
1

Software Licenses, Open Source
Components, and Open Architectures

Thomas Alspaugh, Hazeline Asuncion, Walt Scacchi

Institute for Software Research

University of California, Irvine

2

What is an Open Architecture?

• Open Architecture (OA) systems may include components
with open APIs, Open Source Software (OSS) technology
or development processes.

• OSS components are subject to different Intellectual
Property (IP) licenses that impose constraints/conflicts

• Air Force, Army, and Navy each have their own reasons
for adoption OA systems.
– But what happens when there are conflicts across the Defense

community regarding what an OA is?

• Therefore, is it clear what an OA is, or how to achieve an
OA system with OSS?

Research Questions

• What license applies to an OA system composed
with OSS elements with different licenses?

• How do alternative OSS licenses facilitate or inhibit
the development of OA systems?

• How should software license constraints be specified
so it is possible to automatically determine the
overall set of rights and obligations associated with a
configured software system architecture?

4

OA, OSS, and software license analysis
• Goal: identify software architecture principles and

OSS licenses that mediate OA
• OSS components subject to different IP licenses
• DoD policies and initiatives encouraging OA with

OSS elements
• How to determine the requirements for how to

realize OA strategies with OSS?

Source: W. Scacchi and T. Alspaugh, Emerging Issues in the Acquisition of Open Source Software within the U.S.
Department of Defense, Proc. 5th Annual Acquisition Research Symposium, Vol. 1, 230-244, NPS-AM-08-036, Naval
Postgraduate School, Monterey, CA, 2008.

5

Example OA System with OSS
Components

6

Open Software Architecture
Elements

• Software source code components
– Standalone programs
– Libraries, frameworks, or middleware
– Inter-application script code (e.g., for building subsystems)
– Intra-application script code (e.g., for Rich Internet Apps.)

• Executable software components (binaries)
• Application program interfaces (APIs)
• Software connectors
• Configured sub-system or system

7

Open Architecture Example Legend:
Grey boxes are
components;
yellow ellipses are
connectors;
white boxes are
code interfaces;
arrows are data or
control flow paths;
complete figure is
architectural design
configuration,
denote different
kinds of elements.

OSS elements subject to
different IP licenses

• Intellectual Property licenses stipulate rights (“can/not
do”) and obligations (“must/not do”) regarding IP usage

• GPL (Gnu Public License) stipulates right to access, study,
modify, and reciprocal obligation to redistribute modified
source code

• Mozilla now offers a tri-license for its software like
Firefox Web Browser:
– GPL, MPL (lightweight), or Restricted (accommodating

proprietary services)
• Other OSS covered by different license rights and

obligations, thus unclear how to check or enforce!

9

OSS elements subject to different IP
licenses

• How to determine which rights and obligations
will apply or conflict within a configured
system?

10

OSS elements subject to different IP
licenses

• How to determine which rights and obligations
will apply or conflict within a configured
system?
– At design-time (maximum flexibility—can employ “license

firewalls” to mitigate license constraints)
– At build-time (may/not be able to redistribute components

at hand)
– At run-time (software release may/not need to install/link-to

components from other sites or repositories)

11

OSS elements subject to different IP
licenses

• Different license constraints may apply or conflict at
different times

• Different license constraints imply overall system
may/not be OA at different times

• We need to know at all times what license constraints
apply, and whether/not we have an OA

• License analysis with large, complex systems may be
intractable for developers, lawyers, PEOs, etc.
– Further exacerbated by different time constraints

OSS elements subject to
different IP licenses

Practical requirements:
• Must formally specify software license rights and obligations
• Must specify and model software system architectures
• Must analyze software architectures in terms of license

obligations and rights for multi-component systems or sub-
systems
– At architectural design-time
– At build-time
– At run-time (including integration with legacy systems)
– Analysis same at each time, but results may differ!

• Should provide automated support to help meet these needs

13

Proposed Solution:
Automated OA Design and License

Analysis Environment

• Developed an operational prototype OA design and
license environment

• Demonstrates the ability to satisfy the all of the
practical requirements

• Developed as an extension to the ArchStudio
Architecture Design Environment from UC Irvine
– http://www.isr.uci.edu/projects/archstudio/

14

Open Architecture Example Legend:
Grey boxes are
components;
yellow ellipses are
connectors;
white boxes are
code interfaces;
arrows are data or
control flow paths;
complete figure is
architectural design
configuration,
denote different
kinds of elements.

15

16

17

18

Discussion
What about other OA with OSS problems?
• How to determine what license constraints apply to a

delivered software system that may have OSS within it?
• Where is the OSS and is it GPL or not?

– Requires source code analysis/data mining tools
– No external architectural design in hand

• Possible to semi-automatically generate build-time
architecture specification from source code

• Automated OA license analysis environment, plus source
code analysis/mining, and architecture (re)generation tools,
is best bet for addressing these problems

Conclusions

• Identified a fundamental challenge to design,
build, and release of OA software systems that
include OSS components with different IP
licenses

• Identified approach for solving the challenge
• Demonstrated a prototype automated environment

that solves problem at hand
• Identified other problems that may affect full

realization of OA with OSS components

Acknowledgements

• Research supported by:
– Acquisition Research Program at the Naval

Postgraduate School
– Grants #0534771 and #0808783 from the

National Science Foundation (NSF)
• No endorsement implied.

