

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-09-026

bñÅÉêéí=Ñêçã=íÜÉ==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

páñíÜ=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=

SOFTWARE LICENSES, OPEN SOURCE COMPONENTS,
AND OPEN ARCHITECTURES

Published: 22 April 2009

by

Thomas Alspaugh, Hazel Asuncion and Walt Scacchi

6th Annual Acquisition Research Symposium
of the Naval Postgraduate School:

Volume I:
Defense Acquisition in Transition

May 13-14, 2009

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Conference Website:
www.researchsymposium.org

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - i -
=

=

Proceedings of the Annual Acquisition Research Program

The following article is taken as an excerpt from the proceedings of the annual

Acquisition Research Program. This annual event showcases the research projects

funded through the Acquisition Research Program at the Graduate School of Business

and Public Policy at the Naval Postgraduate School. Featuring keynote speakers,

plenary panels, multiple panel sessions, a student research poster show and social

events, the Annual Acquisition Research Symposium offers a candid environment

where high-ranking Department of Defense (DoD) officials, industry officials,

accomplished faculty and military students are encouraged to collaborate on finding

applicable solutions to the challenges facing acquisition policies and processes within

the DoD today. By jointly and publicly questioning the norms of industry and academia,

the resulting research benefits from myriad perspectives and collaborations which can

identify better solutions and practices in acquisition, contract, financial, logistics and

program management.

For further information regarding the Acquisition Research Program, electronic

copies of additional research, or to learn more about becoming a sponsor, please visit

our program website at:

www.acquistionresearch.org

For further information on or to register for the next Acquisition Research

Symposium during the third week of May, please visit our conference website at:

www.researchsymposium.org

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - ii -
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 258 -
=

=

Software Licenses, Open Source Components, and Open
Architectures

Presenter: Thomas Alspaugh is adjunct professor of Computer Science at Georgetown University, and
visiting researcher at the Institute for Software Research at UC Irvine. He received his PhD in Computer
Science from North Carolina State University in 2002. His research interests are in software engineering
and focus on informal and narrative models of software at the requirements level. Before completing his
PhD, he worked as a software developer, team lead, and manager at several companies—including IBM
and Data General—and as a computer scientist at the Naval Research Laboratory on the Software Cost
Reduction project, also known as the A-7E project.

Authors:

Hazel Asuncion is a PhD student in the Informatics Department in the Donald Bren School of
Information and Computer Sciences at the University of California, Irvine, and also a graduate student
researcher at the Institute for Software Research. Her research interests focus on traceability, process
workflows, software system architectures, and their interrelationships.

Walt Scacchi is a senior research scientist and research faculty member at the Institute for Software
Research, University of California, Irvine. He received a PhD in Information and Computer Science from
UC Irvine in 1981. From 1981-1998, he was on the faculty at the University of Southern California. In
1999, he joined the Institute for Software Research at UC Irvine. He has published more than 150
research papers and has directed 45 externally funded research projects. In 2007, he served as
General Chair of the 3rd IFIP International Conference on Open Source Systems (OSS2007), Limerick,
IE.

Thomas A. Alspaugh, Hazeline U. Asuncion, and Walt Scacchi
Institute for Software Research
University of California, Irvine
Irvine, CA 92697-3455 USA
{alspaugh,hasuncion,wcacchi}@ics.uci.edu

Abstract
A substantial number of enterprises and independent software vendors are adopting a

strategy in which software-intensive systems are developed with an open architecture (OA) that
may contain open source software (OSS) components or components with open APIs. The
emerging challenge is to realize the benefits of openness when components are subject to
different copyright or property licenses. In this paper, we identify key properties of OSS licenses,
present a license analysis scheme to identify license conflicts arising from composed software
elements, and apply it to provide guidance for software architectural design choices whose goal
is to enable specific licensed component configurations. Our scheme has been implemented in
an operational environment and demonstrates a practical, automated solution to the problem of
determining overall rights and obligations for alternative OAs.

1. Introduction
It has been common for OSS projects to require developers to contribute their work

under conditions that ensure the project can license its products under a specific OSS license.
For example, the Apache Contributor License Agreement grants enough rights to the Apache

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 259 -
=

=

Software Foundation for the foundation to license the resulting systems under the Apache
License. This sort of license configuration, in which the rights to a system’s components are
homogenously granted and the system has a well-defined OSS license, was the norm and
continues to this day.

However, we more and more commonly see a different license configuration in which the
components of a system do not have the same license. The resulting system may not have any
recognized OSS license at all—in fact, our research indicates this is the most likely outcome.
Instead, if all goes well in its design, there will be enough rights available in the system so that it
can be used and distributed—and perhaps modified by others and sublicensed, if the
corresponding obligations are met. These obligations are likely to differ for components with
different licenses; a BSD (Berkeley Software Distribution)-licensed component must preserve its
copyright notices when made part of the system—for example, while the source code for a
modified component covered by MPL (the Mozilla Public License) must be made public—and a
component with a reciprocal license such as the Free Software Foundation’s GPL (General
Public License) might carry the obligation to distribute the source code of that component but
also of other components that constitute “a whole which is a work based on” the GPL’d
component. The obligations may conflict, as when a GPL’d component’s reciprocal obligation to
publish source code of other components is combined with a proprietary license’s prohibition of
publishing source code—in which case, there may be no rights available for the system as a
whole (not even the right of use), because the obligations of the licenses that would permit use
of its components cannot simultaneously be met.

The central problem we examine and explain in this paper is to identify principles of
software architecture and software licenses that facilitate or inhibit success of the OA strategy
when OSS and other software components with open APIs are employed. This is the knowledge
we seek to develop and deliver. Without such knowledge, it is unlikely that an OA that is clean,
robust, transparent, and extensible can be readily produced. On a broader scale, this paper
seeks to explore and answer the following kinds of research questions:

 What license applies to an OA system composed of components with different
licenses?

 How do alternative OSS licenses facilitate or inhibit the development of OA
systems?

 How should software license constraints be specified to make it possible to
automatically determine the overall set of rights and obligations associated with a
configured software system architecture?

This paper may help establish a foundation for how to analyze and evaluate
dependencies that might arise when seeking to develop software systems that embody an OA
when different types of software components or software licenses are being considered for
integration into an overall system configuration.

In the remainder of this paper, we examine software licensing constraints. This is
followed by an analysis of how these constraints can interact in order to determine the overall
license constraints applicable to the configured system architecture. Next, we describe an
operational environment that demonstrates automatic determination of license constraints
associated with a configured system architecture, and thus offers a solution to the problem we
face. We close with a discussion of the conclusions that follow.

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 260 -
=

=

2. Background
There is little explicit guidance or reliance on systematic empirical studies for how best to

develop, deploy, and sustain complex software systems when different OA and OSS objectives
are at hand. Instead, we find narratives that provide ample motivation and belief in the promise
and potential of OA and OSS without consideration of what challenges may lie ahead in
realizing OA and OSS strategies. Ven (2008) is a recent exception.

We believe that a primary challenge to be addressed is how to determine whether a
system, composed of subsystems and components each with specific OSS or proprietary
licenses and integrated into the system’s planned configuration, is or is not open, and what
license constraints apply to the configured system as a whole. This challenge comprises not
only evaluating an existing system at run-time but also at design-time and build-time for a
proposed system to ensure that the result is “open” under the desired definition and that only
the acceptable licenses apply; another important aspect of this challenge is understanding
which licenses are acceptable in this context. Because there is a range of types and variants of
licenses (OSI, 2008), each of which may affect a system in different ways, and because there
are a number of different kinds of OSS-related components and ways of combining them that
affect the licensing issue, an essential first step is to understand the kinds of software elements
that constitute a software architecture, and what kinds of licenses may encumber these
elements or their overall configuration.

OA seems to simply mean software system architectures incorporating OSS
components and open application program interfaces (APIs). But not all software system
architectures incorporating OSS components and open APIs will produce an OA, since the
openness of an OA depends on: (a) how/why OSS and open APIs are located within the system
architecture, (b) how OSS and open APIs are implemented, embedded, or interconnected, (c)
whether the copyright (Intellectual Property) licenses assigned to different OSS components
encumber all/part of a software system's architecture into which they are integrated, and (d) the
fact that many alternative architectural configurations and APIs exist that may or may not
produce an OA (Alspaugh & Antón, 2007; Scacchi & Alspaugh, 2008). Subsequently, we
believe this can lead to situations in which new software development or acquisition
requirements stipulate a software system with an OA and OSS, but the resulting software
system may or may not embody an OA. This can occur when the architectural design of a
system constrains system requirements—raising the question of what requirements can be
satisfied by a given system architecture when requirements stipulate specific types or instances
of OSS (e.g., Web browsers and content management servers) to be employed (Scacchi,
2002), or what architecture style (Bass, Clements & Kazman, 2003) is implied by a given set of
system requirements.

Thus, given the goal of realizing an OA and OSS strategy together with the use of OSS
components and open APIs, it is unclear how to best align acquisition, system requirements,
software architectures, and OSS elements across different software license regimes to achieve
this goal (Scacchi & Alspaugh, 2008).

3. Understanding Open Architectures
The statement that a system is intended to embody an open architecture using open

software technologies like OSS and APIs does not clearly indicate what possible mix of software
elements may be configured into such a system. To help explain this, we first identify what kinds

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 261 -
=

=

of software elements are included in common software architectures, whether they are open or
closed (Bass et al., 2003).

 Software source code components—(a) stand-alone programs, (b) libraries,
frameworks, or middleware, (c) inter-application script code (e.g., C shell scripts), and
(d) intra-application script code (e.g., to create Rich Internet Applications using domain-
specific languages such as XUL for Firefox Web browser (Feldt, 2007) or “mashups”
(Nelson & Churchill, 2006)).

 Executable components—These are programs for which the software is in binary form,
and its source code may not be open for access, review, modification, and possible
redistribution. Executable binaries can be viewed as “derived works” (Rosen, 2005).

 Application program interfaces/APIs—The availability of externally visible and
accessible APIs to which independently developed components can be connected is
the minimum condition required to form an “open system” (Meyers & Obendorf, 2001).

 Software connectors—In addition to APIs, these may be software either from libraries,
frameworks, or application script code, whose intended purpose is to provide a
standard or reusable way of associating programs, data repositories, or remote
services through common interfaces. The High Level Architecture (HLA) is an example
of a software connector scheme (Kuhl, Weatherly & Damann, 2000), as are CORBA,
Microsoft's .NET, Enterprise Java Beans, and LGPL libraries.

 Configured system or sub-system architectures—These are software systems that can
be built to conform to an explicit architectural design. They include software source
code components, executable components, APIs, and connectors that are organized in
a way that may conform to a known “architectural style” such as the Representational
State Transfer (Fielding & Taylor, 2002) for Web-based client-server applications, or
may represent an original or ad hoc architectural pattern (Bass et al., 2003). Each of
the software elements—and the pattern in which they are arranged and interlinked—
can all be specified, analyzed, and documented using an Architecture Description
Language and ADL-based support tools (Bass et al., 2003; Medvidovic, Rosenblum &
Taylor, 1999).

Figure 1 provides an overall view of an archetypal software architecture for a configured
system that includes and identifies each of the software elements above, as well as including
free/open source software (e.g., Gnome Evolution) and closed source software (WordPerfect)
components. In simple terms, the configured system consists of software components (grey
boxes in the figure) that include a Mozilla Web browser, Gnome Evolution e-mail client, and
WordPerfect word processor, all running on a Linux operating system that can access file, print,
and other remote-networked servers (e.g., an Apache Web server). These components are
interrelated through a set of software connectors (ellipses in the figure) that connect the
interfaces of software components (small white boxes attached to a component) and link them
together. Modern-day enterprise systems or command-and-control systems will generally have
more complex architectures and a more diverse mix of software components than shown in the
figure here. As we examine next, even this simple architecture raises a number of OSS
licensing issues that constrain the extent of openness that may be realized in a configured OA.

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 262 -
=

=

Figure 1. An Archetypal Software Architecture Depicting Components (grey boxes),
Connectors (ellipses), Interfaces (small boxes on components),

and Data/Control Links

4. Understanding Open Software Licenses
A particularly knotty challenge is the problem of licenses in OSS and OA. There are a

number of different OSS licenses, and their number continues to grow. Each license stipulates
different constraints attached to software components that bear it. External references are
available which describe and explain many different licenses that are now in use with OSS
(Fontana et al., 2008; OSI, 2008; Rosen, 2005; St. Laurent, 2004).

More and more software systems are designed, built, released, and distributed as OAs
composed of components from different sources, some proprietary and others not. Systems
include components that are statically bound or interconnected at build-time, while other
components may only be dynamically linked for execution at run-time, and thus might not be
included as part of a software release or distribution. Software components in such systems
evolve not only by ongoing maintenance but also by architectural refactoring, alternative
component interconnections, and component replacement (via maintenance patches,
installation of new versions, or migration to new technologies). Software components in such

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 263 -
=

=

systems may be subject to different software licenses, and later versions of a component may
be subject to different licenses (e.g., from CDDL—Sun’s Common Development and Distribution
License—to GPL, or from GPLv2 to GPLv3).

Software systems with open architectures are subject to different software licenses than
may be common with traditional, proprietary, closed source systems from a single vendor.
Software architects/developers must increasingly attend to how they design, develop, and
deploy software systems that may be subject to multiple and possibly conflicting software
licenses. We see architects, developers, software acquisition managers, and others concerned
with OAs as falling into three groups. The first group pays little or no heed to license conflicts
and obligations; they simply focus on the other goals of the system. Those in the second group
have assets and resources, and, in order to protect these, they may have an army of lawyers to
advise them on license issues and other potential vulnerabilities; or they may constrain the
design of their systems so that only a small number of software licenses (possibly just one) are
involved—excluding components with other licenses independent of whether such components
represent a more effective or more efficient solution. The third group falls between these two
extremes; members of this group want to design, develop, and distribute the best systems
possible, while they respect the constraints associated with different software component
licenses. Their goal is a configured OA system that meets all its goals and for which all the
license obligations for the needed copyrights are satisfied. It is this third group that needs the
guidance the present work seeks to provide.

There has been an explosion in the number, type, and variants of software licenses,
especially with open source software (OSI, 2008). Software components are now available
subject to licenses such as the General Public License (GPL), Mozilla Public License (MPL),
Apache Public License, (APL), Academic licenses (e.g., BSD, MIT), Creative Commons, Artistic,
and others as well as Public Domain (either via explicit declaration or by expiration of prior
copyright license). Furthermore, licenses such as these can evolve, resulting in new license
versions over time. But no matter their diversity, software licenses represent a legally
enforceable contract that is recognized by government agencies, corporate enterprises,
individuals, and judicial courts, and, as a result, they cannot be taken trivially. As a
consequence, software licenses constrain open architectures and thus architectural design
decisions.

So how might we support the diverse needs of different software developers with respect
to their need to design, develop, and deploy configured software systems with different, possibly
conflicting licenses for the software components they employ? Is it possible to provide
automated means for helping software developers determine what constraints will result at
design-time, build-time, or run-time when their configured system architectures employ diverse
licensed components? These are the kind of questions we address in this paper.

4.1. Software Licenses: Rights and Obligations
Copyright, the common basis for software licenses, gives the original author of a work

certain exclusive rights, which for software include the right to use, copy, modify, merge,
publish, distribute, sub-license, and sell copies. These rights may be licensed to others,
including individuals or groups, and they may be licensed either exclusively so that no one else
can exercise them or (more commonly) non-exclusively. After a period of years, the rights enter
the public domain, but, until then, the only way for anyone other than the author to have access
to the copyright is to license it.

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 264 -
=

=

Licenses may impose obligations that must be met in order for the licensee to realize the
assigned rights. Commonly cited obligations include the obligation to buy a legal copy to use
and not distribute copies (proprietary licenses), the obligation to preserve copyright and license
notices (academic licenses), the obligation to publish at no cost source code that has been
modified (MPL), or the reciprocal obligation to publish all source code included at build-time or
statically linked (GPL).

Licenses may provide for the creation of derivative works (e.g., a transformation or
adaptation of existing software) or collective works (e.g., a Linux distribution that combines
software from many independent sources) from the original work by granting those rights,
possibly with corresponding obligations.

In addition, the author of an original work can make it available under more than one
license, enabling the work’s distribution to different audiences with different needs. For example,
one licensee might be happy to pay a license fee in order to be able to distribute the work as
part of a proprietary product whose source code is not published, while another might need to
license the work under MPL rather than GPL in order to have consistent licensing across a
system. The result is the distribution of software under any one of several licenses, with the
licensee choosing from two (“dual license”) or three (Mozilla’s “tri-license”) licenses.

The basic relationship between software license rights and obligations can be
summarized as follows: if you meet the specified obligations, then you get the specified rights.
In other words, for the academic licenses, if you retain the copyright notice, list of license
conditions, and disclaimer, then you have the right to use, modify, merge, sub-license, etc. For
MPL, if you publish modified source code and sub-licensed derived works under MPL, then you
get all the MPL rights. These same relationships apply for other types of licenses. However, one
thing we have learned from our efforts to carefully analyze and lay out the obligations and rights
pertaining to each license is that license details are difficult to comprehend and track—it is easy
to get confused or make mistakes. Some of the OSS licenses were written by developers, and
often these turn out to be incomplete and legally ambiguous; others, usually more recent, were
written by lawyers and are more exact and complete but can be difficult for non-lawyers to
grasp. The challenge is multiplied when dealing with configured system architectures that
compose multiple components with heterogeneous licenses so that the need for legal
interpretations begins to seem inevitable (Fontana et al., 2008; Rosen, 2005). Therefore, one of
our goals is to make it possible to architect software systems of heterogeneously licensed
components without necessarily consulting legal counsel. Similarly, such a goal is best realized
with automated support that can help architects understand design choices across components
with different licenses and that can provide support for testing build-time releases and run-time
distributions to make sure they achieve the specified rights by satisfying the corresponding
obligations.

4.2. Expressing Software Licenses
Historically, most software systems, including OSS systems, were entirely under a single

software license. However, we now see more and more software systems being proposed, built,
or distributed with components that are under various licenses. Such systems may no longer be
covered by a single license, unless such a licensing constraint is stipulated at design-time and
enforced at build-time and run-time. But when components with different licenses are to be
included at build-time, their respective licenses might either be consistent or conflict. Further, if
designed systems include components with conflicting licenses, then one or more of the
conflicting components must be excluded in the build-time release or must be abstracted behind
an open API or middleware, with users required to download and install to enable the intended

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 265 -
=

=

operation. (This is common in Linux distributions subject to GPL, where, for example, users may
choose to acquire and install proprietary run-time components, like proprietary media players.)
As a result, a component license conflict need not be a show-stopper if identified at design time.
However, developers have to be able to determine which components’ licenses conflict and take
appropriate steps at design-time, build-time, and run-time that are consistent with the different
concerns and requirements that apply at each phase (Scacchi & Alspaugh, 2008).

In order to fulfill our goals, we need a scheme for expressing software licenses that is
more formal and less ambiguous than natural language and that allows us to identify conflicts
arising from the various rights and obligations pertaining to two or more components’ licenses.
We considered relatively complex structures—such as Hohfeld’s eight fundamental jural
relations (Hohfeld, 1913)—but, applying Occam’s razor, selected a simpler structure. We start
with a tuple <actor, operation, action, object> for expressing a right or obligation. The actor is
the “licensee” for all the licenses we have examined. The operation is one of the following:
“may,” “must,” or “must not,” with “may” expressing a right and “must” and “must not” expressing
obligations; following Hohfeld, the lack of a right (which would be “may not”) correlates with a
duty not to exercise the right (“must not”), and, whenever lack of a right seemed significant in a
license, we expressed it as a negative obligation with “must not.” The action is a verb or verb
phrase describing what may, must, or must not be done, with the object completing the
description. We specify an object separately from the action in order to minimize the set of
actions. A license then may be expressed as a set of rights, with each right associated (in that
license) with zero or more obligations that must be fulfilled in order to enjoy that right. Figure 2
displays the tuples and associations for two of the rights and their associated obligations for the
academic BSD software license. Note that the first right is granted without corresponding
obligations.

Figure 2. A Portion of the BSD License Tuples

We now turn to examine how OA software systems that include components with
different licenses can be designed and analyzed while effectively tracking their rights and
obligations.

When designing an OA software system, there are heuristics one can employ to enable
architectural design choices that might otherwise be excluded due to license conflicts. First, it is
possible to employ a “license firewall,” which serves to limit the scope of reciprocal obligations.
Rather than simply interconnecting conflicting components through static linking of components
at build-time, such components can be logically connected via dynamic links, client-server
protocols, license shims (e.g., via LGPL connectors), or run-time plug-ins. Second, the source
code of statically linked OSS components must be made public. Third, it is necessary to include
appropriate notices and publish required sources when academic licenses are employed.
However, even using design heuristics such as these (and there are many), keeping track of

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 266 -
=

=

license rights and obligations across components that are interconnected in complex OAs
quickly becomes too cumbersome. Thus, automated support needs to be provided to help
overcome and manage the multi-component, multi-license complexity.

5. Automating Analysis of Software License Rights and
Obligations

We find that if we start from a formal specification of a software system’s architecture,
then we can associate software license attributes with the system’s components, connectors,
and sub-system architectures and calculate the copyright rights and obligations for the system.
Accordingly, we employ an architectural description language specified in xADL (2005) to
describe OAs that can be designed and analyzed with a software architecture design
environment (Medvidovic et al., 1999) such as ArchStudio4 (2006). We have taken this
environment and extended it with a Software Architecture License Traceability Analysis module
(Asuncion, 2008). This allows for the specification of licenses as a list of attributes (license
tuples) using a form-based user interface, similar to those already used and known for
ArchStudio4 and xADL (ArchStudio, 2006; Medvidovic et al., 1999).

Figure 3 shows a screenshot of an ArchStudio4 session in which we have modeled the
OA seen in Figure 1. OA software components, each of which has an associated license, are
indicated by darker-shaded boxes. Light-shaded boxes indicate connectors. Architectural
connectors may or may not have associated license information; those with licenses (such as
architectural connectors that represent functional code) are treated as components during
license traceability analysis. A directed line segment indicates a link. Links connect interfaces
between the components and connectors. Furthermore, the Mozilla component, as shown here,
contains a hypothetical subarchitecture for modeling the role of intra-application scripting—as
might be useful in specifying license constraints for Rich Internet Applications. This
subarchitecture is specified in the same manner as the overall system architecture and is visible
in Figure 5. The automated environment allows for tracing and analysis of license attributes and
conflicts.

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 267 -
=

=

Figure 3. An ArchStudio 4 Model of the Open Software Architecture
of Figure 1

Figure 4 shows a view of the internal XML representation of a software license. Analysis
and calculations of rights, obligations, and conflicts for the OA are done in this form. This
schematic representation is similar in spirit to that used for specifying and analyzing privacy and
security regulations associated with certain software systems (Breaux & Anton, 2008).

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 268 -
=

=

Figure 4. A View of the Internal Schematic Representation
of the Mozilla Public License

With this basis to build on, it is now possible to analyze the alignment of rights and
obligations for the overall system:

 Propagation of reciprocal obligations
Reciprocal obligations are imposed by the license of a GPL’d component on any other

component that is part of the same “work based on the Program” (i.e., on the first component),
as defined in GPL. We follow the widely accepted interpretation that build-time static linkage
propagate the reciprocal obligations, but the “license firewalls” do not. Analysis begins,
therefore, by propagating these obligations along all connectors that are not license firewalls.

 Obligation conflicts
An obligation can conflict with another obligation contrary to it, or with the set of available

rights, by requiring a copyright right that has not been granted. For instance, the Corel
proprietary license for the WordPerfect component, CTL (Corel Transactional License), may be
taken to entail that a licensee must not redistribute source code. However, an OSS license,
GPL, may state that a licensee must redistribute source code. Thus, the conflict appears in the

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 269 -
=

=

modality of the two otherwise identical obligations, “must not” in CTL and “must” in GPL. A
conflict on the same point could also occur between GPL and a component whose license fails
to grant the right to distribute its source code.

This phase of the analysis is affected by the overall set of rights that are required. If
conflicts arise involving the union of all obligations in all components’ licenses, it may be
possible to eliminate some conflicts by selecting a smaller set of rights—in which case, only the
obligations for those rights need be considered.

Figure 5 shows a screenshot in which the License Traceability Analysis module has
identified obligation conflicts between the licenses of two pairs of components (“WordPerfect”
and “Linux OS,” and “GUIDisplayManager” and “GUIScriptInterpreter”).

Figure 5. License Conflicts Identified between Two Pairs of Components

 Rights and obligations calculations
The rights available for the entire system (use, copy, modify, etc.) then are calculated as

the intersection of the sets of rights available for each component of the system.

The obligations required for the whole system then are the union of the specific
obligations for each component that are associated with those rights. Examples of specific

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 270 -
=

=

obligations are “Licensee must retain copyright notices in the binary form of module.c” or
“Licensee must publish the source code of component.java version 1.2.3.”

Figure 6 shows a report of the calculations for the hypothetical subarchitecture of the
Mozilla component in our archetypal architecture—exhibiting an obligation conflict and the
single copyright right (to run the system) that the prototype tool shows would be available for the
subarchitecture as a whole if the conflict is resolved; a production tool would also list the rights
(none) currently available.

Figure 6. A Report Identifying the Obligations, Conflicts, and Rights for the
Architectural Model

If a conflict is found involving the obligations and rights of linked components, it is
possible for the system architect to consider an alternative linking scheme—employing one or
more connectors along the paths between the components that act as a license firewall, thereby
mitigating or neutralizing the component-component license conflict. This means that the
architecture and the environment together can determine what OA design best meets the
problem at hand with available software components. Components with conflicting licenses do

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 271 -
=

=

not need to be arbitrarily excluded but, instead, may expand the range of possible architectural
alternatives if the architect seeks such flexibility and choice.

At build-time (and later at run-time), many of the obligations can be tested and verified,
for example, that the binaries contain the appropriate notices for their licenses and that the
source files are present in the correct version on the Web. These tests can be generated from
the internal list of obligations and run automatically. If the system’s interface were extended to
add a control for it, the tests could be run by a deployed system.

The prototype License Traceability Analysis module provides a proof-of-concept for this
approach. We encoded the core provisions of four licenses in XML for the tool—GPL, MPL,
CTL, and AFL (Academic Free License)—to examine the effectiveness of the license tuple
encoding and the calculations based upon it. While it is clear that we could use a more complex
and expressive structure for encoding licenses, in encoding the license provisions to date, we
found that the tuple representation was more expressive than needed; for example, the actor
was always “licensee” and seemed likely to remain so, and we found use for only three
operations or modalities. At this writing, the module shows proof of concept for calculating with
reciprocal obligations by propagating them to adjacent, statically linked modules; the extension
to all paths not blocked by license firewalls is straightforward and is independent of the scheme
and calculations described here. Reciprocal obligations are identified in the tool by lookup in a
table, and the meaning and scope of reciprocality is hard-coded; this is not ideal, but we
considered it acceptable since the legal definition in terms of the reciprocal licenses will not
change frequently. We also focused on the design-time analysis and calculation (rather than on
build- or run-time), as it involves the widest range of issues—including representations,
calculation of rights and obligations, and design guidance derived from them.

Based on our analytical approach, it appears that the questions of what license (if any)
covers a specific configured system, and what rights are available for the overall system (and
what obligations are needed for them) are difficult to answer without automated license-
architecture analysis. This is especially true if the system or sub-system is already in operational
run-time form (Kazman & Carrière, 1999). It might make distribution of a composite OA system
somewhat problematic if people cannot understand what rights or obligations are associated
with it. We offer the following considerations to help make this clear. For example, a
Mozilla/Firefox Web browser covered by the MPL (or GPL or LGPL, in accordance with the
Mozilla Tri-License) may download and run intra-application script code that is covered by a
different license. If this script code is only invoked via dynamic run-time linkage, or via a client-
server transaction protocol, then there is no propagation of license rights or obligations.
However, if the script code is integrated into the source code of the Web browser as a persistent
part of an application (e.g., as a plug-in), then it could be viewed as a configured sub-system
that may need to be accessed for license transfer or conflict implications. A different kind of
example can be anticipated with application programs (like Web browsers, e-mail clients, and
word processors) that employ Rich Internet Applications or mashups entailing the use of content
(e.g., textual character fonts or geographic maps) that is subject to copyright protection—if the
content is embedded in and bundled with the scripted application sub-system. In such a case,
the licenses involved may not be limited to OSS or proprietary software licenses.

In the end, it becomes clear that it is possible to automatically determine what rights or
obligations are associated with a given system architecture at design-time and whether it
contains any license conflicts that might prevent proper access or use at build-time or run-time,
given an approach such as ours.

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 272 -
=

=

6. Discussion
Software system configurations in OAs are intended to be adapted to incorporate new

innovative software technologies that are not yet available. These system configurations will
evolve and be refactored over time at ever-increasing rates (Scacchi, 2007); components will be
patched and upgraded (perhaps with new license constraints), and inter-component
connections will be rewired or remediated with new connector types. As such, sustaining the
openness of a configured software system will become part of ongoing system support,
analysis, and validation. This, in turn, may require ADLs to include OSS licensing properties on
components, connectors, and overall system configuration, as well as in appropriate analysis
tools (Bass et al. 2003; Medvidovic et al., 1999).

Constructing these descriptions is an incremental addition to the development of the
architectural design or alternative architectural designs. But it is still time-consuming and may
present a somewhat daunting challenge for large, pre-existing systems that were not originally
modeled in our environment.

Advances in the identification and extraction of configured software elements at build-
time and their restructuring into architectural descriptions is becoming an evermore automatable
endeavor (Choi & Scacchi, 1990; Kazman & Carrière, 1999; Jansen, Bosch & Avgeriou, 2008).
Further advances in such efforts have the potential to automatically produce architectural
descriptions that can either be manually or semi-automatically annotated with their license
constraints, and thus enable automated construction and assessment of build-time software
system architectures.

The list of recognized OSS licenses is long and ever-growing, and, as existing licenses
are tested in the courts, we can expect their interpretations to be clarified and perhaps altered;
the GPL definition of “work based on the Program,” for example, may eventually be clarified in
this way, possibly refining the scope of reciprocal obligations. Our expressions of license rights
and obligations are for the most part compared for identical actors, actions, and objects, then by
looking for “must not” in one and either “must” or “may” in the other, so that new licenses may
be added by keeping equivalent rights or obligations expressed equivalently. Reciprocal
obligations, however, are handled specially by hard-coded algorithms to traverse the scope of
that obligation so that addition of obligations with different scope, or the revision of the
understanding of the scope of an existing obligation, requires development work. Possibly these
issues will be clarified as we add more licenses to the tool and experiment with their application
in OA contexts.

Lastly, our scheme for specifying software licenses offers the potential for the creation of
shared repositories where these licenses can be accessed, studied, compared, modified, and
redistributed.

7. Conclusion
The relationship between open architecture, open source software, and multiple

software licenses is poorly understood. OSS is often viewed as primarily a source for low-
cost/free software systems or software components. Thus, given the goal of realizing an OA
strategy together with the use of OSS components and open APIs, it has been unclear how to
best align software architecture, OSS, and software license regimes to achieve this goal.
Subsequently, the central problem we examined in this paper was to identify principles of
software architecture and software copyright licenses that facilitate or inhibit how best to ensure

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 273 -
=

=

the success of an OA strategy when OSS and open APIs are required or otherwise employed.
In turn, we presented an analysis scheme and operational environment that demonstrates that
an automated solution to this problem exists.

We have developed and demonstrated an operational environment that can
automatically determine the overall license rights, obligations, and constraints associated with a
configured system architecture whose components may have different software licenses. Such
an environment requires the annotation of the participating software elements with their
corresponding licenses. These annotated software architectural descriptions can be
prescriptively analyzed at design-time, as we have shown, or descriptively analyzed at build-
time or run-time. Such a solution offers the potential for practical support in design-time, build-
time, and run-time license conformance checking and the evermore complex problem of
developing large software systems from configurations of software elements that can evolve
over time.

Acknowledgements
The research described in this report has been supported by grants #0534771 and #

0808783 from the US National Science Foundation and the Acquisition Research Program at
the Naval Postgraduate School. No endorsement implied.

List of References
Alspaugh, T.A., & Antón, A.I. (2007). Scenario support for effective requirements. Information and

Software Technology, 50(3), 198-220.

ArchStudio. (2006). ArchStudio 4 software and systems architecture development environment. Retrieved
from Institute for Software Research, University of California, Irvine website,

http://www.isr.uci.edu/projects/archstudio/

Asuncion, H. (2008). Towards practical software traceability. In Companion of the 30th International
Conference on Software Engineering (pp. 1023-1026). Leipzig, Germany: ICSE.

Bass, L., Clements, P., & Kazman, R. (2003). Software architecture in practice (2nd ed.). New York:
Addison-Wesley Professional.

Breaux, T.D., & Anton, A.I. (2008). Analyzing regulatory rules for privacy and security requirements. IEEE
Transactions on Software Engineering, 34(1), 5-20.

Choi, S., & Scacchi, W. (1990). Extracting and restructuring the design of large systems. IEEE Software,
7(1), 66-71.

Feldt, K. (2007). Programming Firefox: Building rich internet applications with XUL. Sebastopol, CA:
O'Reilly Press.

Fontana, R., Kuhn, B.M., Molgen, E., Norwood, M., Ravicher, D.B., Sandler, K., et al. (2008). A legal
issues primer for open source and free software projects. Software Freedom Law Center. (Vers.
1.5.1). Retrieved from http://www.softwarefreedom.org/resources/2008/foss-primer.pdf

Fielding, R., & Taylor, R.N. (2002). Principled design of the modern web architecture. ACM Transactions
Internet Technology, 2(2), 115-150.

Hohfeld, W.N. (1913). Some fundamental legal conceptions as applied in judicial reasoning. Yale Law
Journal, 23(1), 16-59.

Jansen, A., Bosch, J., & Avgeriou, P. (2008). Documenting after the fact: Recovering architectural design
decisions. Journal of Systems and Software, 81(4), 536-557.

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 274 -
=

=

Kazman, R., & Carrière, J. (1999). Playing detective: Reconstructing software architecture from available
evidence. Journal of Automated Software Engineering, 6(2), 107-138.

Kuhl, F., Weatherly, R., & Dahmann, J. (2000). Creating computer simulation systems: An introduction to
the high level architecture. Upper Saddle River, NJ: Prentice-Hall PTR..

Medvidovic, N., Rosenblum, D.S., & Taylor, R.N. (1999). A language and environment for architecture-
based software development and evolution. In Proceedings of the 21st International Conference
on Software Engineering (ICSE '99) (pp. 44-53). Los Angeles, CA: IEEE Computer Society..

Meyers, B.C., & Obendorf, P. (2001). Managing software acquisition: Open systems and COTS products.
New York: Addison-Wesley..

Nelson, L., & Churchill, E.F. (2006, September). Repurposing: Techniques for reuse and integration of
interactive services. In Proceedings of the 2006 IEEE International Conference on Information
Reuse and Integration. Waikoloa, HI: IEEE.

Open Source Initiative (OSI). (2008). The open source initiative. Retrieved from
http://www.opensource.org/

Rosen, L. (2005). Open source licensing: Software freedom and intellectual property law. Upper Saddle
River, NJ: Prentice-Hall PTR. Retrieved from http://www.rosenlaw.com/oslbook.htm

Scacchi, W. (2002, February). Understanding the requirements for developing open source software
systems. IEE Proceedings—Software, 149(1), 24-39.

Scacchi, W. (2007). Free/open source software development: Recent research results and emerging
opportunities. In Proceedings of the European Software Engineering Conference and ACM
SIGSOFT Symposium on the Foundations of Software Engineering (pp. 459-468). Dubrovnik,
Croatia: ESEC/FSE.

Scacchi, W., & Alspaugh, T.A. (2008). Emerging issues in the acquisition of open source software within
the U.S. Department of Defense. In Proceedings of the 5th Annual Acquisition Research
Symposium (pp. 230-244). Monterey, CA: Naval Postgraduate School.

St. Laurent, A.M. (2004). Understanding open source and free software licensing. Sebastopol, CA:
O'Reilly Press.

Ven, K., & Mannaert, H. (2008). Challenges and strategies in the use of open source software by
independent software vendors. Information and Software Technology, 50, 991-1002.

Wheeler, D.A. (2007, June). Open source software (OSS) in U.S. government acquisitions. The DoD
Software Tech News, 10(2), 7-13.

xADL. (2005). xADL 2.0: Highly-extensible architecture description language for software and
systems. Retrieved from Institute for Software Research, University of California, Irvine
website, http://www.isr.uci.edu/projects/xarchuci/

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå======== - 275 -
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå=
=

=

2003 - 2009 Sponsored Research Topics

Acquisition Management
 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 BCA: Contractor vs. Organic Growth

 Defense Industry Consolidation

 EU-US Defense Industrial Relationships

 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard
Planning Processes

 Managing Services Supply Chain

 MOSA Contracting Implications

 Portfolio Optimization via KVA + RO

 Private Military Sector

 Software Requirements for OA

 Spiral Development

 Strategy for Defense Acquisition Research

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management
 Commodity Sourcing Strategies

 Contracting Government Procurement Functions

 Contractors in 21st Century Combat Zone

 Joint Contingency Contracting

 Model for Optimizing Contingency Contracting Planning and Execution

 Navy Contract Writing Guide

 Past Performance in Source Selection

 Strategic Contingency Contracting

 Transforming DoD Contract Closeout

 USAF Energy Savings Performance Contracts

 USAF IT Commodity Council

 USMC Contingency Contracting

Financial Management
 Acquisitions via leasing: MPS case

 Budget Scoring

 Budgeting for Capabilities-based Planning

 Capital Budgeting for DoD

=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå=
=

=

 Energy Saving Contracts/DoD Mobile Assets

 Financing DoD Budget via PPPs

 Lessons from Private Sector Capital Budgeting for DoD Acquisition Budgeting
Reform

 PPPs and Government Financing

 ROI of Information Warfare Systems

 Special Termination Liability in MDAPs

 Strategic Sourcing

 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources
 Indefinite Reenlistment

 Individual Augmentation

 Learning Management Systems

 Moral Conduct Waivers and First-tem Attrition

 Retention

 The Navy’s Selective Reenlistment Bonus (SRB) Management System

 Tuition Assistance

Logistics Management
 Analysis of LAV Depot Maintenance

 Army LOG MOD

 ASDS Product Support Analysis

 Cold-chain Logistics

 Contractors Supporting Military Operations

 Diffusion/Variability on Vendor Performance Evaluation

 Evolutionary Acquisition

 Lean Six Sigma to Reduce Costs and Improve Readiness

 Naval Aviation Maintenance and Process Improvement (2)

 Optimizing CIWS Lifecycle Support (LCS)

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance Activity

 Pallet Management System

 PBL (4)

 Privatization-NOSL/NAWCI

 RFID (6)

 Risk Analysis for Performance-based Logistics

 R-TOC Aegis Microwave Power Tubes

=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå=
=

=

 Sense-and-Respond Logistics Network

 Strategic Sourcing

Program Management
 Building Collaborative Capacity

 Business Process Reengineering (BPR) for LCS Mission Module Acquisition

 Collaborative IT Tools Leveraging Competence

 Contractor vs. Organic Support

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to Aegis and SSDS

 Managing the Service Supply Chain

 Measuring Uncertainty in Earned Value

 Organizational Modeling and Simulation

 Public-Private Partnership

 Terminating Your Own Program

 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our website:
www.acquisitionresearch.org

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

