
Innovation in Software
Acquisition:
The Good, Bad, and Ugly

Author: Jeff Dunlap, CAPT USN (Ret.)
Date: May 9th, 2024

The Good, the Bad and the Ugly

fx

None

2017

161.20955

eng -
Mp3 Tag Editor by instrumentalfx

AGENDA
Background of the Study

Problem Statement

Framework

Methodology

Analysis

Contact Information

01

02

03

04

05

06

Background of the Study
Software done wrong for the right reasons is worse than continuing with the status quo

 Not understanding the ‘How and the Why’ prior to execution can lead to the pit of despair

Problem
Statement
Software can provide tactical advantages during
modern conflicts if designed for change

SCOPE OF THE
STUDY

Most of US weapons systems are
not capable for rapid change both
from cultural/process resistance
and architecture entrenchment

RELEVANCE OF
THE STUDY

The impact of smaller, less
expensive weapon systems
dictating the order of battle
moves the software adaptability
to the edge of conflict

RESEARCH
QUESTIONS

- Why are legacy weapon systems
slow to respond to modern
software practices?
- What prevents software
capability deliveries to the tactical
edge
- How a faster development
cadence exposes process
mismatches
- What are some best practices
and nuggets for Program
Managers to consider?

Framework

OVERVIEW PROPONENTS

The Department of Defense (DoD)
has recognized that
interconnected warfighting
systems are vulnerable due to their
inability to swiftly adapt to new
technologies and effectively
combat advanced cyber threats.

The commercial sector has
developed methods to rapidly and
securely implement new software
capabilities without significant
interference to current operations.

METHODOLOGY
QUALITATIVE METHOD

Conducting interviews with current
thought leaders within the DoD and

Industry to gain insights into challenges
and key nuggets to consider before

embarking on software modernization

Presenter
Presentation Notes
CAPT Philips, Nicholas Chaillan, Sean Mack, and Eric Minick

Agile
Agile software development methods embrace an
adaptive approach, breaking the project into smaller,
manageable iterations or sprints to deliver working
software of value to users sooner.

Frequent feedback loops and opportunities exist for
course correction based on user input and evolving
needs.

Retiring technical debt earlier and delivering working
software sooner allows for the early identification and
mitigation of issues.

DevSecOps
DevSecOps (aka Software Factory) delivers faster and
more frequent releases into the production
environment and becomes available to operations
based on their need.

Continuous Integration and Continuous Delivery
(CI/CD) accelerate DevSecOps, where automated
builds and tests are run continuously and delivered to
the production environment

Business Practices
Or Culture

Not everything needs
to go fast

Software
Innovation

DevSecOps

Waterfall

AgileWhat capability
requirements are

known in
advance?

Rate of desired
change/updates?

Mostly
Everything

Somethings to
start, more to

come

Capability
Containers or

Services

Medium to High

Monolithic Microservices

Accelerating secure
capability delivery to
the edge of conflict

But those that do - can… given
the right conditions!

Slow

Speed Bottlenecks
Applying legacy software certification
processes to DevSecOps creates a Speed
bottleneck

Manual testing and risk-averse siloed
teams can decelerate the advantages
gained in the DevSecOps software
development lifecycle

Fixing the current speed bottleneck
triggers the next

Be careful on what
you ask for

The cadence of continuous software delivery (or
deployment) into the operational environment
dramatically impacts the DevSecOps architectural
investments aligned with the need for agility.

The operational 'user burden' becomes the driving
factor for the release frequency

Be careful on what
you ask for

Software
Release

System Impact User Burden Cadence

Major new
features

Software
installation with
Testing

Training / System
downtime

Annually

Minor updates Small feature
tweaks and bug
fixes

Potential delta
training/ System
downtime

Quarterly or
Monthly

Plugins New features or
functionality
without changing
code

No System
downtime

Several weekly

Everything Changes with
release frequency

Pit of Despair

Presenter
Presentation Notes
Original version of this is from Lean Enterprise by Jez Humble et al. Credited to Hammond.

Example: SW Deployments
Quarterly with coupled, distributed systems

- Zero-downtime unimportant
- Feature flags low priority
- Rollback is nice to have
- Releasing what was tested together - critical

Daily

- Zero-downtime with auto-rollback is critical
- Feature flags make sense
- Creating “release sets” - irrelevant

World class at one
cadence is terrible

at another

How to deliver
faster?

To move from weekly or faster: change “everything” all at once
- New architecture
- New tooling
- New processes

World class at one
cadence is terrible

at another

SW Program Management
Observations

- Top Cover
- Clear and Well-Defined Requirements for the PM
- Effective Project Management
- Agile Development Methodology
- Skilled Development Team
- User-Centric Design
- Modular Contracting
- OTA (Other Transactional Authority) Contracts
- Defending the Budget using DevSecOps
- Ongoing Support and Maintenance

Nuggets from PEO IWS-X ICS PM

- The DoD is its own unique culture… but it is not that different
- Deliberately build your culture
- Know your Stakeholders and Constantly Communicate
- Have a robust Communications Plan and Talking Points
- Know your Market and Compete where you can (forward
progress is better than none)
- Big Bang almost always fails
- Under promise and over-deliver

Presenter
Presentation Notes
From PEO IWS X PM Integrated Combat Systems by CAPT Phillips

- Hope that the competition underestimates you because
that gives you an opening
- Change takes investment… but you will have to earn it…
- Humility – Your first idea or version is almost always bad
- The faster you learn, the better
-You need to educate the entire industry on what you are
doing
- Slowly Force Change
- Both an Industrial and Digital Mindset is required to be a
successful change agent in the future.

Nuggets from PEO IWS-X ICS PM

Good, Bad, the Ugly
DoD Software Acquisition has been a system accelerating without a
complete understanding of the bureaucratic resistance and
business practices necessary to achieve velocity.

Major considerations are needed for modular and flexible contracts,
incorporating testing and evaluation throughout the software process
and shifting left certifications and approvals to deploy at the speed of
relevance.

The importance of a trained and skilled workforce with user interaction
and senior leadership support cannot be understated.

The Good, the Bad and the Ugly

fx

None

2017

161.20955

eng -
Mp3 Tag Editor by instrumentalfx

Good, Bad, the Ugly
Focus is needed in understanding the significance of reasonable
and prioritized requirements, advocating for a shift from
compliance-based, overly prescriptive requirements to more
iterative approaches like iterative/agile development approaches
to reduce cost, risk, and time.

A comprehensive approach that includes effective project
management, stakeholder engagement, risk management, and a
focus on iterative development and continuous improvement.

Culture and behaviors take time to adjust to the applied force;
they must be constant and consistent to ensure that the
capability delivered is responsive to a changing threat.

Contact for
inquiries
Email Jeffrey.dunlap@nps.edu

Social Media www.linkedin.com/in/captjeffdunlap

Call or Text (619)-370-6647

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23

