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Context
• Expected long term benefits from Navy Open Architecture 

– Business benefits: 
• Flexible acquisition strategies and contracts that enable software 

reuse, easy systems upgrade, and shared data throughout the Navy 
– Technical benefits: 

• Modular open architectures facilitate system adaptation, portability, 
interoperability, upgrade-ability and long-term supportability

• The Achilles Heel - Test and Evaluation
– Current practices require retesting unchanged components after 

each system upgrade, typically every two years
– Substantial budget and schedule are currently devoted to retesting
– New technology, processes, and policies are needed to safely 

reduce this effort and free resources for testing new functionality
• Improvements sought by our research

– Less time for testing, quicker response to changes
– Improved reliability on larger scales without increasing testing cost
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Scientific Roadmap - Objectives
• Safely reduce testing cost

– Reduce the need for re-testing
– Eventually eliminate integration test after every reconfiguration
– Reduce cost of future system failures due to missed errors

• Make testing more effective by augmenting it with other quality 
assurance methods

– Develop conceptually new and different methods to achieve dependability in 
Navy OA systems in presence of reuse, reconfiguration, changes and 
unpredictable environments

• Enable Persistent Open Architectures
– The architecture should not have to change or be retested every time the 

system configuration changes
• Methods that cover many configurations with one analysis 
• Avoid redundant retesting of previously existing modules and architectures
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Scientific Roadmap - Approach
• Refine the open architecture concept to support system 

development and testing with interchangeable software parts 
that conform to persistent system standards
– Requirements that are stable across all configurations
– Both system-wide capabilities and subsystem/connection properties

• A Dependable Open Architecture should include:
– Not only components and connections but also constraints

expressing the most important dependability properties
– Links to requirements, capabilities and standards
– Variable parameters – KPP’s / features / Load characteristics
– Components and connectors should be swappable within 

compatibility groups defined by testable dependability properties

• Apply testing and systematic quality assurance at the 
architectural level as well as the system implementation level
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Long Term Solution Approach
• The proposed QA method is globally decomposed into five 

major steps:

See 2007 Acquisition Symposium Paper for details
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Short Term Problems
• Current Navy combat system test procedures require an 

integration test for every:
– System configuration (platform)
– Changed system configuration (upgrade)

• Open Architectures support frequent changes to configurations
– Retesting is expensive and time consuming

• Open Architectures support component reuse across platforms
– Component workloads subject to change
– New workloads expose new faults
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Recent Work - Approaches

• Reduce testing cost
– Methods to identify components that do not need to be retested
– Methods to limit scope of retesting when it is needed
– Methods to completely automate testing and analysis

• Maintain safety
– Program slicing to confirm unchanged behavior of unchanged code
– Automated testing to confirm unchanged behavior of modified code
– Operational profiles to efficiently test reusable components in 

different environments.



When Retesting a Service is Necessary

• When its slice or behavior has changed

• When requirements have changed
– New functionality needs to be tested
– Test all affected components

• When the range of expected operating conditions has expanded
– Even if there was no other change, new test scenarios are needed
– Indicated by a modified operational profile

• When computing speeds or timing constraints have changed
– Changed hardware processing rates can adversely affect 

scheduling algorithms and cause missed deadlines
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Test Avoidance Example



Program Slicing
• Program slicing is a kind of automated dependency analysis

– Same slice implies same behavior
– Can be computed for large programs
– Depends on the source code, language specific

• Slicing tools must handle arrays and objects correctly
– Need to certify the tools to be used

• Unchanged component behavior depends on continued 
correspondence of machine code to source code

• Must certify absence of memory corrupting bugs
– Tools exist: Valgrind, Insure++, Coverity,…

• Must ensure absence of runtime modifications due to cyber attacks
– Cannot be detected by testing because modifications are not present in test 

loads
– Need runtime checking, can be done using cryptographic signatures
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How Much Invariance Testing
is Enough?

• How many tests are needed to reach high confidence?
– Stakeholder defines the acceptable risk threshold k

• The expected frequency of behavioral differences in a given service is 
at most one in k missions.

• Number of test cases is computed for each service in the 
middleware interface to the operating system

– It is determined by the following formula
Ts = (k es) log2 (k es)

• Where s is a service, es is the mean number of executions of s per 
mission, k reflects stakeholder’s tolerance for risk as above

• Test cases are independently drawn from the probability 
distribution characterizing the mission, a.k.a. operational profile

– Statistical confidence level is 1 – 1/(k es)
• Probability of making a false positive conclusion matches the 

stakeholder’s risk tolerance
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Current Policy for Mishap Risk Assessment
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P: Probability of occurrence in the lifetime of an individual system, ranges taken from MIL_STD-882D



Testing Efforts vs. Acceptable Risk
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Ns = k es C Ts
103 .999 1.0 x 104
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Why Do We Need Operational Profiles

• Can be used to automate selection of test cases

• Reliability of a system is determined by the operational profile
– Real systems have bugs, specification errors, requirement omissions, etc.
– System reliability varies from 0 (always fails) to 1 (never fails) in different environments

• Operational profiles have proved useful in practice
– Example: reliability testing of telephone-switching software

• It takes human effort to produce an operational profile
– Measure the frequency distributions of executions and associated input parameters for 

each service
• Can be collected on- or off- line

14



Benefits of Operational Profiles

• Reduces testing resources
– Automatic generation of test cases
– Efficient selection of test cases
– Finds most frequent failures first
– Supports reuse of previous test results

• Good software reliability checking
– Statistically represents external environment
– Suited for software reuse testing

• Ideal for Open Architecture applications by 
enabling automated statistical testing
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Example of Using an Operational 
Profile for Reuse Testing

• Currently fielded software has been tested 
with N samples from operational profile g1(x) 
and functions reliably in that environment

• Software is being reused and placed in new 
environment represented by operational 
profile g2(x)

• What is the minimum amount of testing 
required to ensure operability and reliability in 
the new environment?
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Operational Profile for Two Different 
Environments
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Example of Using an Operational 
Profile for Reuse Testing (cont)

• Need additional testing in regions more likely 
in the new profile than in the old one

• The profile difference defines the needed test 
cases
– Pd(x) = if g2(x) > g1(x) then g2(x) – g1(x) else 0
– Must be scaled if reliability goals differ in the two 

environments
– Must be normalized to become a probability 

distribution
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Derived Testing Profile
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Example of Using an Operational 
Profile for Reuse Testing (cont)

• How to stress test the software?
– Safety or operationally critical software
– Extended boundary condition testing
– Checks for “unknown unknowns”, prevents 

surprises from the new environment
• Rough guideline: test out to 100 standard 

deviations
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Stress Testing Profile
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Methods for modeling operational 
profiles

• Identify all environment inputs and their 
dependencies
– Possible use of conditional distributions

• Estimate distribution for each input
– Mathematical analysis and use of histogram “bins”

when raw historical data is available
– Smoothing, interpolation & extrapolation to tails 

where raw data is missing
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Methods for modeling operational 
profiles (cont)

• Use of Bayesian methods for estimating 
distributions of actual data

• Implementing Stress Test profiles 
– When not enough information is known about 

current or past operational environments
– Always for safety critical software

• Calculate statistical confidence levels in the 
profile model based on sample size
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Acquisition Process Implications

• Requirements analysis needs to span the entire problem 
domain and system life, not just individual versions of the 
System of Systems
– Same architecture must support all future versions and all platforms
– Planned control of variation via ranges for parameters/features

• Re-orient development processes toward Design-to-Tolerances
– Currently oriented towards Design-to-Fit, Test-to-Fit

• The architecture as a whole needs authority / priority
– Responsible organization 
– Global system standards authority
– Manage accountability for subsystems
– Empower via change control, acceptance testing, budget control, 

contracts with incremental commitment
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Acquisition Process Implications

• Domain requirements/Architecture development / QA need 
substantial time/resources/technology development
– Must be included in the plan from the start
– More detailed/precise standards and analysis needed
– Shift from current requirements to likely requirements trajectories

• New QA technologies needed
– Some known in labs but not used currently
– Tailoring/improvement may be needed for practical use
– Some areas need new methods to reach long term goals
– Will need tech transfer, training, and process changes for best 

practical impact



Short Term Recommendations

• Testing profiles and statistical test results should be attached to 
reusable components in repositories.

• Operational Profiles should be measured based on observed 
data.

• Validity of pointers and storage recycling should be checked by 
tools especially if components not retested based on slicing.

• Absence of code modification should be checked at runtime via 
cryptographic signatures.

• Automated invariance testing should be applied to components 
whose specifications are unchanged but hardware or code 
affecting behavior has changed.
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Short Term Recommendations (cont)

• Statistical testing should be performed for safety-
critical and mission critical functions.

• Need uniform guidance for mission-critical reliability, 
analogous to MIL-STD-882D for system safety.

• Effectiveness and safety of slicing criteria for avoiding 
retesting should be validated with a case study/demo.

• Reusable components should monitor assumptions 
about their operating environment at runtime.
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Conclusions

• The slicing and automated testing approach has a 
potential to reduce testing duration and costs

– More research is recommended to substantiate the applicability of our 
approach to DoD systems

– Experimental evaluation of slicing  and invariance testing methods is 
needed

• Automated testing techniques can alleviate concerns 
about system risks due to technology innovations

• Measurement and analysis of the operational profiles 
of reusable components can be used to support 
analysis of changes in the operating environments

– Hence determining whether additional testing is necessary
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Approach: Program Slicing [Weiser 84]

• What is a slice?
– A self-contained subset of a program

• Contains all of the code that affects its observable behavior 
– Determined by an observation point

• Example: behavior of a single service
– Contains only the relevant parts

• Why do slices matter?
– Behavior invariance property:

• If a service has the same slice in two different versions of a program, it 
has the same behavior in both versions

– If two slices are the same, the service does not have to be retested
– Slices can be computed on a large scale

• Involves dependency tracing, data flow analysis, and control flow 
analysis
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Invariance Testing Extends Program Slicing
• Used to check that behavior of modified code remains the same

– Candidates: Open Architectures and higher level middleware
• Enables effective slicing cutoff boundaries

– Example: operating system interface
– Example: upgrade from a deprecated interface
– Example: baseline specific interfaces used by common 

components
• Enhances slicing to identify more components that do not need 

retesting
• Relies on a statistical inference with a very high confidence level

– Needs large numbers of test cases
– Economically feasible because this kind of test and analysis can be 

completely automated
• Test cases - generate inputs by random sampling
• Data analysis - compare outputs from two different software versions
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Related Work
• Navy systems are designed with open architecture in mind

– Hence encapsulating all system calls

• Program Slicing has been used in a wide variety of applications:
testing, debugging, program understanding, reverse 
engineering, software maintenance, change merging, software 
metrics.

– See paper for extended list of citations.

• Automate testing has been used to automatically generate open 
sets of test cases based on random samplings from 
implementations of operational profile distributions [Berzins and Chaki 
2002]

• Prior work on quality assurance for flexible systems at the level:
– Of requirements [Luqi, Zhang, Berzins & Qiao 2004] [Luqi & Lange 2006]

– Of architectures [Berzins & Luqi 2006] ][Luqi & Zhang 2006]


