A Kernel Density Procedure for Validation of a Computer Model with Multimodal Output

P. A. Jacobs

Naval Postgraduate School

Question: How well does a computer model with multimodal output represent ONE observed time series?

- Test event results in one observed time series {X(t); t=0.01,0.02,...,1}
- 300 independent and identically distributed replications of computer model of the time series; Green=Observation Distribution Included in
 - jth replication: {Y_i(t); t=0, 0.01, 0.02,...,1}

Time: t

Interval Procedures

Current: 2.5-sigma

- Interval at each time= sample mean of model replications +/- 2.5 times the sample standard deviation of model replications
- Statistical evidence model does not well represent observation:
 - Observations outside of intervals more than 10% of the time

Black=50 Model Replications Green=Observation Distribution Included in Model's Red=Observation Distribution Not Included in Model's

Percentile

- Interval at each time: lower bound=0.005-quantile of model replications; upper bound=0.995quantile of model replications
- Statistical evidence model does not well represent observation:
 - Observations outside of intervals more than 10% of the time

Estimate of Model Distribution at a Single Time: Model Values Corresponding to Small Values Unlikely to Occur

Histogram: 300 Model Replications

Model Replications at Time 0.5

Gaussian Kernel Density

Model Values at Time 0.5

Kernel Density Estimate (KDE) Procedure KDEs of observation too small too many times?

For each time & each model replication: find KDE of the model replication value using all other model replications.

For each time:

find 0.001-quantile of all model's KDEs

For each model replication: find number of times its KDEs are less than model KDE 0.001-quantiles.

Choose bound from number of times model replication KDEs<0.001 quantiles Max number? 2nd largest number?

For each time:

find KDE of observation value using all model replications

Observation KDEs too small too many times =statistical evidence model distribution does not include that of observation number of times observation KDEs less than model's KDE 0.001-quantiles is greater than chosen bound

Fraction 500 Simulation Replications (each with 300 model replications) with Statistical Evidence Model Distribution Does Not Include that of Observation

- 2 cases incorrect: Green Lines @ 2 & 6
- Ideal fraction=0
- 2.5-sigma=best; percentile =worst

Fraction 500 Replications with Statistical Evidence Mixture Model Distribution Does not Include that of Observation; KDE Quantile=0.001

Fraction of 500 Simulation Replications that Result in Statistical Evidence Model Distribution Does Not Include that of Observation

- 5 cases correct evidence: ideal fraction=1
- x-axis @ 1 & 10
 - Best=percentile;
 - 2nd best=KDE with 2nd largest bound
- x-axis @ 3, 4, 5
 - Worst=2.5-Sigma
 - Best=KDE with 2nd largest lower bound

 The currently used 2.5-sigma procedure is less likely to produce correct statistical evidence a multimodal mixture model distribution does not include that of the observed times series than kernel density estimation procedure