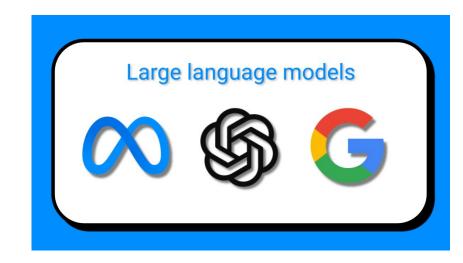


Large Language Model (LLM) Comparison Research

Will Fisher - Data Science Fellow


5/8/2024

Institute for Defense Analyses

730 East Glebe Road • Alexandria, Virginia 22305

What are the productivity savings from Large Language Models (LLMs)?

- LLMs have become much more popular and more capable over the past couple years
- Unclear how much they can help with worker productivity, and what tasks they are best for
- How much time can LLMs save workers?

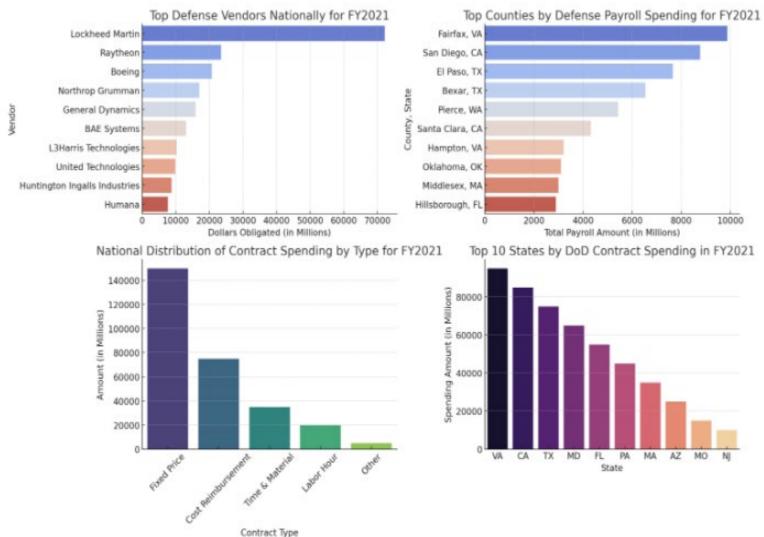
Data Analysis and Executive Summaries (EXSUMs)

- Focused on data analysis tasks and executive summaries (EXSUMs)
- Performed different tasks individually, and compared time/quality to OpenAI's GPT-4
- Data Analysis:
 - Exploratory analysis
 - Modeling
 - Visualizations
- EXSUMs:
 - Comparing to existing EXSUMs

Data Analysis Tasks

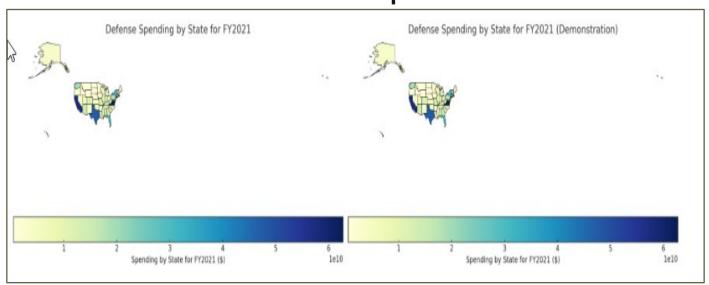
 NYC Airbnb data, Office of Local Defense Community Cooperation (OLDCC) data

- Airbnb Tasks
 - Exploratory analysis prices, reviews, locations
 - Modeling regression, decision tree, random forest
- OLDCC Tasks
 - Visualization simple (bar charts) and more involved (choropleth maps)

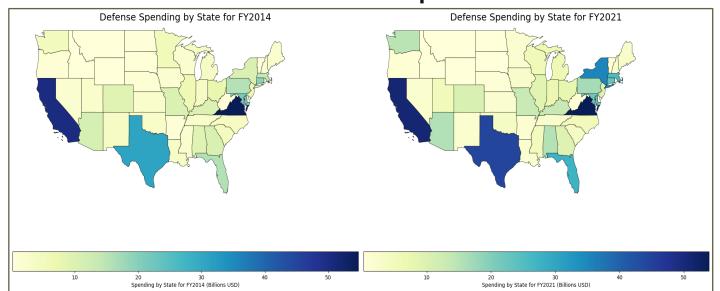


Data Analysis Results

Task	Time Saved (Minutes)	Percent of Time Saved (%)	Quality Comments
Exploratory Analysis	30	67	Thorough in investigating the nature of the different variables and made important contextual inferences
Modeling	45-60	60-80	Tested the same models that we did, but made questionable preprocessing decisions and could not run everything locally
Visualization	30-40	43-57	Quickly makes simple visualizations, but requires some human adjustments for more complex ones
Total	105-130	55-68	



GPT-4 Simple Visualizations



Complex Visualizations

GPT-4 Maps

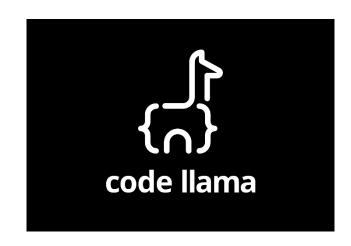
Desired Maps

EXSUM Tasks

- Three IDA papers with varying levels of length and technical complexity
 - Paper 1: Factors Limiting the Speed of Software Acquisition
 - Paper 2: Forecasting Demand for Air National Guard Enlisted Initial and Technical Schooling
 - Paper 3: Quantifying and Visualizing Forecast Uncertainty with the FIFE
- Asked GPT-4 to summarize and then compared to the authors EXSUM

EXSUM Results

- Similar summary for shorter, nontechnical paper
- For the two more technical papers
 - Made up technical terms, acronyms
 - Didn't include numerical results
 - Still had solid foundation for a summary
- Reasons for more issues with technical papers
 - Encoding equations: $h^{(t)} = \underset{h \in H}{\operatorname{argmin}} E_D \left[\left(-g^{(t)}(\mathbf{x}, y) h(\mathbf{x}, \boldsymbol{\phi}^{(t)}) \right)^2 \right]$
 - Context lengths
- Time-saving estimate: about 2 hours


Conclusions

- Data analysis
 - For simple tasks, can save most of the time spent
 - Need supervision for more complex tasks

EXSUMs

- Can provide base for a summary, but requires careful checks for technical papers
- Going forward
 - LLMs as assistants
 - LLMs made for specific tasks

