

An Assessment of Acquisition Outcomes and Impact of Reforms & Initiatives

Presentation by Michael J. Sullivan Director, Acquisition & Sourcing Management Team U.S. Government Accountability Office

Naval Post Graduate School 8th Annual Acquisition Research Symposium Monterey, CA May 12, 2011

2011 Assessment Made Observations On The Following

- Cost characteristics of the MDAP portfolio
- Timing and amount of knowledge achieved
- Progress of WSARA implementation
- Progress of DOD efficiency initiatives

Cost Characteristics of DOD's Portfolio of Major Defense Acquisition Programs

08 to 10: Portfolio \$ Investment Same, Programs Grew By a Net of Two

- 15 programs estimated at \$77 billion entered
- 13 programs estimated at \$174 billion exited

Portfolio status	Fiscal year 2008	Fiscal year 2010
Number of programs	96	98
Total planned investment	\$1.64 trillion	\$1.68 trillion
Funding expended	\$834 billion	\$968 billion
Funding to complete	\$802 billion	\$712 billion

Source: GAO analysis of December 2007 and December 2009 Selected Acquisition Reports.

2yr/5yr/Baseline Trend: FY 2010 MDAP Portfolio Cost Growth Over Time

FY 2011 dollars			Since first full
	Last 2 years	Last 5 years	estimate
	(2008 to 2010)	(2005 to 2010)	(Baseline to 2010)
Increase in estimated	\$15 billion	\$29 billion	\$102 billion
RDT&E costs	5 percent	10 percent	47 percent
Increase in estimated	\$121 billion	\$186 billion	\$287 billion
procurement costs	11 percent	18 percent	31 percent
Increase in total	\$135 billion	\$217 billion	\$402 billion
acquisition cost	9 percent	16 percent	35 percent
Average delay in delivering initial capabilities	5 months	9 months	22 months
	8 percent	13 percent	30 percent

Source: GAO analysis of December 2009 Selected Acquisition Reports.

RDT&E Percentage Cost Growth From Baseline per MDAP

Note: Four programs have greater than 325 percent RDT%E cost growth. The four₆ programs that exceed 325% range from 348% to 3633%.

Impact of Quantity INCREASES on Program and Portfolio Cost

- 43 MDAPS had increased quantities since starting
 - Total quantities for all increased by 73%
 - Overall total program cost increased by 100%
 - A "calculated" cost for increased quantities is \$175B
 - The actual cost increase was \$258B
 - The difference--\$83B--can be thought of as inefficient cost growth or "bad" cost growth

Impact of Quantity DECREASES on Program and Portfolio Cost

- 30 MDAPS had decreased quantities since starting
 - Total proc cost actually increased for 13 programs
 - A "calculated savings" for decreased Q is \$197B
 - The actual cost **INCREASED** by \$2B
 - The difference--\$199B—can be thought of as lost buying power

Timing and Amount of Technology, Design, and Manufacturing Knowledge Achieved

A Knowledge-Based Approach is Key to Successful Program Outcomes

- Model provides framework for incremental, time certain (development constrained to 5 to 6 years or less), and knowledge-based approach to weapon system acquisitions.
- Success requires structured, disciplined application and adherence to model.
- Knowledge points align with key investment inflection points.
- Controls are in place for decisions makers to measure progress against specific criteria and ensure managers capture key knowledge before moving to next phase.

Focus on Several Knowledge-Based Practices at Development Start

Knowledge-based practices at development start Knowledge point 1	IAMD
Mature all critical technologies	0
Hold system requirements review	
Hold system functional review	
Hold preliminary design review	Oª
Constrain development phase to 6 years or less	0

Practice implemented by program

Practice not implemented by program

Source: GAO analysis of DOD data.

Design Knowledge Increasing, but Prototypes Are Not Being Used

Knowledge-based practices at design review Knowledge point 2	483	FAB.T	CH-33+	GPS III.	E.IBCT III	upation .	ultes a.	Paralot MEADOT Fire Un. CAD	Reaper
Mature all critical technologies	0	0	0	•	0	0	0	•	
Release at least 90 percent of design drawings	0	0	•		0	•		•	•
Test a system-level integrated prototype	0	0	0	0	0	0	0	0	
Use a reliability growth curve	0	0	0	0	•	•	0	•	0
Conduct producibility assessments to identify manufacturing risks for key technologies	•		•	•	•		•	•	
Complete failure modes and effects analysis		•	•	•	•		•		

Practice implemented by program

Practice not implemented by program

Practice not applicable or information not available

Source: GAO analysis of DOD data.

Programs Are Identifying Processes, But Not Demonstrating Them Pre-Prod

Knowledge-based practices at production decision Knowledge point 3	463	C. 13	E-20 .	ERMO	CPS	Increment 1 E-IBCT III	Lin	0 40 40 40	Sin.6	WIN.T Increment 2
Mature all critical technologies				0		0	•	•		•
Release at least 90 percent of design drawings						0		•	0	
Identify key product characteristics	•	•	0	•		•	•	•	•	•
Identify critical manufacturing processes			•	•			•	•		
Demonstrate critical processes are in statistical control	0	0	0	0	0	0	0	0	0	
Demonstrate critical processes on a pilot production line	•	•	•	•	0	•	•	•	•	
Test a production-representative prototype				0	0	0		0	0	•

Practice implemented by program

Practice not implemented by program

Practice not applicable or information not available

Source: GAO analysis of DOD data.

Progress of Acquisition Reforms and Efficiency Initiatives

New DOD Policies Could Improve Outcomes

- More discipline and up-front knowledge in early acquisition phases could put programs on more stable footing
 - Early Materiel Development Decision required for all programs.
 - Preference for incremental development, with baselines for each increment.
 - PDR required before system development start.
 - Competitive prototyping required as part of technology development phase.
 - Configuration Steering Boards established to control requirements creep.
 - Acquisition strategies required to describe measures taken to ensure competition throughout the program lifecycle.
 - Trade-offs among cost, schedule, and performance objectives required at Milestone B approval to ensure affordability.

Programs Have Begun to Implement DOD's Revised Acquisition Policies

- Programs in our 2011 assessment have begun to implement acquisition reforms that could improve cost and schedule outcomes.
 - Competitive prototyping 9 of 14 pre-MDAPs planned to develop competitive prototypes prior to Milestone B.
 - Early systems engineering 10 pre-MDAPs in our assessment have already scheduled a preliminary design review before Milestone B.
 - Trade-offs 7 of 14 programs reported making major cost, schedule, and performance tradeoffs before development start
 - Competition 6 of 14 programs are planning to incorporate competition into their acquisition strategy after Milestone B
- Several programs in our 2011 assessment still have not reported holding a configuration steering board meeting.
 - 12 of 40 programs in our assessment reported never having held a configuration steering board.
 - 5 programs presented de-scoping options to the board and 4 had those approved to help maintain cost and schedule.

DOD Efficiency Initiative Can Help Further Reforms

- Sets shorter programs timelines Requirements and proposed schedules must be consistent; justification for proposed program schedule is required before a program can proceed.
- **Treats affordability as a requirement** Affordability is to be treated like a key performance parameter at Milestone A.
- Stresses the use of systems engineering analysis At Milestone B, requires the presentation of a systems engineering tradeoff analysis showing how cost varies with schedule and design parameters.
- Emphasizes competition throughout the program lifecycle Requires the presentation of a competitive strategy at each program milestone
- Recommends portfolio analyses to eliminate redundancies Conduct portfolio reviews at the joint and Department-wide level to identify redundancies, as well as among smaller programs.

END