	2021	Natural Lange
	word problems aimed at evaluating numerical reasoning		Processing
BIG-Bench	Broad spectrum of tasks testing reasoning, common	2022	Natural Langu
	sense, professional knowledge, and language		Processing

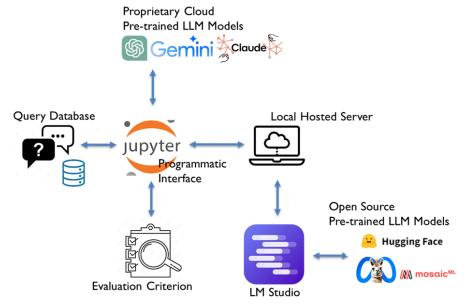
Benchmarks Over Time

Specific

omain

 \bigcirc

and


Complexity

NAVAL POSTGRADUATE SCHOOL

Language Models Used

Source	Model	Size	Quantization
TheBloke	Orca-2-7B-GGUF	7.16GB	8 bit
TheBloke	OpenHermes-2.5-Mistral-7B-GGUF	7.70GB	8 bit
TheBloke	Llama-2-7B-Chat-GGUF	7.16GB	8 bit

- Open source models selected
- Standardized process for querying
 - In order of increasing structure for Q&A:
 - Method 1: OpenAI simple Q&A chat completions
 - Method 2: Langchain
 - Method 3:
 - Langchain + AI harness
 - Langchain + HELM
- Industry standard assessment with percent correct

LLM Evaluation Framework

	Model	Average 🚺 🔺	ARC A	HellaSwag 🔺	MMLU A	TruthfulQA A	Winogrande	A GSM8K
•	abacusai/Smaug-728-v0.1 🕒	80.48	76.02	89.27	77.15	76.67	85.08	78.7
•	ibivibiv/alpaca-dragon-72b-v1 🕒	79.3	73.89	88.16	77.4	72.69	86.03	77.63
>	cloudyu/TomGrc_FusionNet_348x2_MoE_v0.1_DP0_f16	77.91	74.06	86.74	76.65	72.24	83.35	74.45
>	saltlux/luxia-21.4b-alignment-v1.0	77.74	77.47	91.88	68.1	79.17	87.45	62.4

HuggingFace Leaderboards Screenshot

Results

- Performance Levels:
 - Mistral at 89%, Orca 2 at 79%, Llama 2 at 78%.
- Topic with largest differential between models:
 - Requirements questions where Mistral was a clear leader with 22 correct out of 22, followed by Llama 2 with 17 and Orca with 15
- Worst topics for each model:
 - Llama 2 by percentage was architecture
 - Mistral by percentage was functional analysis
 - Orca 2 by percentage was functional analysis
- Challenges and Limitations
 - Few LLM answers would have a letter selection followed by the choice verbiage and/or justification
 - Iterative refinement of the system message was required until the output was constant
- Going forward, tighter integration with LangChain and Im-evaluation-harness should solve these issues

			0.784482759	0.896551724	0.793103448
Row Labels	Question Count	Question %	20240320 LLaMA 2	20240320 Mistral	20240320 Orca 2
Fundamentals of SE	116	100.00%	91	104	92
SE Definitions	9	7.76%	8	9	9
Problem Definition and Stakeholders	11	9.48%	7	8	7
MBSE Overview	4	3.45%	3	3	3
Requirements	22	18.97%	17	22	15
Functional Analysis	11	9.48%	6	6	5
Value System Design	13	11.21%	12	12	13
Architecture	6	5.17%	3	5	4
Decision Making	10	8.62%	7	9	7
Risk	3	2.59%	2	3	3
System Integration, Qualification, Costs, Life Cycle Issue	es 27	23.28%	26	27	26
Grand Total	116	100.00%	91	104	92

Recommendations and Future Work

- Recommendations:
 - Insight into varying level of LLM performance in Systems Engineering.
 - A knowledge gap has been confirmed and needs to be fully quantified and baselined with SysEngBench.
 - Eventual implications include enhanced efficiency and reduction of cognitive load required for tasks like documentation review, compliance checks, and stakeholder communications enabling engineers to focus more on higher level aspects and navigating the available trade space of the complex system.
- Future Work:
 - Complex Question Expansion
 - Subfield Diversification
 - Evaluation by Practicing Systems Engineers:
 - Evaluation of Multiple Choice Question Bias within SysEngBench
 - Multimodal Input and Output Evaluation (e.g., diagrams, charts, and technical drawings)
 - Systems Engineering Domain Specific LLMs
 - Enabling Round Table AI Discussions with an AI Agent Systems Engineering Team
- Collaboration Efforts:
 - Ryan Longshore
 - Small Language Models for Domain Specific Knowledge
 - Evaluation of LLMs with SysMLv2 Queries
 - Dr. Raymond Madachy
 - Evaluation of LLMs for Modern Systems Engineering Cost Modeling with COSYSMO

QUESTIONS?

入合合

TH

References

- Clark, P., Cowhey, I., Etzioni, O., Khot, T., Sabharwal, A., Schoenick, C., & Tafjord, O. (2018). Think you have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge (arXiv:1803.05457; Version 1). arXiv. <u>http://arxiv.org/abs/1803.05457</u>
- Dua, D., Wang, Y., Dasigi, P., Stanovsky, G., Singh, S., & Gardner, M. (2019). DROP: A Reading Comprehension Benchmark Requiring Discrete Reasoning Over Paragraphs (arXiv:1903.00161; Version 2). arXiv. <u>http://arxiv.org/abs/1903.00161</u>
- Google/BIG-bench. (2024). [Python]. Google. https://github.com/google/BIG-bench (Original work published 2021)
- Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M., Song, D., & Steinhardt, J. (2021). *Measuring Massive Multitask Language Understanding* (arXiv:2009.03300; Version 3). arXiv. <u>http://arxiv.org/abs/2009.03300</u>
- Lab42. (2024). About ARC. https://lab42.global/arc/
- Longshore, R., Madachy, R., & Bell, R. (in press). Leveraging Generative AI to Create, Modify, and Query MBSE Models. 21st Annual Acquisition Research Symposium.
- Madachy, R., Bell, R., & Longshore, R. (in press). Systems Acquisition Cost Modeling Initiative for AI Assistance. 21st Annual Acquisition Research Symposium.
- Paperno, D., Kruszewski, G., Lazaridou, A., Pham, Q. N., Bernardi, R., Pezzelle, S., Baroni, M., Boleda, G., & Fernández, R. (2016). The LAMBADA dataset: Word prediction requiring a broad discourse context (arXiv:1606.06031). arXiv. https://doi.org/10.48550/arXiv.1606.06031
- Zellers, R., Bisk, Y., Schwartz, R., & Choi, Y. (2018). SWAG: A Large-Scale Adversarial Dataset for Grounded Commonsense Inference (arXiv:1808.05326; Version 1). arXiv. <u>http://arxiv.org/abs/1808.05326</u>
- Zellers, R., Holtzman, A., Bisk, Y., Farhadi, A., & Choi, Y. (2019). HellaSwag: Can a Machine Really Finish Your Sentence? (arXiv:1905.07830; Version 1). arXiv. <u>http://arxiv.org/abs/1905.07830</u>

NAVAL POSTGRADUATE SCHOOL

Open LLM Leaderboard ^{Track, rank and evaluate open LLMs and chatbots}										
🗑 LLM Benchmark 🛛 Metrics through time 📄 About 🛛 FAQ 💋 Subn	nit									
Search for your model (separate multiple queries with ";") and press ENTER	Model types	Model types								
	🕑 🛛 pretrained		tinuously pretrain	ed 🛛 🗸	fine-tuned on domain	-specific datasets				
Select columns to show	🛃 💬 chat model									
🕑 Average 🚺 🕑 ARC 🕑 HellaSwag 💟 MMLU 💟 TruthfulQA 🗭 Winogrande	Precision									
GSM8K Type Architecture Precision Merged Hub License		bfloat16	🖸 sbit	4bit	GPTQ ?					
🗌 #Params (B) 📄 Hub 🖤 📄 Model sha	Madal short fin hillion	لا الله الله الله الله الله الله الله ا								
Hide models	Model sizes (in billion			2 -13	2 ~35 🔽 ~60	70+				
Private or deleted Contains a merge/moerge Flagged MoE					-55					
T 🔺 Model	🔺 Average 🚺 🔺	ARC +	HellaSwag	MMLU A	TruthfulQA 🔺	Winogrande A	GSM8K			
♦ abacusa1/Smaug-728-v0.1	80,48	76.02	89.27	77.15	76.67	85.08	78.7			
ibivibiv/alpaca-dragon-72b-v1	79.3	73.89	88.16	77.4	72.69	86.03	77.63			
♦ cloudyu/TomGrc_FusionNet_348x2_MoE_v0.1_DP0_f16	77.91	74.06	86.74	76.65	72.24	83.35	74.45			
♦ saltlux/luxia-21.4b-alignment-v1.9 □	77.74	77.47	91.88	68.1	79.17	87.45	62.4			
♦ saltlux/luxia-21.4b-alignment-v1.0	77.74	77.73	91.82	68.05	79.2	87.37	62.24			
cloudyu/TomGrc_FusionNet_348x2_MoE_v0.1_full_linear_DP0	77.52	74.06	86.67	76.69	71.32	83.43	72.93			
zhengr/MixTAO-7Bx2-MoE-v8.1	77.5	73.81	89.22	64.92	78.57	87.37	71.11			
yunconglong/Truthful_DPO_TomGrc_FusionNet_76x2_MoE_138	77.44	74.91	89.3	64.67	78.02	88.24	69.52			
A JaeyeonKang/CCK_Asura_v1	77.43	73.89	89.07	75.44	71.75	86.35	68.08			
♦ fblgit/UNA-SimpleSmaug:34b-vibeta	77.41	74.57	86.74	76.68	70.17	83.82	72.48			
♦ TomGrc/FusionNet_348x2_MoE_v0.1	77.38	73.72	86.46	76.72	71.01	83.35	73.01			
migtissera/Tess-728-v1.5b	77.3		85.53	76.63	71.99	81.45	76.95			

E Citation

-

🖌 🖌 Category 🔽 Sub-Category 🔽 Tags 💽	Source 🛛 🐨 Generation	v Question	💌 Choice A 🛛 💌 Cho	oice B 💌 Choice C 💌 C	Choice D 🔄 Answ	ver	▼ Justification ▼ Notes ▼ QA Review #1
100 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	What best describes a system?	A singular eler A g	roup of ele A random coll A	n isolated tec	В	A system is defined as a group of elements or components that work together towards a specified
101 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	Which of the following best encapsulat	es the basic meth Focus solely of Un	derstand th Start solving tlig	gnore alternat	в	Systems Engineering (SE) is characterized by a disciplined approach to problem-solving, emphasizi
102 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	What are the core aspects of Systems Er	ngineering (SE)? Focusing solel De	sign, produ Ignoring const C	Concentrating	В	Systems Engineering is an interdisciplinary field that focuses on the design, production, and maint
103 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	According to INCOSE, what is the focus			_	с	INCOSE defines Systems Engineering as an interdisciplinary approach aimed at realizing successful
104 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	What is the primary role of Systems Eng		ensure cust To limit the de T		В	The primary role of Systems Engineering is to study, define, and specify the operational, functiona
105 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	What does Systems Engineering offer in	-			с	Systems Engineering provides a structured and logical methodology for the technical developmen
106 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	How is "architecture" defined in the cor				В	In systems engineering, "architecture" refers to the deliberate and strategic arrangement of element
107 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	What best describes the role of system				С	Systems architecting is a discipline that merges the theory and practice of architecting with system
108 Fundamentals SE Definitions	SE 3100 1SE+Definitic Semi	What encompasses the process of mana				В	According to Dym & Little, management is defined as the process of achieving organizational goals
109 Fundamentals Problem Definition and Stake	el SE 3100 2problem+ar Semi	Which of the following best describes t	-		-	С	Systems Engineering processes often begin in response to an emerging need that can be categoriz
110 Fundamentals Problem Definition and Stake	•	Which question category best aids in id	entifying the targ Why Wh	no What V	Vhere	В	In the context of Systems Engineering (SE) analysis, the "Who" category is essential for identifying
111 Fundamentals Problem Definition and Stake	SE 3100 2problem+ar Semi	Which of the following techniques is pr		ikawa Fisht Causal Loop D S	WOT Analysis	А	The Five Why's technique is a systematic problem-solving method that involves asking the question
112 Fundamentals Problem Definition and Stake		In Systems Engineering, which techniqu				D	The Causal Loop Diagram is a graphical tool used in Systems Engineering for visualizing the interact
113 Fundamentals Problem Definition and Stake	el SE 3100 2problem+ar Semi	Which problem-space exploration tool	in Systems Engin Functional And Sta	, keholder A Scenario-base C	perational Co	в	Stakeholder Analysis, which includes research and interviews, is a critical tool in Systems Engineer
114 Fundamentals Problem Definition and Stake		In the context of Systems Engineering,	, ,			А	Stakeholders in Systems Engineering can be broadly categorized based on their interest and involv
115 Fundamentals Problem Definition and Stake		What is the first step in conducting a sta				С	The first step in conducting a stakeholder analysis in Systems Engineering is to identify relevant st
116 Fundamentals Problem Definition and Stake		Which question is critical for understan				D	Understanding the primary functions and intended use of a system from a customer's perspective
117 Fundamentals Problem Definition and Stake		What is the primary purpose of the elici	U , ,			в	The primary purpose of the elicitation process in Systems Engineering is to deeply understand the
118 Fundamentals Problem Definition and Stake		Which elicitation technique in Systems				D	Focus groups involve gathering a group of stakeholders to discuss and provide feedback on system
119 Fundamentals Problem Definition and Stake		Which of the following is a direct outco			• •	с	A bounded statement of scope for the system or product is a direct outcome of the requirements of
120 Fundamentals MBSE Overview	SE 3100 SE3100-MBSE Semi	What is true about a model in the conte				D	In systems engineering, a model is an abstract representation of a real-world system. The purpose
121 Fundamentals MBSE Overview	SE 3100 SE3100-MBSE Semi	Which of the following is NOT a direct b				В	In systems engineering, modeling provides several benefits including visualization, communication
122 Fundamentals MBSE Overview	SE 3100 SE3100-MBSE Semi	What is essential for a model to be well		01 7 0		В	In Model-Based Systems Engineering (MBSE), a well-formed model is governed by a specific synta
123 Fundamentals MBSE Overview	SE 3100 SE3100-MBSE Semi	What best describes the distinction bet				c	In systems engineering, verification and validation (V&V) are critical activities that establish the m
124 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What distinguishes effective needs from		•		c	In systems engineering, effective needs are differentiated from primitive needs based on the sup
125 Fundamentals Requirements	SE 3100 3+needs-ana Semi	Which tool is NOT typically used in need				D	Need analysis in systems engineering employs a variety of tools to understand and prioritize the n
126 Fundamentals Requirements	SE 3100 3+needs-ana Semi	Which of the following is an example of				В	Effective need statements in systems engineering are characterized by their specificity, support by
127 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What is a key element of a Concept of C			-	B	The Concept of Operations (CONOP) document in systems engineering is crucial for outlining the i
128 Fundamentals Requirements	SE 3100 3+needs-ana Semi	In the development of an Operational O				с	Partitioning the system threads based on who owns the behavior is a critical step in developing an
129 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What is the main purpose of focusing or				В	The primary purpose of focusing on the futurity of events in scenario planning within systems eng
130 Fundamentals Requirements	SE 3100 3+needs-ana Semi	In systems engineering, what is the prir				С	The primary purpose of defining the system boundary in systems engineering is to define externa
131 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What is a crucial aspect of functional re-				В	A crucial aspect of functional requirements in systems engineering is establishing input, output, a
132 Fundamentals Requirements	SE 3100 3+needs-ana Semi	In the context of systems engineering,			-	В	"What" requirements in systems engineering describe the system's purpose from an external view
133 Fundamentals Requirements	SE 3100 3+needs-ana Semi	How do functional requirements (FR) di				c	In systems engineering, functional requirements (FRs) describe what the system needs to do. The
134 Fundamentals Requirements	SE 3100 3+needs-ana Semi	According to the Systems Engineering G				В	The primary goal of requirements analysis, as outlined in the Systems Engineering Guide Book, is o
135 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What is the primary purpose of validation		<u> </u>		С	The primary purpose of validating requirements in systems engineering is to make sure that the re
136 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What is a key aspect of requirements m	• •			в	A key aspect of requirements management in systems engineering is carefully controlling changes
137 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What does requirements traceability m				C	Requirements traceability in the context of systems engineering refers to the ability to describe a
138 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What makes the requirements definition	-			c	The requirements definition process in systems engineering is challenging because it requires into
139 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What does the 'M' in SMART requireme				В	The 'M' in SMART requirements stands for Measurable, implying that a good requirement can be q
140 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What characteristic of a SMART require			road	В	A Specific requirement in the SMART criteria ensures that the requirement is clear, concise, and st
141 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What does the 'M' in SMART requireme		vable Measurable M		С	The 'M' in SMART stands for Measurable, meaning that the requirement must be quantifiable or as
142 Fundamentals Requirements	SE 3100 3+needs-ana Semi	In the context of SMART requirements,				В	'Attainable' implies that a requirement is realistically achievable within the existing constraints an
143 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What does the 'R' in SMART criteria emp			andom	C	The 'R' for Realistic emphasizes that a requirement must be practical and sensible, taking into acco
144 Fundamentals Requirements	SE 3100 3+needs-ana Semi	What aspect does 'Time-bound' in SMA		mporary Time-bound T		C	'Time-bound' specifies that each requirement should have a defined timeline or deadline, clarifying
145 Fundamentals Requirements	SE 3100 3+needs-ana Semi	Which of the following examples illustr				В	Poorly written requirements often suffer from the use of words that change conditions, such as "if
146 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	What is a key component of Functional	· · · · · · · · · · · · · · · · · · ·			В	Functional Architecture within systems engineering focuses on defining the system's functional ar
147 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	In the context of flight, what is essentia			_	с	To achieve flight, both physical and functional decompositions emphasize different yet compleme
148 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	Which of the following is an example of			yes	в	Functional decomposition involves breaking down a system's operations into its basic functions, e
149 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	Which of the following is an example of		_	ense Position	С	Physical decomposition focuses on identifying the physical components that make up a system, de
150 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	Which statement best reflects the critic				A	· · · · · · · · · · · · · · · · · · ·
151 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	In IDEF0 functional modeling, what role			-	С	IDEF0 is a method designed to model the decisions, actions, and activities of an organization or sys
152 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	In the context of process modeling, whi			/lechanism	D	Process modeling involves detailing the various components that contribute to the execution of a
153 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	Which IDEF0 rule ensures that every fur				c	The IDEFO framework provides a structured methodology for modeling a system's functions, emph
154 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	According to IDEF0 guidelines, where sh				В	IDEFO is a structured method used for modeling an organization's functions, processes, and system
155 Fundamentals Functional Analysis	SE 3100 4+Functional Semi	How does the Functional Flow Block Dia				В	The Functional Flow Block Diagram (FFBD) and the IDEF0 model are both tools used in systems eng

Requirements: Presentation Requirements

Details

- Panel #20: Enhancing Acquisition with Artificial Intelligence
- Date: Thursday, 9 May 2024 2:15pm 3:30pm PT / 5:15pm 6:30pm ET
- P24-112: Harnessing AI Tools for Enhanced Risk Identification, Analysis, and Management
- NOW P24-112: Introducing SysEngBench: A Novel Benchmark for Assessing Large Language Models in Systems Engineering
- Presentation Requirements / Preparing Your Presentation
 - The time allocated for a presentation is no more than 15 minutes.
 - Think in terms of the following slides:
 - A title slide (name, title and affiliation)
 - One slide with the research question
 - 2 or 3 slides covering research issue and methodology
 - 2 or 3 slides covering results and recommendations
 - Target no more than 7 slides (roughly 2 mins. per slide)