
Math modeling for risk-based testing:
Information-driven strategies
to reduce cost and improve reliability

Karl D. Pfeiffer
Valery A. Kanevsky

Thomas J. Housel

2

Overview

• This project seeks to provide a prototype decision aid
to help control the cost of testing in an open
architecture (OA) environment

• Implementation of OA can lead to more rapid fielding
of increments in systems development
– However, frequent fielding requires frequent testing

• This is one of two efforts funded by PEO-IWS 7 that
seek to provide a rigorous basis for controlling
spiraling cost of testing

3

Background

High

High
Low

Low

Knowledge of
or confidence in
system operation
under load

Cost of testing in
budget and schedule

Good testing strategies offer the
most information per unit cost

Poor strategies return
less information for the
investment in testing

4

Model approach

• Classic approaches to optimal testing focus on the
modules or components to be tested

• This is similar to building optimal search
strategies for submarines using only aircraft as
the reconnaissance platform, focusing on the
differences among submarines

• While it’s important to understand the
components being tested, or the targets of
our search, this can only take us so far—
and sometimes our targets are black
boxes

• In the present work, we treat both tests and components
explicitly, using prior knowledge of both our system and its
diagnostic test suite to build an optimal test strategy

• This is similar to looking at all available platforms for the best
mix of sensors (tests) to match the most probable or most
lethal targets (faulty components) 5

Model approach

6

Model fundamentals

• A module Mi is modeled as a
unit circle with probability
of being defective bi

• Test Tx exercises region Aix
in module Mi

• In general we assume that Tx
may exercise several regions
across several modules

• A test has two possible outcomes:
‒ PASS indicates that the test did not detect a defect in any of the

exercised regions within the modules tested
‒ FAIL indicates that at least one module exercised is defective,

though we may not know which one

7

Model fundamentals

• These ambiguities offer a rich framework for modeling realistic
system testing scenarios
– We do not need to execute (and pay for) Tx to forecast the information

returned by this test
– Within this language of expression we can formulate a quantitative

assessment of the information returned by a test sequence

• Across the system of modules Mi we can measure the
information returned by a test using the classic residual entropy
for a distribution of probabilities:

2 2log (1) log (1)i i i i i
ii

b b bh bH = − − − −=∑ ∑

8

Model fundamentals
At maximum entropy we have a 50/50 chance that our
module is good or bad—we might as well flip a coin

Testing increases the displacement
from maximum entropy at h(bi=1/2)
by nudging bi closer to 0 or 1, and
this means increased certainty in the
state of module Mi

• From entropy, we derive the forecast measure:

• Let cx be the cost of executing test Tx in appropriate units of
time or money (or both) A good strategy will sequence the
suite of tests such that:

• These ratios represent information per unit cost

9

Model fundamentals

[1] [2] []

[1] [2] []

))(()(m

m

Q T Q T Q T
c c c

≥ ≥L

()max(,1) (fails) + max(,1) (passes)() fail fail
x i i x i

pass pa
x

i

ss
ib b P T b b PQ TT = − −∑

10

Model implementation

• A prototype decision aid was crafted from this mathematical
model for desktop simulation
– Development in platform-independent, compact Java
– Configuration files and simulation output maintained as well-formed

XML files for experimentation and analysis

• Within the simulated system, zero or more defects can be
planted within the set of modules
– With planted defects, we can examine the best test sequences to isolate

faults in a system down for repair
– With zero defect runs, we can examine the information return on a test

suite for use in regression or post-maintenance analysis to verify that the
system is mission capable

11

Model implementation

• Within the decision aid, for simple
investigations, a fully randomized
system can be created with only a few
user specified constraints

• If the user has a few system details but
only vague insight about others, these
aspects can be augmented with
randomized parameters (e.g. sizes and
number of coverages)

• A system with well-documented
interdependencies can be completely
specified by the user in terms of
modules, tests and coverages

Precision of
system specification

12

Preliminary results

Number of tests applied

M
ea

n
Q

 =
 Σ

m
ax

(b
i,

1-
b i) Comparison of 300 trials on a generic

system simulated using a best-next and
best-next two test strategies.

A random test selection strategy, and an
information-minimizing worst case
strategy are shown for contrast.

Note that even after all tests are executed
we are not 100% certain of our system
performance

13

Defect was planted in

Module 7 (red)

Data from one trial of a large
simulation, showing the
evolution of {bi}

Module probabilities (green)
are adjusted by testing,
converging to the true state
(red) of the system as tests are
applied

14

Defects planted in both Module
11 and Module 19

15

A no-defect run could be used to assess
the power of a regression test suite for OA
upgrades

But, what does it all mean?

• Effective, cost-efficient testing is critical to the long-term
success of Open Architecture

• This model and prototype decision aid provide a rigorous yet
tractable way ahead to improve system testing
– And, to better understand and document the system and component

interdependencies across the enterprise

• Using this framework we can build the tools to:
– Lower the testing costs for a given level of system reliability
– Improve the use of existing suites for a given budget or schedule
– Design better, more targeted test suites to minimize redundancy
– Provide insight into the power or sensitivity of current test suites

16

17

Future work

• To further refine the current prototype into an operational
capability will require time and effort, notionally:
– Three months to work with subject matter experts in simulating real-

world cases from the OA community
– Six months to improve the user interface and tune the system

specification software to meet operational requirements
– Three months for user training and documentation updates

This schedule only works if we have the OA test cases

